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ABSTRACT ARTICLE HISTORY

In the present study, groundwater-level monitoring has been carried out Received 14 December 2016
on 26 observation dug wells in the Aosta Valley region, Italy, during the Accepted 7 May 2017

dry season (June 2013) and wet season (November 2013) in order to KEYWORDS

assess the water-level fluctuation (WLF). The depth to water level varied Water-level fluctuation;
from 3.04 to 28.70 metres below ground level (mbgl) in the dry season potential risk to water level;
and from 2.92 to 25.62 mbgl in the wet season. The WLF of the study area elevation; results validation;
varied from 0.01 to 6.80 mbgl, and the western and north-western regions groundwater management
of the study area showed higher WFL. The WLF map was validated with a

statistical analysis and elevation value of the area in a geographic

information system environment, and this indicated that validation can be

accepted for the WLF in the Aosta Valley. The results of the study

demonstrated that the eastern region could be considered as a safe and

good recharge zone for the groundwater in the Aosta Valley region. The

WLF map generated in this study could also be used for the management

of future groundwater resources and environmental planning of the area.

Introduction

Water is an essential natural resource for sustaining life and the environment which we have always
considered to be available in abundance and a free gift of nature. It is also an essential ingredient of
animal and plant life. Water is distributed in nature in different forms, such as river water, rain
water, spring water and mineral water. Water is a human need and a precious national asset. It is
required for most human activities, like drinking, cooking, bathing, washing, agriculture, industry,
recreation, navigation, fisheries, etc. About 75% of the world’s surface area is covered with water,
out of which 97% is in the form of the ocean, not fit for human use due to its high salt content. The
remaining 2% is locked in polar ice caps and only 1% is available as fresh water in rivers, lakes,
streams, reservoirs and groundwater, suitable for human consumption. The global water demand is
highly influenced by population growth, urbanization, food and energy security policies, and
macro-economic processes such as trade globalization and changing consumption patterns
(WWAP 2015). Over the past century, the development of water resources has been largely driven
by the demands of expanding populations for food, fibre and energy. The strong income growth
and rising living standards of a growing middle class have led to sharp increases in water use, which
can be unsustainable, especially where supplies are vulnerable or scarce and where its use, distribu-
tion, price, consumption and management are poorly managed or regulated (WWAP 2015).
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Groundwater makes up about 20% of the world’s fresh water resource, which is about 0.61% of
the entire world’s water, including oceans and permanent ice. Groundwater may be considered as
one of the most precious and basic needs for human existence and the survival of mankind, provid-
ing us with luxuries and comforts in addition to fulfilling our basic necessities of life (Singh et al.
2014). The deterioration of groundwater quality and the declining groundwater levels are the most
pressing problems in many countries due to the increasing demands for water by increasing indus-
trialization, population, urbanization and agricultural expansion (Neves & Matias 2008; Cidu et al.
2009; Bhuiyan et al. 2010; Verma & Singh 2013; Chandra et al. 2015; Tiwari et al. 2016; Verma et al.
2016).

Groundwater levels represent the potentiometric state of water recharge, storage and discharge of
the aquifer (Conlon et al. 2005; Yu et al. 2016). Groundwater-level fluctuation depends on several
hydrogeological factors, such as geology, drainage, soil, slope, elevation and other parameters
(Chandra et al. 2015; Tiwari et al. 2016). Recently, several studies have been concentrating on
groundwater-level fluctuation, which is challenging to the scientific community working on hydro-
geological factors and groundwater resource management (Bhuiyan 2010; Maggirwar et al. 2011;
Krishan et al. 2014, 2016; Chandra et al. 2015; Yu et al. 2016; Cai & Ofterdinger 2016; Tiwari et al.
2016). Groundwater-level fluctuation techniques can be used for identifying the water-level status,
seasonal variation, trend of fluctuation and suitable recharge zones for groundwater management.

A geographic information system (GIS) is an effective tool for handling spatial data, zone map-
ping, water-level fluctuation (WLF) trend assessment, water resource management, risk assessment
on environmental health problems, and for helping policy makers to take a quick decision (Stafford
1991; Singh et al. 2013; Tiwari et al. 2016). Recently, around the world, several researchers have
used GIS techniques for the assessment of groundwater-level fluctuation and protection zone map-
ping (Rai et al. 2005; Shaban et al. 2006; Yeh et al. 2009; Chandra et al. 2015; Tiwari et al. 2016; and
others).

However, while the world has achieved tremendous progress in all fields of science and technol-
ogy, adequate and safe drinking water is still a distant dream for many peoples. Hence, there is a
need to develop and manage the water resources of a country from a natural perspective. In Italy,
Christe et al. (2013) suggested that the three important points (water monitoring strategies, water-
use strategies and strategies for protection against water) for a sustainable management of the
groundwater resource in the mountain areas. Based on the above-suggested points, the main objec-
tive of the present study was to assess the groundwater-level risk in a GIS environment to effectively
understand the seasonal variation in water level, water-level status and possible impacts (natural or
anthropogenic) on groundwater level. This study also aimed to improve groundwater resource man-
agement in the Aosta Valley region, Italy, because the groundwater of the study area plays the most
important role in the development of socio-economic state of the area.

Study area

The Aosta Valley region lies in the north-western part of the Italian peninsula, located within the
latitude 45°42'00"-45°46/30"N and longitude 7°17'00"-7°15'00"E (Figure 1). The region is an area
in the valley formed by the Dora Baltea River, which flows from east to west, and its 12 tributary val-
leys. It is the smallest region in Italy and one of the main alpine valley systems of the Po River, bor-
dered by the major peaks of the Pennine and Graie Alps. The Aosta Valley region has a typical
alpine climate characterized by cold winters and cool summers. Monthly rainfall reaches its highest
annual peaks in the spring and autumn seasons, while the minimum annual values are recorded in
the summer and winter seasons. In particular, the highest mean precipitation value by month is
roughly 140 mm of rainfall, while the minimum one is 30 mm (Mercalli et al. 2003). The study area
has one steel factory situated in the S-E part of Aosta city. Its main products are stainless steel wire
rods, stainless steel bars, semi-finished products, valve steel, tool steel and atomized powders.
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Figure 1. Dug well location map in the Aosta Valley region, Italy.

From the geological point of view, the Aosta Valley region, from NW to SE, is a natural cross sec-
tion through the structural block of the Alps. The stacked relics of the ancient European and African
continental margins, with wrecked portions of the ocean floor between them, emerge in this area of
the Alps (Dal Piaz 1992). In particular, in the Aosta Valley region, from west to east, otherwise from
the inner to the external parts of the Alps, there are several structural geological domains, such as the
Elvetico-Ultraelvetico Domain, Pennidic Domain, Piemontese Zone and Austroalpine Domain.

The study area belongs to the sequences of the Piedmont Zone and Austroalpine Domain. The
Piedmont Zone is a great multi-layered system, widely outcropping in the middle valley, which sepa-
rates the Austroalpine units from the underlying Pennidic Units (Dal Piaz 1992). It is mainly char-
acterized by calc-schist, amphibolite, eclogite, metagabbros and serpentinite rocks. The
Austroalpine Domain is lithologically represented by fine-grained gneiss, schists, amphibolites, mar-
bles, eclogitic mica schists and gabbros (Regione Valle d’Aosta 2006). The Quaternary deposits in
the study area are very recent, relative to the whole extent of the Quaternary, and they date mostly
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from the last Upper Pleistocenic glacial episode (Lo Russo et al. 2015). In the Aosta plain, Quater-
nary cover sheets are mainly represented by alluvial deposits, formed by rounded pebbles and gravel,
with the sandy matrix, and conglomeratic levels. The Quaternary cover in the Aosta Plain also con-
sists in surface glacial deposits (morainic deposits), mainly silts and very fine-sorted sand organized
in massive banks (Dal Piaz et al. 2008). There are also slope and detrital deposits, derived from the
physical and chemical weathering processes of rock masses, combined with the action of gravity.
The main direction of groundwater flow is W-E oriented, roughly parallel to the Dora Baltea flow.
The trend of the water level is generally smooth, with a maximum coinciding with July-August and
a minimum in spring (March-April). The trend is highly dependent on the glacial regime of the
high mountain areas and not influenced very much by meteorological events. The depth to the water
level below ground level is minimal in the eastern area of the Aosta plain (<5 m in all seasons) and
highest in the northern area (>20-25 m) (Regione Valle d’Aosta 2006). Figure 2(a,b) shows that the
piezometric level (meter above the sea level (masl)) of the June 2013 and November 2013, as well as
the water flow direction of the study area. The water flow direction of the study area is mainly west
to east (W to E) direction during both the dry season and wet season, respectively.

Materials and methods

In the Aosta Valley region, 26 dug wells were selected for monitoring the water level in the year 2013,
during the dry and wet periods. The dry water-level data were collected in the month of June 2013,
while the wet water-level data were collected in November 2013. Water-level measurement was car-
ried out with the use of a sensor-based water-level indicator. The Digital Terrain Model (DTM) of
the 2-m resolution was taken from the Aosta Valley regional authority (http://geoportale.partout.it/
prodotti_cartografici/repertorio_cartografico/dtm/default_i.aspx) and transformed in GIS database to
generate elevation map of the study area. This DTM data has obtained from a laser scanner aeropho-
togrammetric survey methodology (LIDAR). A LIDAR survey consists of a set of points which are
associated coordinates (X and Y) and elevation (Z). The water-level contour and WLF map were
done with the help of spatial analyst module in ArcGIS 10.2 software. Inverse distance-weighted
(IDW) interpolation technique was used for spatial modelling. The piezometric-level maps with the
water flow direction were prepared in the Surfer and GIS environment. The detailed methodology
adopted for carrying out the research is shown in a flow chart (Figure 3).

Results and discussion

The water-level data and statistical analysis results of depth to water level during two seasons, the
dry (June 2013) and wet seasons (November 2013), are provided in Table 1.

Depth to water level

A total of 26 wells were monitored to assess the trend of WFL in the study area. These wells were
monitored in the dry and wet seasons. In the dry season, the depth to water level varied from 3.04 to
28.70 metres below ground level (mbgl), with an average value of 12.89 mbgl. The lower (<5 mbgl)
and medium (5.1 to 10 mbgl) depth to water level values were observed in the eastern region of the
study area. However, from moderate (10.1-15 mbgl) to high (15.1-20 mbgl) values were found in
the central, north-west and western regions of the area. In contrast, very high (>20 mbgl) values
were observed in the few places of the western, northern and central regions of the study area
(Figure 4).

On the other hand, during the wet season, the depth to water level ranged from 2.92 to
25.62 mbgl (avg. 10.77 mbgl). In general, we observed similar level to the dry season, the lower
(<5 mbgl) and medium (5.1-10 mbgl) depth to water level values in the eastern region and from
moderate (10.1-15 mbgl) to high (15.1-20 mbgl) values in the central, northwest and western


http://geoportale.partout.it/prodotti_cartografici/repertorio_cartografico/dtm/default_i.aspx
http://geoportale.partout.it/prodotti_cartografici/repertorio_cartografico/dtm/default_i.aspx

GEOMATICS, NATURAL HAZARDS AND RISK e 5

7°2230°E

45'4330'N
45°4330°N

June 2013
Piezometric level (masl)
iezometric level line

7°22'30°E

-
S \\\\ n|||‘
A

Legend
November 2013
Piezometric level (masl)
—— Piezometric level line
——= Water flow direction
4. —— River

7°22'30"E

Figure 2. Piezometric-level map with the water flow direction during (a) June 2013 and (b) November 2013 in the Aosta Valley
region, Italy.

regions of the area. However, very high (>20 mbgl) values were observed in the few places of the
northern and central regions in the Aosta Valley (Figure 5). When comparison of the contour maps
for the dry and wet periods was made in GIS environment, a deep water level during the dry period
was observed.
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Figure 3. Methodology adopted for carrying out the research.

Water-level fluctuation

The water level is one of the most important parameters to understand the groundwater availability
status of any area, and WLF plays a significant role in evaluating the trend of groundwater level.
The WLF of the study area varied from 0.01 to 6.80 mbgl with an average value of 2.12 mbgl
(Table 1). We found very low (<1 mbgl) to low (<2 mbgl) WLF in dug wells of the eastern and
some central regions (Figure 6). We observed medium (2.1-4 mbgl) WLF in dug wells located in the
central region of the Aosta Valley (Figure 6). However, high (4.1-6 mbgl) and very high (>6 mbgl)
WLEF in dug wells located in the western, north-west and northern regions (Figure 6) may be due to
the hydrogeological parameters such as high piezometric level and the water flow direction (W to E)
of the study area (Figure 2(a,b)). The study showed that the western and north-west regions were
facing extreme water scarcity due to lower availability of the groundwater and medium water scar-
city in the central region of the study area. However, the eastern region of the Aosta Valley had suffi-
cient available groundwater resources.

Potential risk related to water level

A recent study of the Aosta Valley (the study area of the present research) by Bonomi et al. (2015)
studied the groundwater flow and transport modelling of the contamination. They reported that
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Table 1. Monitoring well locations, depth to water level data and summary statistics of the water level in the Aosta Vally for the
year 2013.

Sample Dry season depthto  Wet season depth to WLF
S. no. code Latitude Longitude Elevation (m) water level (mbgl)  water level (mbgl) (mbgl)
1 Ao15 45°43'53.94" 7°20'19.61” 568.82 21.41 19.12 2.29
2 Ao19  45°43/53.52" 7°19'28.23” 566.66 16.20 13.05 3.15
3 Ao23 45°44/0.72"  7°19'43.62" 569.38 19.80 16.79 3.01
4 Ao24 45°44'11.76" 7°20'27.89" 563.12 17.62 15.33 2.29
5 Ao32 45°44/3.07"  7°19'15.75" 571.22 19.41 15.66 3.75
6 Ao51 45°43'56.20" 7°17'45.33" 578.53 16.58 11.20 538
7 A053  45°44'492"  7°184.92" 579.52 19.70 14.77 4.93
8 Ao55 45°44/22.51" 7°20'30.80" 564.41 18.59 16.82 1.77
9 Ao56 45°44'20.32" 7°20'49.32" 557.26 12.50 10.87 1.63
10 Aob61 45°44'25.12" 7°18'52.15” 581.79 27.85 23.83 4.02
1 Ao68  45°44'17.81" 7°19'39.20” 578.30 28.70 25.62 3.08
12 Ao73 45°44'592"  7°18'53.24" 575.50 18.43 14.28 4.15
13 Br23 45°44"8.17"  7°23/21.31" 534.97 3.04 3.03 0.01
14 Cho5 45°43'46,93" 7°19'26.10" 565.14 14.26 11.10 3.16
15 Jo02 45°43'9.37"  7°16/22.94" 593.51 21.55 14.75 6.80
16 Po02  45°44'0.8"  7°21'6.00” 555.70 11.84 10.83 1.01
17 Po13 45°44/12.36" 7°20'43.54" 552.98 7.87 6.06 1.81
18 Po29  45°44/9.06" 7°22'4.75" 543.36 3.85 3.62 0.23
19 Po34  45°44/11.50" 7°21'25.81" 546.29 3.59 2.92 0.67
20 Po35 45°44'0.51"  7°22'30.34” 539.84 3.07 294 0.13
21 Po38 45°44'1431" 7°21'44.70" 545.10 4.24 4.07 0.17
22 Qul0  45°44/31.85" 7°22'30.28" 541.12 4.04 3.78 0.26
23 Qu16 45°44/29.16" 7°23/51.94" 535.67 447 4.45 0.02
24 Sc05 45°44/3438" 7°21'27.04" 548.71 6.70 6.29 0.41
25 Sc08 45°44/18.05" 7°21'36.45" 546.24 437 3.97 0.40
26 Sc16 45°44'23.24" 7°21'21.02" 547.72 537 4.76 0.61
Minimum 3.04 292 0.01
Maximum 28.70 25.62 6.80
Mean 12.89 10.77 212
Standard deviation 8.12 6.69 1.90
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Figure 4. Depth to water level map during the dry season in the Aosta Valley region, Italy.
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maximum Cr(VI) concentrations in the groundwater at the central part (some piezometers inside
the steelwork area in the Aosta town), some piezometers located in the southern and eastern parts
of the Aosta Valley region (area of yellow and light green colour in Figure 6). Similarly, in our earlier
work of the Aosta Valley region, Tiwari and De Maio (2017) support that the groundwater of the
area (area of yellow and light green colour in Figure 6) has high Cr(VI) concentrations and exceeded
the regulatory drinking water limit of 5 pug L™" (Legislative Decree no. 152/06 (2006)). Tiwari and
De Maio (2017) suggested that human consumption of the groundwater in these areas of the Aosta
Valley presents a potential cancer risk.

The aquifers of the Aosta Valley region have a high vulnerability to pollution (De Maio et al.
2010). Bonomi et al. (2015) observed that the Cr(VI) contamination in the groundwater due to the
leaching of superficial slag deposits has accumulated for decades in a deregulated way in the Aosta
Valley region. Also, Bonomi et al. (2015) suggested the water flow direction (W to E) and drainage
effect of the Dora Baltea River was transported Cr(VI) contamination in the water resources of the
area. The piezometric-level maps with the water flow direction (W to E) of the study area (Figure 2
(a,b)) during June 2013 and November 2013 were verified by the WLF as well as previous observa-
tions of the area.

Validation of results

The WLF map was validated with the elevation map of the study area. The reason behind the selec-
tion of the elevation map was that the elevation is one of the most important hydrogeological
parameters, and it plays an important role in the WLF of any area. Previous studies by Bhuiyan
(2010), Chandra et al. (2015) and Tiwari et al. (2016) indicate that the elevation has a direct influ-
ence on the WLF. Figure 7 shows that the dug wells lie in the high elevation and this closely matched
the high WLF (Figure 6) in the Aosta Valley region. It was observed that the western and
north-western regions had high elevation values (576-600 m), and these regions stretched out in the

7°17'30"E 7°200"E 7°22'30°E
N
W¢E
- /
2 S .
o o
["e ] - D
< =
v
-
z
3 z
o1 8
Legend 2
Elevation
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[ 551 - 575
576 - 600
[ 601 - 625
z Il >625
g_ ] 0.5 1 2 3 t\,”'
g 71730°E 7°200°E 7°2230°E

Figure 7. Elevation map of the Aosta Valley for validation of water-level fluctuation.
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Table 2. Statistical analysis of WLF for elevation.

Elevation (m) No. of dug wells Minimum Maximum Mean Median Standard deviation
(<550) 10 0.01 0.67 0.29 0.25 0.23
(551-575) 10 1.01 3.75 239 2.29 0.86
(576-600) 6 3.08 6.80 473 4.54 1.29
(>600) - - - - - -

high groundwater-level fluctuation. From statistical analysis of the elevation classes as shown in
Table 2, it can be observed that higher WLF values of mean and median have shown high (576-600
m), medium (551-575 m) and low (<550 m) elevations, which indicates a positive correlation
between the elevation and WLF. This clearly demonstrates that elevation validation can be accepted
for the WLF in the Aosta Valley, Italy.

Conclusion

GIS-based maps proved to be an important asset for the assessment of groundwater-level risk, WLF,
seasonal trend variation and validation of results. The WLF map shows that the bulk of the area was
covered by low WLF followed by medium WLF. The eastern region of the study area had lower
WLE. However, the western and north-western regions had higher WLF in the Aosta Valley. The
high WLF in the Aosta Valley region was attributed to the hydrogeological parameters.

As per the previous studies by Bonomi et al. (2015) and Tiwari and De Maio (2017), the central
region (yellow and light green colour in Figure 6) of the Aosta Valley was contaminated with Cr(VI)
and had a potential risk to human health. This environmental problem is directly related to ground-
water level as well as the water flow direction of the area. Thus, from a suitable groundwater man-
agement point of view, the eastern region (dark green colour in Figure 6) was considered as a safe
and good recharge zone for the groundwater in the Aosta Valley. Finally, this research suggests that
a groundwater qualitative and quantitative monitoring programme should be performed at an inter-
val of every 6 months or less as per the local climatic conditions for proper groundwater manage-
ment of the area.
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