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Abstract.

In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly
varying with energy are measured using beams having large energy dispersion. These cross-sections are typ-
ically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam
energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam
energy to the reaction product yields and consequently to an error in the determination of the excitation func-
tion. As a test case, the approach is applied to the experiments °Li+'2°Sn and "Li+!'°Sn measured in the energy
range 14 MeV < E_,, <28 MeV. The complete fusion cross sections are deduced from activation measurements
using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable
Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and
85% with respect to the Universal Fusion Function, used as a standard reference, in the Li and "Li induced
reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do
not show significant differences, despite the two systems have different n-transfer Qyye.

1 Introduction nique. Moreover, in [6], a best practice procedure to ex-
tract cross-sections strongly varying with energy obtained
with large beam energy dispersions was proposed. In the
present paper the technique proposed in [6] will be sum-
marized and compared to the iterative process suggested in
[7]. In addition, the analysis procedure proposed in [6] is
applied to the measurements of °Li+!?*Sn and "Li+'!°Sn
fusion excitation functions, measured in the energy range
from 14 MeV to 28 MeV in the center of mass. The aim
of these experiments is twofold: to investigate the effect of
neutron transfer channels with positive Qe On the sub-
barrier fusion probability e.g. [8—12], and the suppression
of the complete fusion cross-section above the barrier in
reactions induced by weakly-bound beams, with respect
to one-dimensional Barrier Penetration Model (1D-BPM),

The stacked target technique has been used in many exper-
iments to measure excitation functions of reactions, such
as for example fusion, induced by low energy radioac-
tive beams e.g. [1-5]. In order to increase the produc-
tion yields of the reaction products, thick targets have also
been employed in some of these experiments. The ad-
vantage of using the stacked target technique consists in
measuring the cross-section at several energies simultane-
ously; as a drawback, however, there is the degradation
of the beam quality as it passes through the foils of the
stack, due both, to the statistical nature of the energy loss
process, and to any target non-uniformities. Ambiguities
of associating effective beam energies to reaction product

yields for the targets W%thm the stack' may arise anq, a's a or coupled-channel (CC) calculations which do not take
conse.quence, an error. in the extraction of the exc1tat1qn coupling to continuum or transfer into account (see e.g.
function for the reaction under study. In [6] the possi- [13-17])

ble sources of ambiguities arising when performing exper-
iments with large beam energy spread were investigated
thoroughly. Typically, the large beam energy dispersions
are due either to the use the stacked target technique and/or
thick-non-uniform targets, or to the beam production tech-
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2 Experimental determination of the
fusion excitation function

The mean cross-section, 0 .qn, Of @ given reaction process,
is experimentally deduced by using the equation:

Y
Tmean = 77 7 (1)

Ny, - Np

where N, is the number of atoms per unit area of the target,
and Np the number of beam particles passing through the
target. If one has to derive an excitation function, the prob-
lem is how to relate these measured mean cross-sections to
effective beam energies. Generally it is assumed 0 e, =
o(E) where E is the energy in the centre of the target, as
calculated by energy-loss programs. Alternatively, it has
been assumed [5] that o yean= 0 (E.rr), where E, s is the
weighted mean energy defined by eq. 2:

. I Ec(E)D(E. to)dE
o Iy o (E)D(E, 10)dE

@)

The weighting factors are the cross-section o(E) and the
beam energy probability distribution function D(E, ty) in-
side the target. D(E,t() represents the probability to find
a beam particle with energy E inside a given target with
average thickness fy.
In the case of large beam energy dispersion, and when
the cross section is known to vary rapidly over the energy
range explored by the beam in the target, the above meth-
ods of relating 0 ,eq, to 0-(E) can result in misinterpretation
of the real excitation function.
The measured mean cross sections O eq,, are energy mean
values of the real excitation function o(E) and, as dis-
cussed in [6], can be specified for a given measurement
ias: -

|y o(EYD(E, 10)dE

O mean,i = =) s (3)
|y Di(E. to)dE

The problem of deducing the correct o-(E) from the mea-
sured 0., can be solved by choosing a suitable func-
tion g(E,u) (with u parameters to be determined) which
shows the same expected energy behavior as o (E). In [6]
it was suggested an unfolding procedure to deduce the cor-
rect o(E). The mean value of the function g(E,u) over the
energy range explored by the beam in the target is given
by eq. 4:

. I 9(E. D, to)dE
Gmean,i = ™ s “@
|y DiE. to)dE

The function g(E,u) can be obtained by minimizing the
following expression with respect to u:

O_mean,i - émean,i
§ = (T, 5)

where f3; is the experimental error associated with 0 eqn.;-

In order to apply the above procedure, in addition
to finding the proper g(E,u), it is required the precise

knowledge of D;(E,f); this can be deduced, with a good
degree of approximation, using the code SRIM [18, 19].

3 Determination of the energy probability
distribution for uniform and non uniform
foils

The beam energy probability distribution is given by eq.
6:

00 )
D(E3 to) = f g(EO, El)f f(Eh tO’ E9 .X’)dx,dE[ (6)
0 0

this, as mentioned above, represents the probability to
have a beam particle with energy E inside the considered
target of thickness fy. f(E;fo,E,x") represents the proba-
bility that a projectile incident on the target of thickness
to at an incident energy E; has an energy E at a depth x ’
inside the target, with 0 < x" < fy. g(Eo,E;) represents the
probability that a particle, as part of the entrance beam of
mean energy Ey, has an energy E;. In many cases, g(Eo,E;)
is usually considered a Gaussian distribution, however, as
shown in [6], this is not always the case.

The SRIM code can be used for determining f(E;t E,x)
and g(Ey,E;) with a procedure discussed in detail in [6].
In general, targets are non-uniform, so to explicitly ac-
count for target non-uniformity Eq. (6) should include an-
other term, the thickness probability distribution function,
w(t), which represents the probability that a particle enter-
ing a non-uniform target actually experiences a thickness
t. In this case the energy distribution inside the target will
be defined as follows:

D(E, ty) =
fow(t)foog(Eo,E,-)f f(Ei t,E,xXYdx'dE;dt (7)
0 0 0

with 0< x ' <t, and #; represents the maximum target
thickness. Therefore, for determining D;(E,t) it is neces-
sary to know w(f). The probability distribution function
w(t) of a given target can be determined experimentally
using the residual energy spectra of a-particles emitted
from a **' Am source passing through the target, and
SRIM simulations. Using SRIM, the residual energy
spectra of the >*' Am a-particles, passing though a **Nb
foil plus a '?°Sn foil whose thickness was varied from
0 mg/cm? to 1.5 mg/cm?, were calculated. A weight,
w(t), was attributed to each of the individual calculated
spectra such that their weighted sum was reproducing the
experimental residual energy spectrum. Fig. 1 represents
the experimental residual energy spectrum of a-particles
crossing a 2°Sn target evaporated onto a **Nb substrate,
used in the °Li+'?°Sn experiment, compared with the
spectrum obtained with the SRIM simulations. In Fig. 2
the corresponding w(t) is reported as function of the target
thickness. In this specific case the '?Sn targets used in
the experiment were highly non-uniform. It seems that
high non-uniformities are typical of Sn targets, unless
special care is taken in the target production procedure to
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go 02 ] paper, the procedure of [7] does not take account of the
& f correct energy probability distribution of the beam in the
goo b target D;(E,ty), but only of the effect of the energy-loss.
0 4 i S e s | Moreover., it is opinion of the present authors that eq. 8, is

E (MeV) formally inaccurate; a more formally correct form of eq. 8

Figure 1. (Color online). Experimental (black dashed line) resid-
ual energy spectrum of a-particles passing-through a '2°Sn+*3Nb
foil. The red spectrum is the result of the fit procedure used to
extract the target thickness probability distribution. Figure from

[6].
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Figure 2. '2°Sn target thickness distribution. The continuous line
is a polynomial fit of the the w(z). Figure from [6].

prevent their non-uniformity.

4 An alternative procedure to deduce o(E)

The fitting procedure reported in section 2 is one of the
possible ways to solve the problem of finding the best ap-
proximation of o(E). An alternative solution to the prob-
lem of deducing the excitation function from mean cross-
sections measured over a broad energy range is suggested
in [7]. In [7], an iterative method is used to obtain the fu-
sion excitation function in the case of large beam energy-
loss in the target. In the experiment reported in [7] the
beam energy loss in the target was as large as 40 MeV
in the laboratory system. The starting point was plotting
the measured cross-section as a function of E. The ob-
tained curve was fitted with a tensioned spline. The result-
ing curve was used to calculate 0., for each measured
point i using eq. 8.

o(E) dE
O mean,i :f aE (8)
w P

reads as:
[o(E)#—dE

& (E)

T mean,i = s
) 1
f I (E) dE

€))

dx

In order to check if the iterative procedure gives the same
results as minimising eq. 5, the former is applied to the
simulated study of °Li+'?°Sn fusion reaction reported
in [6]. The function o(E) is assumed to be given by a
Wong-like function [20].

Simulations are performed considering a °Li beam of
about 28 MeV impinging on a stack of 5 foils made of 5
mg/cm? '2°Sn, each followed by 1.5 mg/cm? **Nb foil.
The correct beam energy probability distribution in the
target D;(E,ty) is calculated in the case of uniform foils and
non-uniform foils having Gaussian type non-uniformities
of FWHM=20% for '?°Sn and 15% for **Nb. The results
are shown in fig. 3 in the case of uniform foils and in fig.
4 for non-uniform foils. Moreover, a comparison is made
using the beam energy probability distribution used in [7]
ie. %, also shown in figures 3 and 4.

As can be seen from the figures, the iteration process will
give the correct excitation function (red symbols overlap
with the full line). However, this is true only if the correct
beam energy distributions inside the targets are used. In
fact, the points at the lowest energies deviate from the
curve in the case ﬁ;(E) rather than the correct D;(E,ty)
is used, and these ééviations are larger for non-uniform
foils.

A problem of the iterative approach is, however, the
error estimate in the deduced excitation function. In the
procedure suggested in the present paper the uncertainties
are deduced from the errors in the function parameters. It
is not so obvious how to deduce them in the case of the
iterative procedure. No mention is made in [7].

5 The °Li+'?°Sn and "Li+!'”Sn fusion
excitation functions

5.1 Experiment

SLi+'2°Sn and "Li+!'?Sn fusion cross-sections were mea-
sured at INFN-Laboratori Nazionali del Sud (Catania),
by using an activation technique based on the off-line
detection of the atomic X-rays emitted after the electron
capture (EC) decay of the evaporation residues (ER).
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Figure 4. (Color online). Results of the °Li+'?*’Sn simulations
using the iterative procedure to deduce the fusion excitation func-
tion: continuous line, Wong-like function; red squares, excitation
function obtained considering the correct D;(E, ;) in the target for
the case of non-uniform foils; blue circles, excitation function
obtained considering only the effect of energy-loss in the target
as in [7]. The black triangles correspond to 0 eq, Versus E.

This technique is particularly suitable for these systems
since, according to statistical model calculations, the
compound nucleus (!*°I) decays predominantly by the
3n and 2n evaporation channels, producing I (t;, =
13 h) and '**I (t;, = 4 days), decaying by EC. Thus,
in this case, the complete fusion process can be clearly
discriminated against any incomplete fusion or transfer
process. The same technique has been used successfully
to measure the fusion excitation functions of the systems
67Li,*SHe+%7n [1, 2, 21, 22].

In the present case, it would have been possible to
perform the experiment using single target/catcher foil
at each beam energy, due to the high intensity of the

(coloured band). The symbols represent the measured cross-
sections plotted in the usual way i.e. as (T eans E) and (G mean,
E.sr). Circles are used for points measured with stacked targets
and squares are used for single foil measurements. Figure from
[23].

stable beams involved. However, as a test for a future
experimental program with unstable lithium isotopes, the
stacked target technique is used instead. The unfolding
procedure is therefore required to deduce the complete
fusion excitation function. Details of the experiment are
reported in [23].

For each irradiated foil the thickness probability dis-
tribution function w(¢) is extracted. Known w(r) it is
possible to calculate, using SRIM, the beam energy
probability distribution D;(E,ty) for each measured point
of the excitation function. Using the unfolding procedure
described in section 2 the fusion excitation function for
the two reactions is extracted, and it is shown in fig. 5.
An important check to be done in order to verify that the
functional form obtained using the unfolding procedure is
a good representation of the fusion excitation function, is
to plot the ratio between the o 4jc—mean.i» calculated from

28
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Figure 6. Ratio between o cgjc—mean; and O peqn,; fOr the reactions:
Li+'2Sn a), and "Li+'!°Sn b). Figure from [23]

the functional form g(E,u) averaged over the beam energy
distribution in the target D;(E,ty), and the measured one
O mean,i- 1f this ratio is = 1 in the whole energy range
then the procedure is self consistent, and the extracted
functional form is a good representation of the fusion
excitation function. This was verified to be the case of
the present analysis, and the ratio for the two reactions is
shown in fig. 6.

5.2 Results

At energies above the Coulomb barrier the complete
fusion cross-section, in the case of reactions induced by
weakly bound beams, shows a suppression with respect
to the 1D-Barrier Penetration Model (BPM) and/or the
Coupled Channel (CC) calculations which do not take
coupling to continuum or transfer into account ([16] and
reference therein). It is found that the suppression factor
depends on the breakup threshold of the projectile e.g.
[16].

In order to deduce the suppression factors of the complete
fusion cross-section for the two systems °Li+'?’Sn and
"Li+'"”Sn, the cross-sections were reduced according
to the reduction procedure introduced by Canto et al.
[14, 15]. Once the data are reduced, the complete fusion
suppression factor is extracted by comparing them with
a benchmark function, called Universal Fusion Function
(UFF) defined in [14, 15]. In fig. 7 such a comparison
is shown. In fig. 7 a, the reduced cross-sections are
shown in logarithmic scale and in fig. 7 b in linear. The

fusion functions

3

gL ® 7Li+"Sn
A SLi+1208n
6 - — UFF

L - - -0.85 UFF
4+ — - 070 UFF

fusion functions

()]

Figure 7. (Color online) Comparison of CF reduced cross sec-
tion for the °Li +'2°Sn and "Li +!!°Sn systems with the UFF. The
experimental data reported in the figure correspond to (T mean.s
Ejeci), where Eg4,.; is the energy point of deconvolution curve
which corresponds to the measured cross-section 0.4, ;. Figure
from [23].

Coulomb barrier corresponds to x = 0. From fig. 7, it
can be seen that by comparing the experimental reduced
fusion cross-section with the UFF, for both reactions, the
complete fusion is enhanced at energies below the barrier
and hindered above. The deduced suppression factor
above the barrier for the Li +'2Sn system is 0.70+0.05,
and for the "Li+'""Sn system is 0.85+0.05. Such values,
while confirming the breakup threshold dependence of the
suppression factors, appear to be slightly nearer to unity
than the ones found in the systematic of Wang et al. [17]
for other systems.

At energies below the barrier, as it was already observed
in collisions of ®7Li with different targets e.g. [16], the
UFF underestimates the data. Since coupling to contin-
uum and transfer channels are not taken into account in
the reduction of the data, they are responsible for the
underestimation of the UFF.

What is interesting to note, is that below the barrier the
two sets of reduced data (fig. 7 a) are very close in spite
of the different n-transfer Q... This behavior seems to
be consistent with the one observed in fusion reactions of
heavier systems [24-26] and appears to confirm the idea,
proposed by [27-29], that the mechanism that produces
the enhancement of the sub-barrier fusion cross-section
may be rather complex, and that the relevant effects is
not limited to the difference in the n-transfer Qyaue. CRC
calculations were also performed for the "Li+!'"Sn which
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has the largest positive Qyaye for n-transfer (details can
be found [23]), and they confirm that the effect of the
coupling with n-transfer channel produces negligible
effects.

6 Summary and conclusions

This paper highlights the problem associated with the
extraction of the correct excitation function in the case
where cross-sections strongly varying with energy, with
beams having large energy dispersion, are measured.
These experiments are typically the sub-barrier fusion
excitation function measurements with radioactive beams,
where it is necessary to maximise the experimental yields
due to the low intensity of the beams combined with the
small cross-sections involved.

It has been demonstrated that in the case of large beam
energy dispersion, there are ambiguities in associating the
effective beam energy to the measured mean cross-section
and this can lead to an error in the determination of the
excitation function. In fact, plotting 0.4, either versus
Ejnean 01 E¢ ¢ will not give the correct excitation function,
and then a significant misinterpretations of the data may
arise. Accurate information can be obtained from the
experimentally measured 0 peqn, provided that a full
characterisation of the targets is done. In such a way, it
is possible to calculate for every target the beam energy
probability distribution D(E, ;) function, which specifies
how the cross-section will be integrated over the beam
energy.

This deconvolution procedure is used to deduce com-
plete fusion excitation functions for the two reactions,
Li+'2°Sn and 7Li+!"”Sn in the c.m. energy range from
14 to 28 MeV. The measured cross-sections, renormalised
according to [14, 15], were compared to the UFF. The
experimental cross sections are found to be suppressed
with respect to the UFF at energies above the Coulomb
barrier. The suppression factor for ®Li+'?°Sn is found
0.7+0.05, and for "Li+'"°Sn is found 0.85+0.05. These
factors are a little smaller than the ones obtained with
heavier targets.

Below the Coulomb barrier, the renormalized complete

fusion cross-sections are very similar even though the
Quaie for neutron transfer are substantially different.
Therefore, the mechanism that produce the sub-barrier
enhancement, experimentally observed in some reactions,
must be more complicated than just the difference in the

Qvalue .
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