
Received May 29, 2020, accepted July 2, 2020, date of publication July 8, 2020, date of current version July 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3007961

CrownLabs—A Collaborative Environment to
Deliver Remote Computing Laboratories
MARCO IORIO , (Graduate Student Member, IEEE), ALEX PALESANDRO ,
AND FULVIO RISSO , (Member, IEEE)
Department of Computer and Control Engineering, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Marco Iorio (marco.iorio@polito.it)

ABSTRACT The coronavirus pandemic hit the entire education sector hard. All students were sent home
and lectures started to be delivered through video-conferencing systems. CrownLabs is an open-source
project providing an answer to the problem of delivering remote computing laboratories. Simplicity is one
of its main characteristics, requiring nothing but a simple web browser to interact with the system and
being all heavyweight computations performed at the university premises. Cooperation and mentoring are
also encouraged through parallel access to the same remote desktop. The entire system is built up using
components from the Kubernetes ecosystem, to replicate a ‘‘cloud grade’’ infrastructure, coupled with
custom software implementing the core business logic. To this end,most of the complexity has been delegated
to the infrastructure, to speed up the development process and reduce the maintenance burden. An extensive
evaluation has been performed in both real and simulated scenarios to validate the overall performance: the
results are encouraging, as well as the feedback from the early adopters of the system.

INDEX TERMS Collaborative software, computer science education, kubernetes, laboratories, learning
systems, platform virtualization, software architecture.

I. INTRODUCTION
Practical learning is widely recognized as being an essential
aspect while assimilating a new subject [1], [2]. It grants stu-
dents the possibility to experience the practical applications
of theoretical knowledge. It involves attempting to perform
complex tasks, making mistakes, arguing with the teammates
on how to proceed. It immediately unveils whether a con-
cept is clear or not, as well as it fosters interactions with
the teachers. In a nutshell, it allows students to learn more,
to learn better. As for computer science courses, our students
are typically required to attend computer laboratories. There,
they have the opportunity to login to workstations already
providing all the different pieces of software to perform the
exercises assigned, as well as to interact with their classmates
and instructors.

Yet, physical attendance may not be always possible, nor
desirable. This aspect rose abruptly to prominence during
the coronavirus pandemic. The virus hit the entire country
hard [3]. All students were sent home, universities set up
video conferencing servers in a few days, and classes were

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Esposito .

transformed into remote lectures. However, remote labora-
tories needed to be established too: how could students be
enabled to practice with their coding exercises, simulations
and more?

Students may be asked to install the entire set of applica-
tions, tools and simulators required for each laboratory on
their own computers. Yet, the IT requirements, the different
dependencies and incompatibilities, the number of parallel
courses to follow during each semester, as well as the infinite
series of problems that may arise from dozens or even hun-
dreds of different environments, push to consider this solution
as infeasible. Pre-built, ready-to-use virtual machines (VMs)
made available for download to the students are a no-go too.
Although considerably simplifying the initial setup, while
guaranteeing at the same time uniform and isolated environ-
ments, VMs would strain even further the students’ devices.
Hence, discouraging their usage. Wouldn’t it be better if the
students could simply access their laboratory environment
using their own browser?

To this end, CrownLabs is an experimental project devel-
oped by a group of volunteers from Politecnico di Torino to
enable the delivery of computing laboratories through remote
per-user virtual machines. Each student gets her own private

126428 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2638-1422
https://orcid.org/0000-0002-4387-9233
https://orcid.org/0000-0001-6134-7890
https://orcid.org/0000-0002-0085-0748


M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

environment without requiring to download and install any
additional software but a simple web browser. Indeed, all
heavyweight computations are performed at the university
premises, by a Kubernetes cluster executed in a dedicated
data center. Most importantly, CrownLabs has been designed
from the outset to account for the typical educational require-
ments, group work and easy tutoring support among all.
In a nutshell, the main advantages provided by the system
include: (a) adaptability, enabling remote desktop sharing
to complete the laboratory duties in a team and to seek for
help from an instructor or other classmates; (b) flexibility,
allowing the students to complete their tasks at any time,
with full control of the life-cycle of their VMs; (c) versatility,
granting the instructors the possibility to provision multiple
laboratories, each one with tailored setups to account for the
specific requirements; (d) compliance, providing access to
licensed software allowed to be executed only at the univer-
sity premises; (e) security, adopting encrypted sessions and
enforcing the access to the resources through strict but config-
urable authorization mechanisms (e.g. to enable a restricted
examination mode).

In the remainder of this paper, we present the most relevant
characteristics ofCrownLabs, both from the architectural and
the infrastructural point of view. The main aim is to highlight
the features mostly presenting aspects of novelty, as well as
to share the different lessons we got while facing the chal-
lenges brought in by this project. Specifically, in Section II
we review existing solutions concerning remote laborato-
ries, focusing both on the research world and commercial
solutions. Section III deepens the remote laboratories use-
case, providing a general overview about the services made
available by CrownLabs. In Section IV, we present the main
choices that have driven the design and the development of
CrownLabs. Section V details the key architectural compo-
nents of the system, while Section VI draws a parallelism
between the CrownLabs infrastructure and the typical cloud
services. Then, Section VII presents an experimental evalua-
tion of the overall CrownLabs performance in different sce-
narios. Finally, Section VIII draws the main conclusions and
proposes directions for further research. For a more in-depth
technical description, as well as the complete source code,
please refer to the project’s website1 and the GitHub repos-
itory.2 Indeed, the entire CrownLabs project is open-source
and it is built on top of open-source components only: anyone
who is interested in deploying the system in-house can freely
create her own infrastructural setup or rely on a public cloud
provider (granted it features the necessary virtualization func-
tionalities), as well as deploy and customize the complete
application logic.

II. RELATED WORK
Remote laboratories are by no means a recent idea. Back
in 2006, Ma and Nickerson [4] already debated about

1https://crownlabs.polito.it
2https://github.com/netgroup-polito/CrownLabs

the advantages and the drawbacks associated with both
hands-on and remote engineering laboratories. Specifically,
they observed the growth of virtual solutions to reduce the
cost pressures on universities. Yet, at the same time, they
raised concerns about the potential isolation of students
engaged in remote learning due to the lack of interactions
with both peers and instructors.

On the other side, as mentioned in the introduction, vir-
tual machines locally executed on the students’ devices
(e.g. with VirtualBox3) are not deemed a viable approach.
First, they would impose a significant burden in terms of
both demanded resources and initial setup, the latter being
particularly critical for non-IT students. Second, local VMs
would not be suitable for team work, other than heavily
weighing on mentoring. Indeed, instructors could not inves-
tigate first-hand possible problems, needing to mostly rely
on inaccurate students’ descriptions. Even the screen sharing
and remote control functionalities featured by tools such as
Zoom4 and TeamViewer,5 besides possibly involving paid
licenses, would not enable flawless collaboration, preventing
simultaneous interactions and requiring the hosting student
to allow the other team members and the instructors to
remotely control her own personal PC. Conversely, virtual
machines running in cloud are nowadays considered a com-
modity. Indeed, cloud providers (e.g. Amazon Web Services,
Microsoft Azure, Google Cloud, just to name a few) offer
the possibility to easily create and access remote VMs, while
selecting the resources best suited to the final user’s needs.
Yet, these platforms are meant for general use-cases, thus
providing no supports for learning purposes.

Over the past decade, multiple projects featured different
solutions characterized by custom application logic to serve
remote computing, networking and security laboratories on
top of on-premise and cloud-based infrastructures. Among
them, the StarHPC project [5] leveraged the Amazon’s EC2
service to host the VMs used to support teaching paral-
lel computing programming at MIT, while adopting custom
scripts and VM snapshots to setup the laboratories. V-Lab [6],
on the other hand, aimed to provide a network security experi-
mental environment based on dedicated virtual machines and
virtual networks. In short, it featured a graphical front-end
to manage the virtual resources (i.e. create new VMs and
configure the network topology), while the back-end was
powered by Xen Cloud Platform (XCP), OpenStack and
Open Virtual Switches (OVS). In 2016, Caminero et al.
presented TUTORES [7], a solution to create virtual remote
laboratories built on top of VMWare ESXi and OpenNebula.
Yet, to the best of our knowledge, none of the above projects
is open-source, hence providing no possibility to deploy
and evaluate them in different environments. Additionally,
these solutions are based on classical virtualization platforms
and focus mainly on the evaluation of students and faculty

3https://www.virtualbox.org
4https://zoom.us
5https://www.teamviewer.com

VOLUME 8, 2020 126429



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

acceptance of the system. Conversely,CrownLabs stems from
a completely different approach, and it is strongly oriented
towards both cooperation and mentoring. Additionally, from
the technological point of view, it is powered by a Kubernetes
cluster, hence differentiating from past solutions.

Talking about online but commercial solutions, it is pos-
sible to mention ThoTh Lab [8]. It provides a virtualized
hands-on laboratory for computer science education based on
cloud computing. Most notably, its landing page advertises
a feature-rich, web browser-based UI allowing to interact
with the system, set-up the topology for each laboratory
(i.e. create new VMs and interconnect them through cus-
tom networks) and access the remote desktops. Additionally,
collaboration and mentoring appear to be provided through
real-time project viewing and an in-browser video chat sys-
tem. Katacoda [9], on the other hand, advertises itself as
an interactive learning and training platform for software
developers. At a first glance, it features a set of free and
ready-to-use scenarios. Each scenario is characterized by a
detailed documentation of the tasks the user has to perform,
complemented by an in-browser terminal emulator providing
access to a personal environment where the assignments can
be tested in practice. Yet, this solution targets individual and
self-paced learning, thus providing almost no support for the
collaborative environment and the interactive support typical
of university classes.

III. THE REMOTE LABORATORIES USE-CASE
In this section, we present how both students and instructors
can interact with the CrownLabs system, as well as we focus
on the extended features made available only to the latter for
course administration.

A. HOW DO THE STUDENTS INTERACT WITH CrownLabs?
Generally speaking, the central access point to CrownLabs is
represented by an introductory web page, providing access
to the login portal. Each authenticated student is presented a
personal dashboard, displaying the courses she is currently
enrolled in and the list of available laboratories. Indeed,
multiple laboratories can be deployed for the same course,
in order to account for different requirements (e.g. in terms
of software), as well as to avoid the need for one-fits-all VMs
that would be overly demanding resource wise.

Selecting a specific laboratory, each student can inde-
pendently manage the life-cycle of the corresponding VM.
Hence, she is allowed to start practising at her own will,
as well as to restart from a clean environment in case of
necessity (e.g. to recover from a corrupted setup). Once a
new VM has been spawned and the operating system is
ready, the student can connect to the remote desktop by
being redirected to a new web page. There, she can interact
with the VM as if it were executed on her own device,
although being totally unrelated from the local computa-
tional resources and without requiring any preliminary setup.
Cooperation is encouraged: the access to the same VM can
be extended to multiple students, to allow for synchronous

collaboration on the same tasks, facilitate group works and
enable peer support. Finally, web-based personal storage is
assigned to each student. Hence, the artifacts of the different
laboratories can be persisted, as well as easy file exchange
between local and remote machines is enabled. Course-wide
shared folders are also envisioned, to make exercises and pre-
liminary material available to the entire class and to simplify
the delivery of assignments.

B. WHAT CAN INSTRUCTORS DO MORE?
Instructors are presented an extended dashboard. In addition
to possibly spawning their own VMs, e.g. to test in advance a
new laboratory, they are enabled to perform the set of admin-
istrative tasks required to setup a course. Specifically, they
can (a) create new courses; (b) enable new students to access a
specific course: student accounts are automatically created by
the system if not already present, and the set of authorizations
is updated; (c) create new laboratories, by uploading the
corresponding disk image and configuring the VM charac-
teristics. Most importantly, instructors are also presented the
entire list of VMs launched by their students. Similarly to
being in a physical laboratory, they can then access each
remote desktop whenever necessary, e.g. to answer the ques-
tions posed by the students. Advantageously, the teacher can
see exactly what the student is doing (and vice versa) as
well as concurrently interact with the VM itself to thoroughly
investigate possible problems and provide practical sugges-
tions on how to solve them.

IV. DESIGN CHOICES
This section details the main requirements associated with
the CrownLabs project, together with the design choices
that have driven its development from the early stages.
Specifically, we justify the adoption of Kubernetes as an
orchestration platform, introduce a brief comparison between
VM-based and Docker-based services and finally discuss
about the implementation of the custom back-end, the
exploitation of code generation and the usage of additional
computation resources. Although the presentation is targeted
to the CrownLabs project (i.e. the provisioning of remote
laboratories), the design requirements and principles sum-
marized in Table 1 stem from a more general consideration.
Hence, their applicability can be extended to a wide range of
applications.

A. LIMITING THE COMPLEXITY
Generally speaking, the key aspect enabling complex
web-based application workflows is the back-end, the server
side component implementing the business logic and expos-
ing an interface to allow the interaction with the clients.
Yet, a custom back-end is typically associated with a great
complexity, being a single point of failure as well as an
attractive target for the attackers. Indeed, besides the core
functionalities, amonolithic solution needs tomanage aspects
concerning user authentication and authorization, as well as
API input data validation.

126430 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

TABLE 1. High-Level project’s design requirements and principles.

When dealingwith custom software developed by universi-
ties and industries, one additional aspect to keep inmind is the
typical lack of maintenance. In these contexts, applications
are usually developed to solve a specific need and, then, kept
in production for years without further modifications. As new
security issues are discovered every day, each application
should be periodically rebuilt against updated libraries and
bugs should be fixed. Yet, the core team starts new projects,
the developers move to different jobs and the students gradu-
ate: in the end, nobody takes care of application maintenance.

These factors, coupled with the requirement for an exper-
imental, but ‘‘production-ready’’ system built from the
grounds up in just few weeks, made us immediately dis-
card the development of a monolithic solution. Conversely,
we leveraged modularity to keep the tasks executed by each
component as simple as possible, while delegating most of
the burden to the infrastructure itself. Indeed, widely adopted
open-source platforms such as Openstack [10] and Kuber-
netes [11] benefit from a large community of developers,
ensuring a continuous support. Additionally, the management
of on-premise clusters is typically delegated to a dedicated
team, taking care of the periodic updates as well as of the
application of security patches to face newly discovered
threats. Similarly, managed solutions incur in automatic roll-
outs performed by hosting providers.

Deriving from these considerations, the delegation of most
of the complexity to the infrastructure represented a funda-
mental design principle of CrownLabs. Specifically, besides
operational aspects concerning availability, replication and
self-healing, this process has involved also some core parts of
the application, API management among all (cf. Sections IV-
D, and IV-E). Additionally, in order to limit the amount
of custom code to be developed and maintained, we lever-
aged another universal design principle: the use of source
code automatically generated from higher level artifacts (cf.
Section IV-F).

B. ADOPTING KUBERNETES AND ITS ECOSYSTEM
Following the philosophy adopted by our university in deliv-
ering remote lectures, we decided to deploy the entire sys-
tem on-premise, leveraging a dedicated data center. As for
the orchestration of virtual machines, Openstack is probably
one of the most well-known, open-source solutions today
available. Yet, for the CrownLabs project we selected a

completely different approach, leading to the adoption of
Kubernetes and its ecosystem since the beginning. All in all,
Kubernetes is an open-source and easily extensible platform
originally developed by Google to orchestrate containerized
applications and manage the resources enabling the interac-
tion between different micro-services. Although apparently
counterintuitive, being designed for containers instead of
VMs, multiple project’s architectural goals pushed in this
direction. First, besides being easy to setup, extend as well
as scale, Kubernetes already features a large ecosystem of
off-the-shelf companion services. Second, it represents a key
enabler for different core aspects of the CrownLabs project,
as detailed in the following.

C. VIRTUAL MACHINES VS CONTAINERIZED
APPLICATIONS
As for now, the CrownLabs project mainly focused on the
deployment of virtual machines. Indeed, VMs are character-
ized by an interaction workflow closer to what a typical user
would expect when connecting to a remote desktop. Specifi-
cally, complete access to a standard operating system as well
as the possibility to run multiple applications in parallel. That
is to say, VMs are essentially general-purpose, introducing
no constraints on the set of operations that can be performed
and being suitable for a wide audience of final users. Yet,
all these characteristics come at a high price in terms of
resources, start-up time and disk footprint. Hence imposing
serious limitations on the number of concurrent users that can
be supported.

The adoption of the Kubernetes ecosystem allows to seam-
lessly introduce the support for containerized applications.
In other words, instead of providing the final users access
to a full-blown VM, CrownLabs could be easily extended to
expose ready-to-use applications (e.g. word processors, IDEs,
simulators, etc.) executed within lightweight containers on
top of a very thin graphical layer. Remote desktop access
would then be guaranteed by means of a sidecar container,
in charge of relaying the inputs and the video connection.
In our opinion, the combination of these two approaches
would allow to take the best from each technology: the agility
of the containers when dealing with single applications, com-
plemented by the generality of VMs to suit more complex
workloads.

D. A KUBERNETES-POWERED APPLICATION BACK-END
Concerning the application back-end, in an effort to limit
the complexity (Section IV-A), we adopted a modular
approach, while delegating as much as possible of the
burden directly to the infrastructure itself. To this end,
Fig. 1 presents a high-level comparison between the typi-
cal, ‘‘application server’’-oriented approach and the strategy
adopted in CrownLabs, while drawing a parallelism with the
well-established Model-View-Controller (MVC) design pat-
tern [12]. Specifically, let consider as a use-case the creation
and setup of a new laboratory instance through the web-based

VOLUME 8, 2020 126431



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

FIGURE 1. A high-level architectural comparison between (a) the
traditional approach, characterized by an application server driving the
infrastructure, and (b) the CrownLabs approach, where the constituting
blocks are integrated directly into the Kubernetes infrastructure to
offload most of the burden.

dashboard, i.e. the view the user interacts with, which then
interfaces with the back-end by means of REST APIs.
Focusing on Fig. 1a, the back-end would typically encom-

pass an application server that, besides the actual API end-
points automatically generated by the adopted framework,
could be divided into two main components, according to the
MVC pattern. First, the model, taking care of data represen-
tation and interacting with an external database to guarantee
persistence. Second, the controller, which includes the core
business logic in charge of reacting to the external input to
update themodel, as well as to drive the underlying infrastruc-
ture (e.g. to create the resources required for the laboratory)
whenever necessary.

Fig. 1b, on the other hand, outlines the approach adopted
in CrownLabs and characterized by the integration of the
application components directly into the Kubernetes infras-
tructure. To this extent, the data model is represented by stan-
dard Kubernetes resources, both native and externally defined
by means of Custom Resource Definitions (CRDs). Instead,
the business logic is implemented through ad-hoc opera-
tors, created in accordance with the standard Kubernetes
workflow paradigm. Operators embed the human knowl-
edge about the resources, to reconcile the current status to
the desired one expressed by means of the resources them-
selves. Decoupling, one of the main advantages associated
with the MVC design pattern is preserved, as well as the
possibility to deploy parallel controllers operating on the
same model. Yet, our approach is also characterized by a
greater degree of simplicity, reducing the number of com-
ponents to be developed and maintained. Additionally, data
persistence is facilitated, removing the need for an external
database by reusing all the high availability functionalities

(e.g. replication, backup strategies, . . . ) already provided by
the etcd6 cluster. Although this approach lacks in part the
flexibility provided by a traditional query language such as
SQL, we still found it perfectly suited to our use-case, while
benefiting greatly from its associated simplicity.

E. OFFLOADING THE API MANAGEMENT
Stemming from the approach outlined in Fig. 1b, all API
management functionalities are then exposed through the
Kubernetes API server itself, which is directly accessed by
the web-based front-end. All in all, this choice involved the
main advantages detailed in the following.

1) The ease of business logic definition: Kubernetes
enables the declarative description of custom and
versioned APIs by means of CRDs. Once installed,
Custom Resources (CRs) are served and handled by
the API server in the same manner as the native
resources, thus benefiting from the exact same fea-
tures. In addition to defining REST APIs by means of
CRDs, Kubernetes also provides support for different
semantics through the so-called ‘‘Aggregation Layer’’.
In this way, the API server allows to register specific
handlers to answer for totally custom requests, hence
enabling applications with more complex workflows.
Hence, the high degree of API customization provided
by Kubernetes, complemented by an identity provider
to manage the authentication aspects, represents a key
enabler to the future extension of CrownLabs.

2) The reuse of existing features: the Kubernetes API
Server is designed to support thousands of worker
nodes out of the box, hence tolerating high workloads
in terms of requests per second. Additionally, it already
integrates a state-of-the-art processing pipeline auto-
matically executed by the API gateway whenever
a new request arrives. In a nutshell, it handles
authentication and authorization aspects, input vali-
dation as well as more advanced security features,
including rate limiting, to prevent denial of service
attacks. Advantageously, the validation pipeline can
be further enriched by means of custom ‘‘admis-
sion webhooks’’ defined through declarative policies
(cf. OpenPolicyAgent7), hence offloading seman-
tic validation from the business logic.

3) The reduction of the operational costs: being actively
used and maintained by a world-wide community, the
Kubernetes API server features continuous develop-
ment, bug fixes and security auditing. Additionally, as a
core part of the infrastructure itself, it also benefits
from the periodic updates performed by the cluster
operators, as well as it avoids the need for yet another
component tomaintain. Finally, since the same solution
can be adopted for multiple applications hosted by the
same cluster, the overall operational cost can be further
spread.

6https://etcd.io
7https://www.openpolicyagent.org

126432 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

While postponing the in-depth technical description to
Section V-A, it is worth briefly anticipating here the discus-
sion about the limitations associated with this approach and
the possible mitigation that can be adopted.

1) The security concerns: according to our solution, the
API server is exposed on the Internet to untrusted
users. Yet, personal accounts managed through a cen-
tral identity provider, coupled with the native permis-
sion management provided by Kubernetes, allow to
strictly limit the set of operations permitted to each user
to the bare minimum. Additionally, stemming from the
previous considerations on the update procedures, it is
possible to assume the timely installation of security
patches. DDoS attacks are also deemed not to introduce
excessive concerns, thanks to the intrinsic protections
integrated in the API server and the degree of isolation
provided by the reverse proxy sitting in front the server
itself. Finally, although for the sake of the discussion
we mentioned exposing the entire API server, it is
possible to leverage its hierarchical organization to dis-
close only the custom APIs necessary for the end-user
applications. All in all, we believe these countermea-
sures to be sufficient to mitigate the security concerns
associated with the public API server.

2) The support for transactions: the Kubernetes API
server does not support the concept of transaction
(i.e. to specify a set of operations to be atomically
executed together). Instead, each resource is character-
ized by a current state, that will eventually converge to
the desired one. Yet, transaction-like mechanisms can
be implemented by custom operators, to spawn/delete,
e.g., a set of companion components upon the cre-
ation/deletion of a given CR.

F. EXPLOITING AUTOMATIC CODE GENERATION
Continuing with the overall goal of limiting the development
effort, and the consequent risk of introducing both unwanted
bugs and security issues, to the bare minimum, another key
design choice of the project consisted in leveraging as much
as possible automatic code generation features.

Considering the back-end, we adopted Kubebuilder,8

a well-known tool simplifying the development of the CRDs
as well as of the associated operator implementing the control
loop. Essentially, this tool takes care of all the initial scaf-
folding tasks, automates the generation of boilerplate code
and provides high-level abstractions to enable developers to
focus only on the implementation of the actual business logic.
Most notably, it also supports the generation of OpenAPI
V3 schemas,9 hence enabling the syntactic validation per-
formed by the API server to screen the requests and discard
non-compliant objects.

Similarly, regarding the front-end, the web-based UI is
implemented using ReactJS, a widely adopted library

8https://github.com/kubernetes-sigs/kubebuilder
9https://www.openapis.org

providing a declarative approach to describe the different
components, automatically translated into HTML and CSS
code. The interaction with the Kubernetes API, on the other
hand, is realized through a patched version of the official
Kubernetes JavaScript client.10 Indeed, the official version
was designed to be coupled with node.js, hence being
suitable for server-side interaction only. Yet, one of its main
advantages concerns the support for both Kubernetes native
resources as well as for custom types (i.e. those implemented
by means of CRDs). Finally, the integration of the resulting
modules is provided by WebPack, in charge of building the
dependency graph and exporting the different JavaScript
modules as a bundle.

G. JOINING UNDERUTILIZED RESOURCES TO THE
CrownLabs CLUSTER
Universities typically encompass multiple laboratories char-
acterized by hundreds of workstations. Each computer usu-
ally remains continuously operative, although being effec-
tively utilized only when practical lectures take place. All in
all, they represent a stock of computational capacities that
for most of the time may be better leveraged for different
purposes. To this end, the flexibility of Kubernetes, coupled
with its ease of installation could represent an effective solu-
tion. Indeed, focusing on the remote laboratories use-case, let
suppose to run CrownLabs in a dedicated data center. Then,
assuming a sufficiently fast campus backbone network, the
computational resources of different laboratories could be
configured and joined to the central cluster. Hence, the cluster
would scale horizontally, allowing to increase the number of
parallel users by deploying the VMs even on these additional
workstations. Yet, this scalability would come almost for free,
better exploiting already available resources and preventing
the need for purchasing new ad-hoc servers. This concept
of dynamic and transparent resource federation is further
explored and addressed by the Liqo11 project.

V. THE CrownLabs ARCHITECTURE
This section details the main architectural components at
the core of the CrownLabs project. With reference to the
schematic representation shown in Fig. 2, the system can be
mainly divided into two parts: the front-end and the back-end.
The former is composed of a set of web pages, carrying out
the login process and presenting the management dashboard
to the final users (i.e. students and professors). The latter
is responsible for the deployment and the execution of the
actual VMs. It integrates multiple components of the Kuber-
netes ecosystem with custom business logic, implemented
as Kubernetes extensions (i.e. CRDs and operators). In the
following, we describe in greater detail the most relevant
aspects of both components, present the technology adopted
for remote desktop interaction, as well as characterize the key
aspects about the authentication and authorization process.

10https://github.com/scality/kubernetes-client-javascript/tree/browser
11https://liqo.io

VOLUME 8, 2020 126433



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

FIGURE 2. A high-level representation of the main architectural building blocks composing the CrownLabs project. Please notice that, for the sake of
clarity, the figure depicts the blocks essential for the provision of the actual CrownLabs service, omitting the ones that are dedicated to the cluster
operation (e.g monitoring).

A. THE CrownLabs BACK-END
Stemming from the design choices presented in Section IV-B,
the server-side of the CrownLabs project is completely pow-
ered by a Kubernetes cluster, which is responsible for both
the actual execution of the user virtual machines as well as
the provisioning of the companion services. As for the exter-
nally accessible services, they are exposed outside the cluster
through an Ingress Controller. In a nutshell, it is a component
responsible for relaying the connections originated from the
clients towards the target containers, acting as a TCP and TLS
terminator, while transparently managing session securiza-
tion and high availability aspects. For the sake of reliability,
a load balancer is in charge of the management of the public
IPs, guaranteeing their reachability even in case one of the
servers does no longer work properly (cf. Section VI-B3).
Under the hood, virtual machines are managed through

the KubeVirt extension.12 It is a solution allowing to
declaratively create and control the life-cycle of qemu-based
VMs on top of a Kubernetes cluster, as better detailed in
Section VI-B1. The external interface, i.e. the one leveraged
by theweb clients upon users’ interaction, is directly provided
by the Kubernetes API server. To this end, we leveraged the
expression power of CRDs to model the core functionali-
ties made available to the final users. Specifically, focusing
on the provisioning of remote laboratories, we expressed
two main resources, respectively named LabTemplate and
LabInstance. A LabTemplate consists of a wrapper
around a KubeVirt’s VirtualMachine resource. It models
the concept of a laboratory, belonging to a specific course, and
the associated set of VMs, along with their characteristics.

12https://github.com/kubevirt/kubevirt

A LabInstance, on the other hand, represents a well
defined instance of a given LabTemplate, linked to a final
user (i.e. its owner), by means of a Kubernetes namespace.

The managements of the LabInstance resources is del-
egated to the corresponding LabInstance Operator,
a custom component developed according to the well-known
operator pattern [13]. In a nutshell, it implements a control
loop to automate the creation of the entire set of compan-
ion components (e.g. services, ingresses, . . . ) required to
allow remote and secure access to the actual VMs. Simi-
larly, it is in charge of their removal upon the deletion of a
LabInstance.

B. THE CrownLabs FRONT-END
The core of the CrownLabs functionalities is presented to
the final users by means of a web-based dashboard, which
is accessible once the user is authenticated in the system.
The dashboard exposes in an intuitive and attractive format
the set of operations available (i.e. creation and destruction
of a VM, as well as the connection to its remote desktop).
Finally, it provides an easy access to the user’s personal
storage deployed on premise by means of industry-standard
protocols, such as WebDav, through open-source tools
(i.e. Nextcloud13). Each user gets her own personal folder
automatically attached to her VMs, hence enabling persistent
storage and easy file sharing between the local and the remote
environment.

Under the hood, the dashboard directly interacts with the
Kubernetes API server through the patched JavaScript client
and the abstraction automatically generated on top of it

13https://nextcloud.com

126434 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

(cf. Section IV-F). Indeed, a new laboratory, its associated
VMs and the companion resources, can be started by sim-
ply creating in the user’s namespace a new LabInstance
resource, referencing the LabTemplate of interest. Sym-
metrically, an existing laboratory can be teared down by
deleting the corresponding LabInstance. The list of own
active VMs can be obtained through a GET operation on the
LabInstances present in the personal namespace, while
their status can be monitored by WATCHING the correspond-
ing resources for the emission of events (e.g. during the initial
setup). Additionally, each LabInstance resource contains
the pointer to the URL where the remote desktop is exposed.
Hence, the final users can connect to it through just onemouse
click.

C. ACCESSING THE REMOTE DESKTOP
Remote desktop interaction is provided with TigerVNC,14

a high performance implementation of the Virtual Network
Computing (VNC) graphical desktop sharing system. It is
composed of a client/server application in charge of transmit-
ting the flow of graphical screen updates from the remote to
the local machine, while relaying keyboard andmouse events.
Although the hypervisor already features simple VNC func-
tionalities, we nonetheless preferred using an external, easier
to configure and more feature-rich solution (e.g. enabling
automatic remote desktop resizing), to provide a better user
experience. Yet, the former represents a valuable fallback to
access the virtual machine in case the main server is no longer
reachable. To remove the need for ad-hoc client viewers,
we finally leveraged the noVNC project15 to proxy the VNC
connection through a websocket and make it accessible from
the browser.

Another well-known and open-source solution to access
a remote desktop is represented by SPICE.16 Differently
from the previous approach, which transmits a flow of video
updates already rendered, SPICE basically tunnels an X11
session to the client (i.e. the set of events triggered to redraw
the different areas of the screen). Although being definitely
interesting, an initial high-level comparison suggested that
this approach tends to perform worse when moving outside
a LAN due to higher latency. This factor, coupled with the
availability of amore feature-rich HTML5 client, justified the
adoption of the VNC-based solution. Yet, a more complete
and in-depth investigation is planned as future work.

D. SECURING CrownLabs
The secure access to every resource exposed by the Crown-
Labs system is guaranteed by encrypted sessions comple-
mented with personal, single sign-on, accounts. To this
aim, centralized authentication is provided by means of
Keycloak,17 an open-source identity and management

14https://tigervnc.org
15https://novnc.com
16https://spice-space.org
17https://www.keycloak.org

solution that we deployed on top of the Kubernetes cluster.
This component takes care of the entire user registration
process and of the management of authorization policies (i.e.
groups), while exposing a standard OpenID Connect (OIDC)
interface.18 Essentially, it allows different clients to verify the
identity of the end users and obtain the corresponding profile
information. Hence, it represents a key component to enable
modular applications, as well as to simplify the development
and the interaction with future extensions and add-ons.

Each user is associated with a single account, granting her
access to, e.g., the CrownLabs dashboard, the remote desktop
of her own VMs and her personal storage. Moreover, every
user of the system is assigned to a set of groups, stating the
exact set of courses she can access, her role for each of them
(i.e. student or professor), as well as any additional privilege
concerning the cluster operation and maintenance. Focusing
on the personal dashboard, the user’s data contained in the
access token returned by theOIDC server upon authentication
(e.g. attributes and groups) is leveraged to customize the view
presented to the user herself and show only relevant pieces
of information. Furthermore, the Kubernetes API server has
been interfaced with Keycloak too. Thus, each request is
automatically discarded if not enriched with a valid authen-
tication token. Finally, remote desktop access is protected
by configurable group-based authorization policies, to enable
team work and peer support. Yet, they are complemented
by URL obfuscation to prevent random guessing in case of
course-wide access.

Server-side isolation and access control is implemented by
means of standard Kubernetes resources, namely namespaces
and role bindings.19 Specifically, each user is assigned a
personal namespace where she is granted permission to inter-
act with LabInstances only, according to a white listing
policy. Similarly, LabTemplate resources are grouped in
course-wide namespaces. Read access is provided only to the
students enrolled in the corresponding course (i.e. belonging
to the authorization group). Though, professors are associated
with extended privileges, being allowed tomanage and access
all the virtual machines owned by the students of their own
courses.

VI. A CLOUD GRADE INFRASTRUCTURE
In this section, we present an overview of the main infras-
tructural components laying the foundations of CrownLabs.
Specifically, we start with a brief description of the
on-premise physical infrastructure hosting the service, given
its significance for the experimental evaluation detailed in
Section VII. Then, stemming from the high-level services
typically exposed by a cloud provider, we characterize the
main components of the Kubernetes ecosystem we selected
for their implementation. This section demonstrates how
CrownLabs is suitable to run not only on managed infras-
tructures, but also in-house, on relatively common hardware

18https://openid.net/connect
19https://kubernetes.io/docs/reference/access-authn-authz/rbac

VOLUME 8, 2020 126435



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

FIGURE 3. A representation of the physical infrastructure hosting
CrownLabs.

available e.g. in schools and universities, while still maintain-
ing its excellent scalability properties.

A. THE BARE-METAL KUBERNETES CLUSTER
The entire CrownLabs service is powered by a Kubernetes
cluster hosted at the university premises and pictorially
represented in Fig. 3. In detail, it is mainly composed of
four Dell PowerEdge R740x servers, each featuring a sin-
gle Intel Xeon Gold 5120 CPU (with 14 hyper-threaded
cores operating at 2.20GHz) and 64 GB of RAM. The
servers are interconnected to a central switch by means of
two 10 Gbps links configured in link aggregation mode,
while the persistent storage is supplied by local disks and
a QNAP TES-1885U NAS attached to the same network.
The high-speed intra-cluster network plays an important role
to drain the east-west traffic, which is mostly generated by
kube-proxy, a Kubernetes component possibly distribut-
ing the incoming traffic to a different node, and the dis-
tributed storage system. Finally, the connection to the rest
of the campus network (and the Internet) is provided by
a 1 Gbps link.

From the logical point of view, each server plays the
role of a Kubernetes worker, while the master node is
hosted by a KVM-powered virtual machine running on one of
the servers. Indeed, given the limited number of resources
available, we preferred avoiding to dedicate one entire
server just for the Kubernetes master and we leveraged
virtualization to achieve an acceptable degree of isola-
tion. For the same reason, we adopted a single master
setup, although loosing the advantages associated with high-
availability. As for Kubernetes networking, we selected
Project Calico,20 being it one of the most popular
CNI plugins, limiting the overhead by requiring no over-
lay and supporting advanced features such as the definition
of network policies to isolate the traffic between different
containers.

20https://www.projectcalico.org

TABLE 2. Mapping the typical cloud computing services to the key
components selected for their implementation.

B. ADDING TYPICAL ‘‘CLOUD’’ SERVICES ON TOP OF
KUBERNETES
Once the bare Kubernetes cluster is up and running, it is
necessary to install the entire set of components required to
create the fully-fledged platform to host CrownLabs. A huge
amount of customization and fine-tuning is clearly required in
this respect, depending on the characteristics of the physical
setup, the desired degree of fault tolerance as well as to work
around possible external constraints. Yet, in the following
description, we stick to a high-level presentation, motivating
the requirement for the different components by means of
a parallelism with the services provided by cloud providers,
as summarized in Table 2. Indeed, we can show that, picking
the right constituting elements from the Kubernetes ecosys-
tem, we succeeded in replicating (even though in a smaller
scale) all the functionalities typically available in the cloud
world. Nonetheless, the entire configuration files required to
reproduce our setup are available on the project’s repository.

1) COMPUTE VIRTUALIZATION
Kubernetes is designed for the orchestration of contain-
ers. Indeed, the smallest deployable unit of computing that
can be managed by Kubernetes is the pod (i.e. an atomic
entity grouping together one or more containers with shared
networking and storage capabilities). Yet, the CrownLabs
use-case brought in the necessity to handle also classical
virtual machines, in order to provide a generic and totally
isolated environment where students can play with their own
laboratories. Here, KubeVirt comes into play, introducing
the support for generic VMs on top of a Kubernetes cluster.
In short, whenever a VirtualMachineInstance is cre-
ated (i.e. the custom resource describing its characteristics),
the KubeVirt operator spawns a new pod, representing the
space where the VM will live. This pod is composed of a
launcher container, mainly responsible for creating the local
libvirtd instance that actually manages the life-cycle of
the VM. A second container, on the other hand, essentially
wraps a qcow2 disk image file, representing the HDD that
is attached to the newly created virtual machine. A great

126436 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

amount of tuning is possible for what regards resource man-
agement, in order to specify the amount of CPU and memory
reserved to each VM and optionally the desired degree of
over-commitment. Finally, as for the HDD images packaged
as Docker images, we setup a local Docker Registry, in order
to speed-up the VM boot time and prevent saturating the
bandwidth of our Internet connection, given their consider-
able size.

To simplify the setup of the VM images, we developed a
set of bash and Ansible21 scripts, which automate (on a
local machine, e.g. with VirtualBox) the entire prepara-
tion process, from the installation of the guest O.S. to the
upload of the resulting image to the private Docker Registry.
Specifically, they take care of downloading and configuring
all the tools required for CrownLabs itself, as well as remov-
ing a set of redundant programs to reduce the disk footprint
and speed-up the boot process. Additionally, multiple pre-
defined Ansible playbooks are made available to simplify
the installation of common software used in our courses.
Yet, additional playbooks can be prepared to support differ-
ent use-cases, as well as graphical one-shot configurations
are possible. Based on our experience, the resulting VMs
(all adopting xubuntu as base O.S.) were characterized
by a virtual file-system usage ranging from 4.1 GB for the
stripped down O.S., to 5.0–7.0 GB in the most common
scenarios, up to 11.0 GB when MATLAB (complemented
by some toolboxes) was installed. Yet, the compressed size
when stored within the Docker registry was much lower,
fluctuating from 1.5–2.5 GB in all but the most demanding
situation (5.4 GB). These values represent the amount of data
that needs to be transferred to each node when spawning a
VM for the first time.

2) VIRTUAL NETWORKING AND ISOLATION
Differently from most VM-oriented platforms, Kubernetes
adopts a flat addressing space. Indeed, each CNI implemen-
tation is required to allow every pod to directly communicate
with all the other pods, whatever the node they reside on.
Back to the CrownLabs use-case, this limitation made it
impossible to directly impose a strong isolation between the
students through the usage of totally separated virtual net-
works. Yet, isolation can be achieved bymeans of Kubernetes
network policies, which provide a declarative way to express
how groups of pods are allowed to communicate between
each other andwith external network endpoints.We leveraged
this approach to prevent the VMs in each student’s namespace
from being contacted by those of other users. Yet, we allowed
internal communication, to support multi-VM setups for net-
working laboratories.

3) LOAD BALANCING
One of the key components required by every multi-server
setup is the load balancer, the element in charge of dis-
tributing the ingress traffic to the correct back-end service.

21https://www.ansible.com

Focusing on the CrownLabs stack, this task is fulfilled by
two different pieces of software. First, MetalLB,22 that
implements a network load balancer for bare metal clusters
(i.e. those not running on supported IaaS platforms). Yet,
having no control on the border router, we were forced to
operate in Layer2 mode (i.e. only one node in the cluster
attracts all the traffic for each virtual IP address). Hence,
our solution achieves mostly resiliency, guaranteeing that
the virtual IP addresses continue to remain reachable even
in case one of the physical nodes is no longer accessible,
as each server runs its own MetalLB instance. Nonetheless,
once the traffic is received by the node, kube-proxy takes
care of its automatic distribution to all the pods associated
with the service, thus effectively achieving load-balancing.
Second, the NGINX Ingress Controller,23 which is responsi-
ble for providing the actual entry point for all HTTP-based
application traffic and is executed in multiple instances. This
component, which is exposed outside the cluster through
one ‘‘load-balanced’’ virtual IP address, selects the target
back-end service, depending on the host name and, option-
ally, the requested URL path. Additionally, it provides TLS
termination, to ensure that all traffic exchanged with the
end users is secured. Finally, two complementary compo-
nents, namely external-dns and cert-manager, are
responsible for companion tasks triggered whenever a new
Ingress24 resource is created. Specifically, the former
takes care of the automatic configuration of DNS records
on external DNS providers (e.g. a bind9 server), to make
the specified host names immediately discoverable via public
DNS servers. The latter, on the other hand, automates the
issuance and renewal of valid TLS certificates with the ‘‘Let’s
Encrypt’’ public Internet service.

4) STORAGE PROVISIONING
Most applications cannot provide any useful service to
the users if data cannot be persisted. In Kubernetes, this
problem is tackled by means of an abstraction named
PersistentVolumeClaim. It represents a request for
a piece of storage, characterized by a given type, size and
access mode, that can be eventually attached to one or more
pods. Yet, the actual implementation is provided by external
solutions. Specifically, we leveraged Rook,25 an operator
that essentially provides a management layer to automate the
deployment, configuration and upgrade of the actual storage
providers. As for the latter, we selected Ceph,26 thanks to
its maturity and the support for both block, file-system, and
object storage, through the definition of different storage
classes. Indeed, the former provides a raw pool of storage
that can be individually formatted by the user, while the
file-system solution exposes a typical abstraction character-
ized by POSIX semantics. Finally, object storage provides an

22https://metallb.universe.tf
23https://kubernetes.github.io/ingress-nginx
24https://kubernetes.io/docs/concepts/services-networking/ingress
25https://rook.io
26https://ceph.io

VOLUME 8, 2020 126437



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

S3 compliant abstraction to save unstructured data in a flat
address space. In CrownLabs we made use of all these three
types of storage classes, depending on the peculiarities and
constraints of the different applications.

5) CLUSTER MONITORING
When it comes to operating complex systems, one essential
requirement is the availability of rich and easy to access
metrics to evaluate both the status of the different components
and the evolution of the key performance indicators represent-
ing the user perception about the overall service. To address
this requisite, we leveraged kube-prometheus,27 a solu-
tion packaging together Prometheus (i.e. the compo-
nent scraping the actual metrics from multiple endpoints
and exposing them through a flexible query language),
Grafana (i.e. the visualization platform adopted to graphi-
cally present the metrics) and Alertmanager (i.e. the tool
in charge of managing the alerts and routing them to the cor-
rect receivers). In addition, kube-prometheus provides
metrics exporters, ready-to-use dashboards as well as config-
urations to automate the installation of a complete, highly-
available, cluster monitoring solution. The entire stack allows
to collect an incredible amount of information about physical
nodes, containers as well as most of the other cluster com-
ponents, while featuring easy-to-read and appealing dash-
boards to present the most relevant data. Finally, it provides
timely notifications, to enable fast reactions when a problem
occurs.

6) HIGHER LEVEL APPLICATIONS
On top of the infrastructure built out of the different key
components enumerated up to now, we installed the main
services, besides the actual CrownLabs application, directly
accessed by the end users. Specifically, themost relevant ones
are Keycloak and Nextcloud. The former is the identity
and management solution in charge of providing a seam-
less single-sign-on authentication and authorization work-
flowwhatever the target service to access. To this end, we also
leveraged oauth2-proxy, a reverse proxy that, combined
with the ingress controller, allows to provide authentication in
front of services that do not natively support it. Nextcloud,
on the other hand, provides each user a personal folder,
shared between all her different VMs and easily accessible
also through a web-based interface. Yet, the configuration of
these two fundamental elements, taking care of aspects such
as high-availability and performance optimization, proved
to be challenging, given the high degree of under the hood
customization necessary to make them work. For instance,
besides the actual service, they both required the configu-
ration of both databases (through the PostgreSQL opera-
tor28) and in memory data structure stores (via the KubeDB
operator29).

27https://github.com/coreos/kube-prometheus
28https://github.com/zalando/postgres-operator
29https://github.com/kubedb/operator

VII. EXPERIMENTAL EVALUATION
To experimentally evaluate the overall performance associ-
atedwithCrownLabs, we conducted an extensive benchmark-
ing campaign. This section presents and discusses the most
relevant results, both considering reference scenarios and
observing the behavior during a real laboratory. Specifically,
the evaluation initially focused on the most relevant cluster
metrics, to show how the system reacts when the number of
users (and virtual machines) increases. Then, we assessed the
delay experienced by the students before their VMs became
up and running. Finally, we measured the amount of net-
work bandwidth demanded to access the remote desktop,
hence observing the requirements in terms of users’ Internet
connection.

A. CLUSTER METRICS
Focusing on the analysis of the cluster metrics, we start
considering the outcome of a real remote laboratory accessed
by 25 students in parallel: some were working alone, while
others cooperated in groups of two. All in all, this sce-
nario is deemed to better represent the real requirements
associated with the target use-case of CrownLabs com-
pared to simulated configurations. During the laboratory,
the students, attending a networking class, were required to
experiment with GNS3,30 a graphical software simulating
complex networks through the interconnection and configu-
ration of routers, switches and hosts. Additionally, this soft-
ware interacts with Wireshark,31 to capture and explore
the traffic exchanged between the different nodes. The vir-
tual machine image adopted for the laboratory was based
on an xubuntu 19.10 guest O.S., with all the different
pieces of software already installed and configured. Each VM
was assigned 2 CPUs and 2.5 GB of RAM. Finally, all the
results herein presented derive from the metrics scraped by
Prometheus from the physical servers.
Fig. 4 presents the results of the evaluation, showing the

evolution over time of the cluster CPU and memory usage
as the number of CrownLabs users changed. The laboratory
lasted three hours, while the results span 30 additional min-
utes before and after to account for early and late students.
Focusing first on the CPU (Fig. 4b), three different metrics
are evaluated. Two stem from the USE method [14] and
measure respectively the percentage of time the CPU was
busy servicing work (i.e. Utilization) and the amount of work
waiting to be performed as measured by CPU load over one
minute (i.e. Saturation). In other words, the former measures
how busy the CPU is in a certain moment, while the latter
accounts for the amount of work awaiting in a kernel queue
to be performed (including both CPU and I/O time) over a
period of time. The third line, on the other hand, represents
the current amount of reserved CPU. Indeed, Kubernetes
allows to reserve a certain amount of resources (e.g. CPU and
memory) to each pod, in order to guarantee their availability

30https://www.gns3.com
31https://www.wireshark.org

126438 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

FIGURE 4. An evaluation of the most important cluster metrics during a remote networking laboratory accessed by 25 students in parallel, in terms of
(a) active VMs, (b) CPU and (c) RAM. The dashed lines represent a baseline computed as the 12 h-average of the corresponding metric when no VMs
are present.

FIGURE 5. An evaluation of the most important cluster metrics while simulating an artificial load characterized by an increasing number of VMs,
in terms of (a) active VMs, (b) CPU and (c) RAM. The dashed lines represent a baseline computed as the 12 h-average of the corresponding metric
when no VMs are present.

and prevent scheduling more tasks than the available com-
putational capacity. During this laboratory, each VM was
configured to request exactly the amount of CPU andmemory
assigned, hence achieving no over-commitment. Finally, the
graph is complemented by the dashed baselines correspond-
ing to the three different metrics, measured as the average
over 12 h when no virtual machines were running on the
cluster (please notice that the average values referring to CPU
utilization and saturation graphically overlap). Moving to the
RAM evaluation (Fig. 4c), we similarly assessed the amount
of memory used and reserved, together with the respective
baselines. All in all, the graphs confirmed that the amount
of resources consumed by the infrastructural components
remained certainly low even in our simple setup, hence leav-
ing much space for the execution of the VMs of the final
users. Additionally, given the significant difference between
the resources consumed and reserved, it would be possible to
increase the number of parallel users through a greater degree
of over-commitment.

Starting from this considerations, the evaluation shown in
Fig. 5 pushed the infrastructure to its limits, to verify the
maximum number of VMs that can be supported concurrently
and the overall reaction of the system. Indeed, in this situation
we maintained a virtual machine configuration similar to the
previous case (same image, 2 CPUs and 2 GB of RAM),
while lowering the number of reserved computing resources

to 1 CPU only. In other words, we simulated a high degree of
over-commitment to better leverage all the available cluster
resources (although slightly degrading the user experience
in high-load situations). A new virtual machine was started
every minute, while simulating for each of them a random
CPU load (using the stress-ng utility) and RAM usage
(with python, generating random matrices of the appropri-
ate size). Specifically, the former was characterized by one
second long intervals uniformly distributed in the 0–30%
band (one CPU only), complemented by high-load spikes
(75–100%) on both CPUs and extracted with a 5% proba-
bility. The RAM usage, on the other hand, was uniformly
drawn between 100–1250 MB, and refreshed every 60 s.
According to the above tests, our infrastructure managed to
support 90 parallel virtual machines, while still maintaining
bearable levels of CPU and RAM utilization. Indeed, also
considering the CPU saturation, the load value did not present
an exponentially increasing pattern, hence suggesting that all
requested work was successfully serviced. All in all, this eval-
uation confirmed the high degree of consolidation achieved
by the system.

B. VM READY TIME
In this test we assessed the delay experienced by the final
users between the creation of a new virtual machine and
its availability (i.e. the possibility to access the remote

VOLUME 8, 2020 126439



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

FIGURE 6. An evaluation of the downstream bandwidth (from the final user’s point of view) consumed by the remote desktop viewer (a) during a
networking laboratory, both considering three random individuals — a detailed excerpt of one of them is presented in (b) — and an average over 10
students, and (c) in simulated scenarios: writing a text in LibreOffice Writer, reading news on the Internet and playing a Full HD video (Big Buck
Bunny).

FIGURE 7. An evaluation of the time required by CrownLabs to spawn a
new VM and let the end user connect to the remote desktop. A new
instance is created every 1 seconds, to analyze the outcome in different
load conditions.

desktop). In other words, this metric includes both the time
required by the operator to create the companion resources,
the delay introduced by kubevirt to schedule the VM and,
finally, its boot time. In this scenario, we leveraged a VM
image characterized by xubuntu 20.04 LTS as guest
O.S. (some unnecessary programs and services were removed
to speed-up the boot process), 2 CPUs and 2 GB of RAM.
The evaluation encompassed the creation of 1000 VMs: a
new virtual machine was spawned every 1 seconds, with
1 = {15 s, 30 s, 60 s}, while limiting the concurrent number
of running VMs to 25.

Fig. 7 summarizes the results of the benchmark, represent-
ing the extensions of the quartiles (outliers are shown as indi-
vidual points). Being the boot times strongly influenced by
the guest O.S. configuration, the evaluation is complemented
by the time spent completing the boot process. According to
the above tests, the user was almost always able to start a
new VM and connect to the remote desktop in less than one
minute, even when creating a new virtual machine every 15 s.
Yet, the main difference emerged between the three situations
resides in the degree of dispersion, with the most demanding
scenario characterized by a much higher number of outliers.
Focusing on the boot process only, it is possible to observe a

symmetrical behavior. Hence, showing the important role it
played in the ready time variability. Conversely, the impact
of the other steps remained mostly constant, requiring on
average 15 s up to the start of the boot process.

C. BANDWIDTH CONSUMPTION
Lastly, our evaluation campaign focused on the network
bandwidth demanded by the remote desktop, to evaluate the
characteristics of the student’s Internet connection neces-
sary to achieve a smooth user experience. To this end, both
components related to the remote desktop (i.e. TigerVNC
and noVNC) have been adopted with their out of the box
configuration. Yet, a great amount of customization is per-
mitted by both tools in terms of compression algorithms
and video parameters. Hence, suggesting the possibility to
achieve much better performance in a carefully tuned envi-
ronment. As for the methodology, all measurements have
been obtained directly on the VMs and encompass the remote
desktop traffic only. All the results herein presented refer to
the downstream bandwidth (from the user point of view),
being it dominant compared to the upstream.

In this regard, we first assessed the requirements as
measured during the real networking laboratory detailed in
Section VII-A. The outcome has been normalized depending
on the number of students concurrently accessing the same
remote desktop — when two users are connected to the same
VM, the bandwidthmeasured atCrownLabs roughly doubles,
while it remains the same at the student’s end — but it possi-
bly includes the interference associated with the interventions
of the instructors. Fig. 6a summarizes the results of the evalu-
ation, displaying the values obtained from three random stu-
dents, as well as the mean over ten individuals. Overall, it is
possible to observe that, on average, about two thirds of the
total time is associated with an almost negligible bandwidth
demand (i.e.< 100 kbps). Indeed, this behaviour is explained
considering that network traffic is generated by noVNC only
when the desktop content varies. On the other hand, the
20% of the samples is associated with demands greater
than 1 Mbps, corresponding to the instants when the desk-
top is completely redrawn. Yet, different students presented

126440 VOLUME 8, 2020



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

fairly different behaviors, depending on the amount of time
spent actively using the system, reading documentation and
searching for information on the Internet. For the sake of
completeness, Fig. 6b shows an excerpt of the entire sam-
ples associated with one of the students. Overall, it displays
the alternation between ‘‘silence periods’’ and high-demand
spikes, as introduced by the differential video transmission.
Yet, the average bandwidth sits in the 1 Mbps area.

Fig. 6c, on the other hand, presents the bandwidth con-
sumed in three different simulated situations. Although not
being strictly related to the core use-cases of CrownLabs,
they aim to show a baseline associated with best and worst
case scenarios. Specifically, we started measuring the data
transmitted while writing a one page long text in LibreOffice
Writer (≈ 200 keystrokes per minute). This scenario was
characterized by a very low bandwidth usage (30–300 kbps),
thanks to the limited amount of desktop content to be redrawn
at each instant. Then, we simulated reading news and search-
ing for information on the Internet, obtaining a CDF shape
comparable to those associated with the real networking
laboratory. Finally, we examined the most extreme scenario,
by remotely playing a full-screen, Full HD video. In a
nutshell, it consumed on average 35 Mbps, with peaks up
to 60 Mbps. Yet, the playback quality was qualitatively excel-
lent, with only limited differences in terms of smoothness
compared to viewing the video locally.

All in all, both evaluations showed that, in normal use-
cases, the remote desktop can be accessed achieving a very
good user experience with a 10 Mbps Internet connection.
Yet, the throughput peaks are short and impulsive, while
the average bandwidth consumed is much less. Indeed, the
system remained still perfectly usable even in case the avail-
able bandwidth was as low as 1 Mbps, with only limited
differences in terms of fluidity when causing the refresh of
the entire desktop.

VIII. CONCLUSIONS AND FUTURE WORK
Practical laboratories are an essential component in every
computing, networking and security course. Although our
students are typically required to physically complete their
duties at the university premises, the coronavirus pandemic
quickly wiped out what was considered routine just a few
days earlier. Indeed, besides the human tragedy accounted by
the death toll, the lock-down period proved to be an extreme
test bench from an IT point of view.

In this paper, we presented CrownLabs, an open-source
project started in March 2020 by a group of volunteers from
Politecnico di Torino to answer the need for hands-on remote
laboratories. CrownLabs allows students to instantiate and
access personal learning environments already configured
with all the software necessary to complete their duties, but
remotely executed by a Kubernetes cluster located at the
university premises. The entire system has been designed
with the educational requirements in mind: both group coop-
eration and mentoring are encouraged by the ability to

seamlessly share the same remote desktop among multiple
users. No complex setup or special computing resources are
required from the students: a simple web browser is enough
to interact with the system and access the remote desktop.
To see a live preview of the web-based dashboard, as well
as of the entire CrownLabs, please refer to the introductory
video available on YouTube.32

Stemming from the specific use-case, this paper analyzed
from a more general perspective the different design require-
ments and principles that have driven CrownLabs. First,
we focused on the concept of offloading as many tasks as
possible to the infrastructure itself, to speed up the initial
development and prevent application obsolescence. Then,
we presented the high-level architecture of the system, focus-
ing on the most relevant components, as well as shown how
we managed to build a small-scale, ‘‘cloud-grade’’ infras-
tructure by installing and configuring the necessary compo-
nents from the Kubernetes ecosystem. Finally, we performed
an extensive benchmarking campaign to evaluate how the
system reacted to different loads both in real and simulated
scenarios. All in all, the results are encouraging, both in terms
of cluster resources and bandwidth demands. Additionally,
the feedback from early adopters proved to be positive, con-
firming the effectiveness of the system.

As for the future work, besides increasing the user base
and improving the usability of the system, we currently
plan to focus on three main aspects. First, the introduc-
tion of container-based laboratories. Indeed, an initial proof
of concept has shown all the potential of this approach to
achieve much higher consolidation as well as faster start-up
times. Yet, many concerns from the isolation point of view
still needs to be better investigated. Second, the support for
lightweight and text-only VMs, by providing an easy access
to the console both through the web-based dashboard and the
traditional SSH protocol. Finally, the practical implementa-
tion of the ad-hoc federation idea envisioned in Section IV-G,
to increase the computational resources without actually set-
ting up new hardware.

ACKNOWLEDGMENT
The CrownLabs project was started by a group of volunteers,
mostly students enrolled in the M.Sc. of Computer Engineer-
ing at Politecnico di Torino (Italy), under the pressure of the
coronavirus, in March 2020.

The authors would like to thank all the people who greatly
contributed to this project: Aldo Lacuku, Andrea Cossio,
Francesco Borgogni, Gabriele Filaferro, Giuseppe Ognibene,
Hamza Rhaouati, Mattia Lavacca, Michele Luigi Greco,
Serena Flocco, Simone Magnani and Stefano Galantino.

REFERENCES
[1] E. Scanlon, E. Morris, T. di Paolo, and M. Cooper, ‘‘Contemporary

approaches to learning science: Technologically-mediated practical work,’’
Stud. Sci. Educ., vol. 38, no. 1, pp. 73–114, Jan. 2002.

32https://youtu.be/i7fqga7xQv0

VOLUME 8, 2020 126441



M. Iorio et al.: CrownLabs—A Collaborative Environment to Deliver Remote Computing Laboratories

[2] The Joint Task Force on Computer Engineering Curricula Association for
Computing Machinery (ACM) and IEEE Computer Society. (Dec. 2016).
Computer Engineering Curricula 2016, CE2016. [Online]. Available:
https://www.acm.org/binaries/content/assets/education/ce2016-final-
report.pdf

[3] M. Roser, H. Ritchie, E. Ortiz-Ospina, and J. Hasell, ‘‘Coronavirus
pandemic (COVID-19),’’ Our World Data, 2020. [Online]. Available:
https://ourworldindata.org/coronavirus

[4] J. Ma and J. V. Nickerson, ‘‘Hands-on, simulated, and remote laboratories:
A comparative literature review,’’ ACM Comput. Surv., vol. 38, no. 3,
p. 7-es, Sep. 2006.

[5] C. Ivica, J. T. Riley, and C. Shubert, ‘‘StarHPC—Teaching parallel pro-
gramming within elastic compute cloud,’’ in Proc. ITI 31st Int. Conf. Inf.
Technol. Interface, Jun. 2009, pp. 353–356.

[6] L. Xu, D. Huang, andW. Tsai, ‘‘Cloud-based virtual laboratory for network
security education,’’ IEEE Trans. Educ., vol. 57, no. 3, pp. 145–150,
Aug. 2014.

[7] A. C. Caminero, S. Ros, R. Hernández, A. Robles-Gómez, L. Tobarra,
and P. J. T. Granjo, ‘‘VirTUal remoTe labORatories management sys-
tem (TUTORES): Using cloud computing to acquire university practical
skills,’’ IEEE Trans. Learn. Technol., vol. 9, no. 2, pp. 133–145, Apr. 2016.

[8] ThoTh Lab V3.0. Accessed: Jul. 9, 2020. [Online]. Available:
https://www.thothlab.com

[9] Katacoda. Accessed: Jul. 9, 2020. [Online]. Available:
https://katacoda.com

[10] K. Pepple, Deploying Openstack. Newton, MA, USA: O’Reilly Media,
2011.

[11] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running: Dive
Into the Future of Infrastructure. Newton, MA, USA: O’Reilly Media,
2017.

[12] G. E. Krasner and S. T. Pope, ‘‘A cookbook for using the model-view
controller user interface paradigm in smalltalk-80,’’ J. Object Oriented
Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[13] B. Ibryam and R. Huß, Kubernetes Patterns: Reusable Elements for
Designing Cloud-Native Applications. Newton, MA, USA: O’Reilly
Media, 2019.

[14] B. Gregg, ‘‘Thinking methodically about performance,’’ Commun. ACM,
vol. 56, no. 2, pp. 45–51, Feb. 2013.

MARCO IORIO (Graduate Student Member,
IEEE) received the M.Sc. degree in computer
engineering from the Politecnico di Torino, Italy,
in 2018, where he is currently pursuing the Ph.D.
degree. His research interests include vehicular
networks, cooperative driving, and cybersecurity.

ALEX PALESANDRO received the M.Sc. degree
in computer engineering from the Politecnico di
Torino, Italy, in 2014, and the Ph.D. degree from
the University of Lyon, in 2018. He is currently
a Postdoctoral Researcher with the Politecnico di
Torino. His research interests include cooperative
multi-cloud systems, edge/fog computing, and net-
work functions virtualization.

FULVIO RISSO (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer engineer-
ing from the Politecnico di Torino, Italy, in 1995
and 2000, respectively. He is currently an Asso-
ciate Professor with the Politecnico di Torino.
He has coauthored more than 130 scientific arti-
cles. His research interests include high-speed and
flexible network processing, edge/fog computing,
software-defined networks, and network functions
virtualization.

126442 VOLUME 8, 2020


