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Abstract Even though clean air is considered as a basic re-
quirement for the maintenance of human health, air pollution
continues to pose a significant health threat in developed and
developing countries alike. Monitoring and modeling of clas-
sic and emerging pollutants is vital to our knowledge of health
outcomes in exposed subjects and to our ability to predict
them. The ability to anticipate and manage changes in atmo-
spheric pollutant concentrations relies on an accurate repre-
sentation of the chemical state of the atmosphere. The task of
providing the best possible analysis of air pollution thus re-
quires efficient computational tools enabling efficient integra-
tion of observational data into models. A number of air quality
models have been developed and play an important role in air
quality management. Even though a large number of air qual-
ity models have been discussed or applied, their heterogeneity
makes it difficult to select one approach above the others. This
paper provides a brief review on air quality models with re-
spect to several aspects such as prediction of health effects.

Keywords Airpollution .Healtheffects .AirQmodels .AirQ
software2.2 . Public health . Epidemiology

Introduction

Clean air is considered as a basic requirement to maintain
human health (Chiu and Yang 2015; Gibson 2015; Welker-
Hood et al. 2011). However, air pollution continues to pose a
significant threat to health in developed and developing coun-
tries alike.

The WHO estimates that some 80% of premature deaths
are due to ischemic heart disease and stroke caused by outdoor
air pollution, 14% are due to chronic obstructive pulmonary
disease or acute lower respiratory tract infections, and 6% are
due to lung cancer. Children are particularly susceptible due to
their fast metabolism (Ferrante et al. 2012; Danysh et al. 2015;
Rodriguez-Villamizar et al. 2015). The BWHO Air quality
guidelines^ provide global guidance on thresholds and limits
for key air pollutants harmful for human health. According to
the WHO, a reduction in particulate matter (PM10) pollution
from 70 to 20μg/m3 can reduce air pollution-related deaths by
15% (WHO 2006).

Accurate evaluation of the concentrations and effects of air
pollutants is therefore increasingly important. Over the past
few years, modeling approaches based on mathematical and
numerical techniques have been used more and more often to
explore the relationships between air pollution and diseases or
deaths, raising important questions on the significance of the
data collected and on the need for appropriate training of pro-
fessionals in these fields. This paper provides a brief review of
the different guidelines and approaches—including air model-
ing systems like the Air Quality model (AirQ model) and
AirQ Software 2.2—adopted by different countries over the
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past 6 years to assess air quality and the health impacts due to
exposure to classic and emerging air pollutants.

Search strategy and selection criteria

The PubMed, Web of Science, Scopus, and Cochrane data-
bases and reports of European and non-European environment
agencies were searched for case reports, editorials, and expert
opinions published in English, Italian, and French from
January 2010 to June 2016. Search terms were BAir quality
guidelines,^ BAir pollutants,^ BAir Quality Models,^ BAir Q
software,^ Bair pollution,^ and Bhealth.^

Air quality guidelines and comparison
between emerging and developed countries

The guidelines apply in all WHO regions and regard particu-
late matter (PM), ozone (O3), nitrogen dioxide (NO2), and
sulfur dioxide (SO2) (see Table 1).

The European Commission’s Thematic Strategy on Air
Pollution set the goals of improving human health and the
environment through the improvement of air quality by the
year 2020. The EU air quality legislation stresses the need for
improving air quality monitoring and assessment, to provide
better Binformation to the public^ (Directive 2008/50/EC).

PM, O3, and NO2 are currently Europe’s most problematic
pollutants in terms of damage to health (Mills et al. 2015; Choi
et al. 2015; EEA 2010). Generally, the effect of air pollution on
health and relevant policymaking can be explained through the
Driving force-Pressure-State-Exposure-Effect-Action
(DPSEEA) model (Corvalán et al. 2014). Ideal policymaking
to protect human health involves a reduction of exposure to
environmental risks at all stages of the process. However,
policy-based interventions are not simple, since the time lag
between the reduction of exposure to the environmental risk
factors and its effects on disease prevalence, as well as other
variables, makes interventions hard to implement (Ha 2014).
The DPSEEA model (Fig. 1) is closely related to the establish-
ment of air quality standards, because setting up those standards
can lead to management and reduction of pollution sources,
reducing pollutant concentrations and associated health risk
factors to ensure a healthy environment for citizens (Corvalán
et al. 2014). Air quality standard setting may be considered as a
reliable method for reducing human exposure to air pollutants.

The US Environmental Protection Agency (EPA) has set
National Ambient Air Quality Standards (NAAQSs) for six
principal pollutants, called Bcriteria^ pollutants (US EPA
2014). The Ambient Air Quality and Cleaner Air for Europe
(CAFE) Directive (2008/50/EC) was published in May 2008,
replacing the Framework Directive and the first, second, and
third Daughter Directives.

Ambient air quality has been regulated in China since
1982, with initial limits for total suspended particulate
(TSP), SO2, NO2, Pb, and benzo(a)pyrene (BaP). In 1996,
the standard was both strengthened and expanded under
National Standard GB 3095-1996, but in Ministry of
Environmental Protection Announcement No. 1, the standard
was updated with less stringent limits for some pollutants
(Category Emissions Standards China 2014).

Brazil’s National Environmental Council (CONAMA) and
the core agency National Environment System (SISNAMA)
have set the country’s air quality guidelines, but the national
standards are to be applied only in the absence of local ambi-
ent air quality standards (http://transportpolicy.net/index.
php?title=Brazil:_Air_Quality_Standards). The most recent
worldwide environmental laws are based on the Kyoto
protocol.

Classic and emerging pollutants and their health
effects

PM10, PM2.5, CO, O3, NO2, and SO2 are defined Bclassic
or traditional^ air pollutants

CO is a ubiquitous toxic gaseous pollutant in the atmosphere
generated by natural and anthropogenic combustion, by pho-
tochemical oxidation of methane and other volatile organic
compounds (VOCs), and by vegetables (ATSDR 2009).
Outdoor air pollution by CO is dangerous for individuals with
heart disease (Lee et al. 2015) and is associated with an in-
creased risk for thromboembolism (De Matteis et al. 2015),
osteoporosis, and migraine (Chiu and Yang 2015; Chang et al.
2015). A potential connection with neurodevelopmental out-
comes has also been suggested (Levy 2015).

Fossil fuel combustion is a major source of PM10, PM2.5,
CO, O3, NO2, and SO2 (Ferrante et al. 2012). The lower use of
high-sulfur coal for domestic and/or industrial purposes is
contributing to the reduction of urban and rural concentrations
of SO2, and this trend is widely recorded in several European
countries (Masiol et al. 2014). The significant reduction in
SO2 emissions achieved since the 1970s is one of the success
stories of Europe’s earlier air pollution strategy (Ferrante et al.
2012). Indeed, every 10 μg/m3 increase in PM10 and SO2 was
associated with an increase of about 1.012 (95% CI 1.002,
1.022) and 1.021 (95% CI 1.002, 1.040) in mortality from
ischemic heart disease, respectively (Lin et al. 2014; Liu
et al. 2015a; Suissa et al. 2013).

Some reports have raised concerns over the health effects
of outdoor air pollution mixtures.

Classic air pollutants (Chen and Kan 2008; Gloag 1981)
are associated with low-term birth weight (Qian et al. 2013)
and increased limb defects (Lin et al. 2014), pre-eclampsia in
pregnancy (Yorifuji et al. 2015), acute bronchitis (Nahidi et al.
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2014), chronic obstructive pulmonary disease (COPD) (espe-
cially asthma) (Guo et al. 2014; Ghozicali et al. 2015; Miri
et al. 2016), hypertension and increased blood pressure (Dong
et al. 2014), cardiac arrhythmia and cardiovascular diseases
(Zhao et al. 2014; Jevtić et al. 2014; Miri et al. 2016), and
autism spectrum disorders (Jung et al. 2013).

It is difficult to draw conclusions about the effects of
emerging air contaminants on health for a number of reasons,
including data heterogeneity, small numbers of studies, and
investigations limited to a small number of regions (Singh
et al. 2014). Heavy metals, persistent organic pollutants
(POPs), and VOCs, the major emerging air pollutants, exert
a variety of harmful effects on human health (Ferrante et al.
2012).

Heavy metals can cause harm at low concentrations and are
toxic and carcinogenic; their relative toxic/carcinogenic po-
tencies are compound-specific. Exposure has been related to
developmental retardation, various cancers, kidney damage,
and even death in some instances of exposure to very high
concentrations.

POPs are a group of chemicals that persist in the environ-
ment for a very long time, exerting a potentially significant
impact on human health. Their stability and ability to be
transported make them ubiquitous; POPs are also found in
arctic regions (Singh et al. 2014; Wang et al. 2015;
Fernández-González et al. 2014). The United Nations
Environment Programme (UNEP) has listed 12 POPs as the
Bdirty dozen.^ Nine are old organochlorine pesticides (aldrin,
DDT, chlordane, dieldrin, endrin, heptachlor, hexachloroben-
zene, mirex, and toxaphene). Atmospheric polycyclic aromat-
ic hydrocarbons (PAHs) can also cause adverse effects on
human health, but the relative contribution of this route of
exposure is still unclear (Ferrante et al. 2012). The production
and use of some POPs have been banned in most countries,
resulting in reduced air concentrations (Morales et al. 2014;
Augusto et al. 2015). Three other POPs that raise concern are
industrial chemicals, including polychlorinated biphenyls
(PCBs), polychlorinated dibenzodioxins (PCDDs or dioxins),
and polychlorinated dibenzofurans (PCDFs or furans)
(Crinnion 2011).

Table 1 Air quality guidelines in some emerging and developed countries

Pollutant WHO NAAQS CAFE China Brazil

PM 2.5 10 μg/m3 annual mean 12 μg/m3 annual mean 20 μg/m3 annual
mean

15 μg/m3 annual mean –

25 μg/m3 24 h mean 35 μg/m3 24 h mean 35 μg/m3 24 h mean

PM 10 20 μg/m3 annual mean 150 μg/m3 40 μg/m3 annual
mean

40 μg/m3 annual mean –

50 μg/m3 24 h mean 50 μg/m3 24 h mean 50 μg/m3 24 h mean

O3 100 μg/m3 8 h mean 0.075 ppm 120 μg/m3 8 h mean 100 μg/m3 8 h mean 160 μg/m3 1 h mean
160 μg/m3 1 h mean

NO2 40 μg/m3 annual mean 53 ppb 40 μg/m3 annual
mean

40 μg/m3 annual mean 100 μg/m3 annual
mean

200 μg/m3 1 h mean 100 ppb 200 μg/m3 1 h mean 200 μg/m3 1 h mean 320 μg/m3 1 h mean

SO2 20 μg/m3 24 h mean 75 ppb 1 h mean 350 μg/m3 1 h mean 50 μg/m3 24 h mean 80 μg/m3 annual mean

500 μg/m3 10 min mean 0.5 ppm 3 h mean 125 μg/m3 24 h mean 150 μg/m3 1 h mean 365 μg/m3 24 h mean

CO 100 μg/m3 15 min mean – 10,000 μg/m3 (Not to
be exceeded)

4000 μg/m3 24 h
mean

40,000 μg/m3 1 h
mean

30 μg/m3 1 h mean 10,000 μg/m3 1 h
mean

10,000 μg/m3 8 h
mean

COV – – – – –

Nafthalene 10 μg/m3 annual mean – – – –

B(a)P 8.7 × 10−5 (UR/lifetime) No safe level can be
recommended.

0.001 μg/m3 annual
mean

0.001 μg/m3 annual
mean

–

0.0025 μg/m3 24 h
mean

Tetrachloroethylene 250 μg/m3 annual mean – – – –

Formaldehyde 100 μg/m3 30 min – – –

Benzene No safe level of exposure can
be recommended.

No safe level can be
recommended.

5 μg/m3 annual mean No safe level can be
recommended.

No safe level can be
recommended.

Toluene 260 μg/m3 7 days – – – –
1000 μg/m3 30 min
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Several epidemiological studies have highlighted an asso-
ciation between POPs and chronic diseases like diabetes (Kim
and Lee 2014; Ngwa et al. 2015; Jaacks and Staimez 2015),
birth defects (Ren et al. 2011), genotoxic effects, serum ab-
normalities (Li et al. 2014), autism spectrum disorder
(Mitchell et al. 2012), endocrine disruption effects (Crinnion
2011), reproductive and immune dysfunction, and cancer
(Crinnion 2011; Vested et al. 2014).

VOCs are ubiquitous domestic pollutants. Industry, trans-
ports, and residential sources are the major anthropogenic
sources (Ferrante et al. 2012). Many VOCs are classified as
known or possible carcinogens (Manno 2013), irritants, and
toxicants and have a role in the development of asthma and
allergy and their exacerbations (Nurmatov et al. 2015; Oliveri
Conti et al. 2011; Chin et al. 2014).

AirQ models

The concentrations of substances measured in the atmosphere
derive by some variables as transport, diffusion, chemical re-
activity, and ground deposition. The phenomena of transport
are due to mean fluid’s velocity, and it has been measured and
studied for centuries instead; the study of diffusion or turbu-
lent flow is more recent.

Air pollution’s monitoring gives important quantitative in-
formation about air pollutant’s concentrations and their depo-
sition, but it can only describe air quality without giving clear
identification of causes of pollution. Air pollution’s modeling,
instead, can give a most complete and deterministic descrip-
tion of air pollution, including an analysis of emission sources,
meteorological processes, and physical and chemical changes,
but also is useful for monitoring the effects of implementation
of mitigation measures and for forecast for the human out-
comes (Daly and Zanetti 2007).

Air pollution models represent an important tool in envi-
ronmental and epidemiological science. Only these methods
allow the deterministic relationship’s quantification between
emissions and concentrations/depositions, including the con-
sequences of past and upcoming scenarios and the determina-
tion of the effectiveness of air pollution management strate-
gies. This makes air pollution models indispensable in several
research applications.

The problem of assessing air quality over large regions is
complex under several aspects (Finazzi et al. 2013). AirQ
models use mathematical and numerical approaches to simu-
late the physical and chemical processes undergone by air
pollutants and to simulate their dispersion and reaction in the
atmosphere. The aim of these models is to relate mathemati-
cally the effects of source’s emissions with the level concen-
trations and to establish if permissible levels are, or are not,
being exceeded.

Several AirQ models are available in literature for air qual-
ity forecasting, but like most of statistic models, they are ap-
plicable in specific conditions (Gottschalk et al. 2013). For
these motifs, it is very important to describe their possible
applications and the vantages and advantages of each group
of models; in fact, a better knowledge of these will be of help
for workers on health and environment for a better manage-
ment of the air quality and its health effects. However, the
specialists in health cannot do without a collaboration with
the AirQ experts (physicists and chemists) for the complexity
of the AirQ model’s approach that need a specific and deep-
ened knowledge.

Firstly, the researcher can choose to study primary or sec-
ondary air pollutants. The secondary pollutants are the prima-
ry pollutants (e.g., NO, SO2, O2, etc.) modified in their mo-
lecular and toxicological characteristics due to involvement in
chemical reactions in the atmosphere.

AirQ models, in fact, can be distinguished in two big
groups based on the chemical reactions involved.

The so-called non-reactive models are applied to pollutants
such as CO and SO2 for the simple manner in which their
chemical reactions can be described (Luong 2014). In con-
trast, Breactive models^ address complex mechanisms com-
mon to atmospheric photochemistry and regard pollutants
such as NO, NO2, and O3. AirQ models, which also involve
GIS matching (Batterman et al. 2010), fall into three major
categories: dispersion, photochemical models, and receptor
models (Luong 2014). Generally, an AirQ model does not
contain all characteristics of the real system but contains the
features of interest for the scientific problem we wish to solve
through its use.

Dispersion model

An atmospheric Bdispersion model^ is a mathematical simu-
lation of the physics and chemistry governing the transport,
dispersion, and transformation of pollutants in the atmo-
sphere. When we want to estimate the concentration of air
pollutants at ground-level receptors near emission sources or
we want to determine the compliance of concentrations mea-
sured with respect to the national or international Air Quality
standards (see Table 1), the dispersion model can be used. So,
the dispersion models are widely used in the risk assessment
of hazardous effects of air pollution on humans and the envi-
ronment (Van Leuken et al. 2016). However, large is the range
of its possible applications: assessment of emission compli-
ance with guidelines, criteria, and standards for a clean air;
evaluation of environmental impact of new plants; determina-
tion of appropriate chimneys’ heights; management of emis-
sions already existing; planning of air monitoring networks;
identification of the main sources to air pollution; evaluation
of the efficacy of mitigation strategies around air emissions;
forecast of pollution episodes, etc.
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Modern dispersion models are computer programs that cal-
culate the pollutant concentration downwind of a source using
information on the following:

& Contaminant emission rate
& Characteristics of the emission source
& Local topography
& Meteorology of the area
& Ambient or background concentrations of pollutants

The dispersion models are most useful for pollutants
that are dispersed over large distances and that may react
in the atmosphere with O3, NO2, etc. The dispersion
models can be applied for the simulation of air pollutant
concentrations from different emission sources (line, point,
and area sources) at both local and regional scales (Luong
2014; Irwin 2014; Pan et al. 2014; Batterman et al. 2010).

This model is carried out through four stages: data input,
dispersion calculations, derivation of concentrations, and fi-
nally, analysis. The accuracy and uncertainty of each stage
must be known and evaluated to ensure a reliable assessment
of the significance of any potential adverse effects.

There are two levels of the dispersion model: the simple
screening dispersion models and the more sophisticated
models also called refined dispersion models.

In fact, when the screening model (use preset, worst-case
meteorological conditions with the aim of eliminating the
need of more detailed modeling for those sources) proves
clearly that there are no expected concentrations in excess
with respect to the legal air standards, we do not need a
second-level model.When the concentrations exceed the legal
air standards, the more sophisticated model should be applied
by scientists. All analytical techniques that allow a more com-
plete treatment of physical and chemical atmospheric process-
es represent the second level of the model. More detailed and
accurate input data are needed for this approach. Through
these models, scientists are capable of making an accurate
estimate of the source impact and the effectiveness of control
strategies. The combined approach of the two models would
be desirable; however, very often, the only screening is the
only viable option for estimating the source impact.

The sources of pollutants can be classified as point, line,
and area/volume sources.

The meteorological data used as input to a dispersion mod-
el should be selected on the basis of spatial and temporal
representativeness. The representativeness of data is depen-
dent on the following:

1. The proximity of the meteorological monitoring site with
respect to the analyzed geographical area

2. The geomorphology of land (plains, hill’s presence, etc.)
3. The exposure of the meteorological monitoring site
4. The period of time during which input data are collected

In particular, more attention should be dedicated to topo-
graphic data because they can to lead evaluation errors (Luong
2014; Irwin 2014).

The most commonly used dispersion models are Box,
Gaussian plume, and Lagrangian models.

Box model

The Box model is the simplest of the dispersion model types,
assuming that the airshed or a given volume of atmospheric air
has a box shape. It also assumes that the air pollutants inside
the box are homogeneously distributed and uses that assump-
tion to estimate the average pollutant concentrations anywhere
within the box. However, although useful, this model is very
limited in its ability to accurately predict the dispersion of air
pollutants over an airshed because the assumption of homo-
geneous pollutant distribution is much too simple and not real.

Gaussian plume model

The Gaussian plume model is the oldest (ca. 1936) and most
commonly used model type. It assumes that the air pollutant
dispersion has a Gaussian distribution, so that the pollutant
distribution has a normal probability distribution. Gaussian
models are most often used for predicting the dispersion of
continuous air pollution plumes originating from ground-level
or elevated sources. Gaussian models may also be used for
predicting the dispersion of non-continuous air pollution
plumes also called Bpuff models.^ Several primary algorithms
are used in Gaussian modeling.

Lagrangian model

The Lagrangian model is a dispersion model that mathemati-
cally follows pollution plume particles. In fact, using this ap-
proach is possible to show how the particles move in the
atmosphere, and they model the motion of the parcels as a
random walk process. The Lagrangian model then calculates
the air pollution dispersion by computing the statistics of the
trajectories of a large number of pollution plume parcels. A
Lagrangian model uses a moving frame of reference as the
parcels move from their initial location; in fact, it is said that
with a Lagrangian model, we follow along with the plume.

Eulerian model

An Eulerian dispersion model is similar to a Lagrangian mod-
el but differs in that the Eulerian model uses a fixed three-
dimensional Cartesian grid as a frame of reference rather than
a moving frame of reference as in the Lagrangian model.
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Computational fluid dynamics

CFD is a model for an area’s wind and turbulence and
both the contaminant’s transport and dispersion. It is be-
coming the more accepted AirQ model by the communi-
ty as a useful means to understand the complex flow and
the resulting dispersion behavior. Zhong has been using
the alternative of the computational fluid dynamics or
CFD (a numerical simulation). The CFD model gives
an insight into flow patterns that are difficult, expensive,
or impossible to study using traditional (experimental)
techniques. CFD provides a qualitative and/or quantita-
tive prediction of fluid flows (Tong et al. 2016; Sun
et al. 2015) through the following:

& Themathematical modeling (partial differential equations)
& The numerical methods (discretization and solution

techniques)
& Software tools (solvers, preprocessing and post-

processing utilities)

CFD allows scientists and engineers to perform cer-
tain numerical experiments using some computer simu-
lations for the virtual flow laboratory tests. Normally,
CFD does not replace the field measurements complete-
ly, but the amount of experimentations and the overall
costs can be significantly reduced. Indeed, both the
equipment and personnel are very difficult to transport
with respect to CFD software that is easily portable and
easy to use and modify. However, the results of a CFD
simulation are not 100% reliable for many reasons as the
following: the input data may involve imprecision; the
mathematical model chosen may be inadequate; and fi-
nally, the accuracy of results is limited by the available
computing power. The reliability of CFD simulations
however is more affordable for laminar/slow flows, for
single-phase flows, and for chemically inert systems. In
addition, CFD is a highly interdisciplinary research area
which needs concepts of physics, applied mathematics,
and computer science. The most comprehensive applica-
tions of CFD have been based on Reynolds-averaged
Navier–Stokes (RANS) equations and large eddy simu-
lation (LES). RANS can only predict mean information
about the flow and pollutant fields, while LES also pro-
vides turbulence information about unsteadiness and in-
termittency (Zhong et al. 2015). Zhong’s study (disper-
sion and transport of reactive pollutants in a deep urban
street canyon using LES) demonstrates the validity of
this approach to quantify parameters for a simplified
two-box model, which could support traffic management
and urban planning strategies and personal exposure as-
sessment (Luong 2014; El-Fadel and Abi-Esber 2012; Di
Menno di Bucchianico et al. 2014).

Many dispersion models have been validated as, e.g., the
following:

– ADMS: the ADMS or the atmospheric dispersion model-
ing system is the latest atmospheric pollution dispersion
model used for the calculation of concentrations of air
pollutants emitted both continuously from point, line, vol-
ume, and area sources and intermittently from point
sources. The ADMS 5 Service Pack 1 is the modern ver-
sion (2013) and was developed by Cambridge
Environmental Research Consultants in collaboration
with other UK Agency and Universities in 1993. This
version allows up to 300 sources, 30 line sources, 30 area
sources, and 30 volume sources which may be modeled.
This model includes algorithms which consider down-
wash effects of nearby buildings within the path of the
dispersing pollution plume; the effects of complex terrain;
effects of complex terrain; wet deposition, gravitational
settling, and dry deposition; short-term fluctuations in
pollutant concentration; chemical reactions, etc. The sys-
tem also includes a meteorological data input preproces-
sor. The ADMS model allows to simulate passive or
buoyant continuous plumes but also short-duration puff
releases. It characterizes the atmospheric turbulence by
two parameters, the boundary layer depth and the
Monin–Obukhov length.

– AERMOD: it was introduced in USA by the American
Meteorological Society/Environmental Protection
Agency Regulatory Model Improvement Committee
(AERMIC), and it was used instead of the old ISC3
(Gaussian plume model) (Silverman et al. 2007).
AERMOD is an air dispersionmodel on planetary bound-
ary layer turbulence structure and scaling concepts, in-
cluding treatment of both surface and elevated sources,
as well as simple and complex terrains. The AERMOD
modeling system is based on two input (regulatory com-
ponents) data processors: AERMET, a meteorological da-
ta preprocessor that incorporates air dispersion based on
planetary boundary layer turbulence structure and scaling
concepts, and AERMAP, a terrain data preprocessor that
incorporates a complex terrain using USGS Digital
Elevation Data. AERMOD includes also AERSCREEN,
a screening version of AERMOD, AERSURFACE, a sur-
face characteristics preprocessor, and BPIPPRIME, a
multibuilding dimensions program incorporating the
GEP technical procedures for PRIME applications; all
of them are non-regulatory components. At this time,
AERMOD does not calculate design values for the lead
NAAQS (rolling 3-month averages), so a post-processing
tool named LEADPOST is available to calculate design
values from monthly AERMOD outputs (EPA 2005).
Frost carried out an evaluation through the steady-state
dispersion model AERMOD to determine its accuracy at
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predicting hourly soil concentrations of SO2 by compar-
ing model-predicted concentrations to monitored data in a
year. This study showed to overpredict and to
underpredict bias that is outside of acceptable model per-
formance measures (Frost 2014).

– ATSTEP is a Gaussian puff model used for the assessment
and forecasting of the atmospheric dispersion, deposition
of gamma radiation, and doses of released radioactivity in
case of accidents in nuclear power plants or during trans-
port of nuclear technologies. This forecasting AirQ meth-
od was developed by the Karlsruhe Institute of
Technology (KIT) of Germany and is designed for run-
ning in the Real-time On-line DecisiOn Support
(RODOS) system for nuclear emergency management.
RODOS is used for radiation protection and for test op-
erations in many European countries.

– CMAQ or the Community Multi-scale Air Quality Model
is a very sophisticated atmospheric dispersion model de-
veloped by the US EPA to manage the regional air pollu-
tion problems (e.g., fine particulate levels exceeding the
US health standards). In addition, it is used to simulate the
emission, diffusion, and deposition of air pollutants that
occur in the lower atmosphere. CMAQ has also the ca-
pacity to exactly predict air pollutant concentrations
resulting from secondary pollution formation. CMAQ is
the most used model for its capability in assessing the
efficacy of emission control strategies in reducing region-
al air pollution levels.

– DISPERSION21 or 2.1 is a local-scale atmospheric pol-
lution dispersion model developed by the Swedish
Meteorological and Hydrological Inst i tute in
Norrköping. DISPLAY21 has several basic features and
capabilities similar to the CALPUFF model.

– OSPM: The Operational Street Pollution Model (OSPM)
is an atmospheric dispersion model used for simulating
the dispersion of air pollutants in so-called street canyons.
It is a model developed by the Department of
Atmospheric Environment of National Environmental
Research Institute of Denmark, and the model has been
maintained by the Department of Environmental Science
at Aarhus University since 2011. OSPM has been used in
many countries for several finalities including urban pol-
lution assessment, evaluation of data by monitoring cam-
paigns, assessment of effectiveness of pollution abate-
ment strategies, etc., during about 20 years. OSPM is
considered as a state of the art on the field of urban pol-
lutionmodeling. Themodel is designed to workwith both
input and output (as 1-h averages). The turbulence pro-
duced by the road traffic (TPT) is acting in addition to the
turbulence caused by the roof level wind. This results in a
faster dispersion of the direct plume but also an improved
air exchange at roof level between the street canyon and
the background air (Ottosen et al. 2015).

– RIMPUFF: this model is a local-scale puff diffusion
model developed in Denmark. It is a model aimed at
helping emergency management organizations to-
ward chemical, nuclear, biological, and radiological
releases to the atmosphere. It is being used in several
European national emergency centers for prepared-
ness and in the prediction of nuclear accidental re-
leases, chemical gas releases, and the airborne spread
of foot and mouth disease virus. Its range of appli-
cation covers distances up to ~1000 km from the
source. RIMPUFF calculates the instantaneous atmo-
spheric dispersion and wet and dry deposition, taking
into account the local wind variability, turbulence
levels, and other meteorologic factors. Puff diffu-
sions are parameterized for travel times in the range
from a few seconds up to 1 day.

– TSCREEN: The Toxics Screening Model (TSCREEN) is
a Gaussian model that implements the procedures to cor-
rectly analyze toxic emissions and their subsequent dis-
persion from one of several different types of possible
releases for superfund sites. It contains three models:
SCREEN3, PUFF, and Relief Valve Discharge (RVD).
The TSCREEN model is quite useful for screening level
analyses; it is user-friendly and is accompanied by a
user’s guide and a document BWorkbook of Screening
Techniques for Assessing Impacts of Toxic Air
Pollutants (Revised),^ containing useful information on
air toxics modeling concepts. Banerjee et al. (2011) re-
ported a comprehensive study on the application of math-
ematical modeling for source contribution assessment
(for both industrial and vehicular emissions) in terms of
regional air quality in India.

– SAFE AIR or Simulation of Air pollution From Emissions
Above Inhomogeneous Regions is an Italian advanced
dispersion model for calculating air pollutant concentra-
tions released both evermore or intermittently from point,
line, volume, and area sources. It uses an integrated
Gaussian puff modeling system and is based on three
main parts: a meteorological preprocessor Wind-field
Interpolation by Non Divergent Schemes (WINDS) to
calculate wind fields, the Acquisition of Boundary
Layer parameters (ABLE) meteorological preprocessor
to calculate atmospheric pollutants, and finally, a
Lagrangian multisource model named P6 (Program
Plotting Paths of Pollutant Puffs and Plumes) to plot pol-
lutant dispersion. SAFE AIR is used both by the
European Environment Agency (EEA) and the Italian
Agency for the Protection of the Environment (APAT).

– CALINE3 or CAlifornia LINE Source Dispersion Model
is a Californian steady-state Gaussian dispersion model
planned to identify pollution concentrations at receptor
locations downwind of highways located in relatively un-
complicated terrains.

6432 Environ Sci Pollut Res (2017) 24:6426–6445



– PUFF PLUME is a model used to forecast how air pol-
lution disperses in the atmosphere. It is a Gaussian atmo-
spheric dispersion model for transport chemical/
radionuclide.

– CALPUFF is an advanced and integrated Lagrangian puff
modeling system for the simulation of atmospheric pol-
lution dispersion that has been adopted by the US EPA in
its BGuideline on Air Quality Models^. EPA uses this
model for assessing long-range transport of pollutants
and their impacts on US areas and on a punctual basis
for certain near-field applications involving complex me-
teorological conditions. CALPUFF consists of three main
components: CALMET (a diagnostic three-dimensional
meteorological model), CALPUFF (an air quality disper-
sion model), and CALPOST (a data processing package).
The CALPUFF model is designed to simulate the buoy-
ant, puff, or continuous point dispersion as well as con-
tinuous line sources. The model is important because it
also includes algorithms for handling the effect of down-
wash by nearby buildings in the path of the pollution
plumes.

– FLEXPART: The FLEXible PARTicle dispersion model is
a Lagrangian particle dispersion model used to simulate
air pollutant trajectories. It can be run in either forward
mode to determine the downwind concentration or
mixing ratio of pollutants or in backward mode to know
the origin of observed emissions. In 2013, a major update
of FLEXPART-WRF was released, including a working
wet deposition scheme, and new run-time options for
wind fields and turbulence were added.

– HYSPLIT: The Hybrid Single-Particle Lagrangian
Integrated Trajectory model is an Australian (Australia’s
Bureau of Meteorology) computer model that is used to
calculate air trajectories, dispersion, or deposition of sev-
eral atmospheric pollutants. HYSPLIT’s back trajectories
coupled to satellite images can help to understand if pol-
lution levels are produced by local air pollution sources or
moved by wind from another source area.

– NAME III is a Lagrangian air pollution dispersion model
used for both short- and global-range scales. It follows the
three-dimensional trajectories of parcels of the pollution
plume and computes pollutant concentrations by Monte
Carlo methods. NAME III has the capability to calculate
several effects: the rise of buoyant plumes, wet deposi-
tion, dry deposition, plume chemistry, plume depletion
for the radioactive materials, and downwash effects of
buildings.

Land use regression model

For a correct epidemiologic study, exposure assessments must
be carried out accurately in unmonitored areas, for a better

evaluation of health effects of air pollution. In order to mini-
mize the possible exposure misclassification, several method-
ologies are used. Possible methodologies include, but are not
limited to, spatial interpolation, proximity models, and still
dispersion modeling.

Land-use regression (LUR) modeling is also an effective
and valuable method for estimating fine-scale distributions of
ambient air pollutants (Oiamo et al. 2015), and generally, the
LUR model has been used to identify and describe air pollu-
tion exposure and its health effects for citizens within urban
areas.

Several studies are available with a LUR approach, but
among these studies, the most used variables are road type,
traffic count, elevation, and land cover (Ryan and LeMasters
2007). It is possible to use the CALINE model for this scope,
but several uncertainties could cause errors of air pollution
characterization; in fact, small-scale variations in pollutant
concentrations are not identifiable using the interpolation
techniques density monitoring and spatial distribution of traf-
fic sources (Shmool et al. 2014). Moreover, the proximity
models have a higher chance of exposure misclassifications
due to the assumption of isotropic dispersion and/or the use of
a categorical exposure designation as the residence
(<100 m = exposed, residence >100 m = unexposed). In order
to solve these limitations, LUR models have been developed
and utilized to model traffic pollutants including NO2 and
PM2.5, representing a valuable environmentally epidemiolog-
ic tool. LUR models, for the discussed motifs, have emerged
as a widely used approach for characterizing long-term, local-
scale spatial variability in urban air pollutants such as PM,
NOx, VOCs, metals, etc. (Zhang et al. 2015). In recent times,
the de Hoogh research group (de Hoogh et al. 2013) devel-
oped an LUR model for eight PM2.5 components in over 15
European cities. LUR modeling has therefore sproven partic-
ularly useful in assessing long-term exposure to air pollution
in community health studies carried out by epidemiologists
(Zhang et al. 2015; Gillespie et al. 2016; Yang et al. 2016;
Fehsel et al. 2016; Perron et al. 2016; Wu et al. 2016). The
Health Effects Institute of Boston, Massachusetts, recom-
mended LUR modeling as a more accurate method for esti-
mating exposure to air pollution compared to previous
methods (Health Effects Institute 2010). LUR uses the air
pollutant levels of interest as the dependent variable and ve-
hicular traffic, topography, and other geographic variables as
independent variables in a multivariate regression model. By
LUR, air pollutant’s concentrations may be predicted for any
location by the parameter estimates derived from the regres-
sion model. The addition of site-specific variables permits
detection of very small area variations more effectively than
other methods of interpolation (Ryan and LeMasters 2007).

Peng used a mass balance-based regression for modeling
PAH accumulation in urban soils and highlighted the role of
urban development in this topic (Peng et al. 2015). Peng,
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through this model, showed that the total PAH concentrations
would increase from the baseline of 267 to 3631 ng/g during
the period of 1978–2048. Peng showed also that the dynamic
changes in the rates of accumulations of light and heavy PAH
species were related to the shifting of sources of fuels, com-
bustion efficiencies, and amounts of energy consumed during
the course of development of Beijing (Peng et al. 2015).

Several other studies were carried out using the dispersion
model; e.g., Preisler used a statistical model for determining
the impact of wildland fires on particulate matter (PM2.5) in
Central California aided by satellite imagery of smoke.
However, when he has matched the data with an
autoregressive statistical model that uses weather and seasonal
factors to identify thresholds for flagging unusual events at
these sites, he found that the presence of smoke plumes could
reliably identify periods of wildfire influence with 95% accu-
racy (Preisler et al. 2015).

Research and forecasting (WRF) model

The WRF Model is a next-generation mesoscale numerical
weather prediction system designed for both atmospheric re-
search and operational forecasting need (Karl et al. 2015). The
WRF/Chem model has the advantages to integrate the mete-
orological and chemistry modules in the same computational
grid and the same physical parameterizations and includes the
feedback between the atmospheric chemistry and physical
processes. The WRF system contains two dynamical solvers,
referring to the Advanced ResearchWRF (ARW) core and the
Nonhydrostatic Mesoscale Model (NMM) core. WRF is cur-
rently in use. Themodel serves a wide range ofmeteorological
applications and is applied to various scales, from tens of
meters to thousands of kilometers. WRF can generate atmo-
spheric simulations using real data (observations, analyses) or
idealized conditions. WRF offers operational forecasting and
flexible and computationally efficient platforms, while pro-
viding recent advances in physics, numerics, and data
assimilation.

In the study of Karl et al. (2015), the WRF-Chem was
applied to quantify the impact of using an impact of the com-
prehensive photo-oxidative sequence of 2-aminoethanol
(MEA) compared to using a simplified MEA scheme. The
study showed that MEA emissions from a full-scale capture
plant can modify regional background levels of isocyanic
acid.

Gencarelli developed a modified WRF-Chem with the aim
to simulate the atmospheric processes determining air Hg
emissions, concentrations, and deposition online at high spa-
tial resolution (Gencarelli et al. 2014). The model has been
tested in the year 2009 using measurements of total gaseous
mercury from the European Monitoring and Evaluation
Programme monitoring network. The speciated measurement
data of atmospheric elemental Hg, gaseous oxidized Hg, and

Hg associated with particulate matter, derived from a
Mediterranean oceanographic monitoring (June 2009), has
permitted to show the model’s ability to simulate the atmo-
spheric redox chemistry of Hg. The model has permitted the
revaluation of the deposition to, and the emission from, the
Mediterranean Sea, and results support the idea that the
Mediterranean Sea represents a net source of Hg to the atmo-
sphere and suggest that the net flux is ≈30 mg/year of elemen-
tal Hg.

Goto validated a modeling (Stretch-NICAM) for black car-
bon in Asia using a global-to-regional seamless aerosol trans-
port model (Goto 2014), modifying for this purpose the
Nonhydrostatic Icosahedral Atmospheric Model (NICAM)
(Satoh et al. 2007). NICAM implements comprehensive phys-
ical processes for aerosols, radiation, turbulence, and cloud
dynamics (Goto 2014; Goto et al. 2014).

So, various AirQ dispersion models as LUR, AERMOD,
etc., are used today as tools for a refined analysis of health data
in environmental epidemiological studies of predictive type,
through the sophisticated categorical and statistical approach
of Air Quality Health Impact Assessment (AirQ 2.2.3) soft-
ware and its new version AirQ+ (2016) proposed by theWHO
(Liu et al. 2015a, 2015b; WHO. World Health Organization
2014) (see par. 8).

Many other models have been developed worldwide. The
European Topic Centre on Air and Climate Change, which is
part of the European Environment Agency (EEA), manages
an online Model Documentation System (MDS) that includes
descriptions and other information for almost all of the disper-
sion models developed by the countries of Europe. The MDS
currently (August 2016) contains 142 models, mostly devel-
oped in Europe. Of those 142models, only somewere debated
in this review (EIONET 2016).

Photochemical models

Photochemical models are useful tools for regulatory analysis
and attainment demonstrations by assessing the effectiveness
of air pollution control strategies.

These models simulate the changes of pollutant concentra-
tions in air using the mathematical equations characterizing
the chemical and physical processes in the atmosphere and
can be applied at multiple spatial scales (local, regional, na-
tional, and global) (Luong 2014). Photochemical models,
however, are used to carry out studies focusing on atmospher-
ic chemistry alone.

Lagrangian (Mészáros et al. 2016) and Eulerian (both sin-
gle box models and multidimensional grid-based air quality
models) reference frames were used in all photochemical
models.

In particular, in Eulerian photochemical models, we use a
three-dimensional grid superimposed for covering the entire
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computational domain, and all chemical reactions are simulat-
ed in each cell at each time step. In the Lagrangian photo-
chemical models, a single cell or a column of cells are directed
according to the main wind in a way that allows an injection of
the emission met with along the cell trajectory.

Most of the photochemical models are known to be very
sensitive to predict the ground-level expected concentrations
of pollutants (Hidy and Blanchard 2015). Most of the photo-
chemical models used currently by scientists are of Eulerian
type. Input data for photochemical models can be meteorolo-
gy, emissions, topography, or atmospheric concentrations da-
ta; all inputs are specified in hourly intervals (Luong 2014),
and they represent a real source of uncertainty in air models
(see paragraph 9).

An important aspect in the use of air quality models is how
the pollutant concentrations respond to changes in emission
inputs. It is generally acknowledged that the emission inputs
are one of causes of uncertainty of results of this model.

The most commonly used air photochemical models are
the following:

& UAM-IV, CIT, and CALGRID for urban approach
& RADM, EURAD, NOAA, etc., for regional approach
& SAQM, MAQSIP, EURAD, UAM-V, URM, and

MODELS-3/CMAQ for multilevel approach (Luong
2014)

The Urban Airshed Model® (UAM®) modeling system,
developed and maintained by Systems Applications
International (SAI), is the most used photochemical air quality
model in the world today. Since the 1970s, the model has
undergone continuous cycles of performance evaluation, up-
date, extension, and therefore, improvement. Many other pho-
tochemicalmodels have been developed during these 40 years,
but no model today is more reliable or technically superior to
UAM (Daly and Zanetti 2007).

Between the photochemical models, the Community
Multi-scale Air Quality or CMAQ modeling system includes
state-of-the-science capabilities for conducting a multilevel
approach, by urban to regional scale simulations of multiple
air quality issues, including O3, PM, toxics, acid deposition,
and visibility degradation. The Regional Modeling System for
Aerosols and Deposition (REMSAD) was designed to calcu-
late the concentrations of both inert and chemically reactive
pollutants by simulating the physical and chemical processes
in the atmosphere that directly influence pollutant concentra-
tions over regional scales. It includes those processes relevant
to regional haze, particulate matter, and other airborne pollut-
ants, including soluble acidic components and mercury. Urban
Airshed Model Variable Grid or UAM-V Photochemical
Modeling System was a pioneering effort in photochemical
air quality and has been used widely for air quality studies
focusing on O3 by 1970. It is a three-dimensional

photochemical grid model developed to measure both inert
and chemically reactive pollutant concentrations simulating
the physical and chemical processes in the atmosphere that
influence air pollutant concentrations. This model is typically
applied to model for particular periods during which adverse
meteorological conditions result in elevated ozone levels.

Several photochemical model applications provides the
EPA including O3, PM, and mercury for national and regional
EPA policy such as the Clean Air Interstate Rule (CAIR) and
the Clean Air Mercury Rule (CAMR) but does not assess
which emission control strategies are cost-effective and prac-
tical to control. Detailed studies were carried out concerning
the following:

– The characterization and speciation of VOC (typically,
this would include hourly assessment of CO, NO, NO2,
SO2, and various primary VOCs in the mechanism)
(Jathar et al. 2014; Cheng et al. 2013)

– To assess air pollution spatial and temporal variability
(Flexible Air quality Regional Model or FARM) (Di
Menno di Bucchianico et al. 2014; Maurizi et al. 2013)

The major application of the photochemical model has
been to assess the relative importance of VOC (Chen et al.
2010) and NOx controls in reducing ozone levels. Most stud-
ies were found at urban level until regional scales.

For PM modeling, the Sparse Matrix Operator Kernel
Emissions (SMOKE)Modeling System has been recently cre-
ated allowing emission data through processingmethods com-
puting sparse-matrix algorithms. The SMOKE system is cur-
rently a significant available resource for the decision-making
on air emission controls finalized to both urban and regional
applications, and it makes air quality forecasting possible
(Luong 2014).

Photochemical processes (often evaluated through the
Eulerian model type) not only bring ozone formation but can
also contribute significantly to elevated particulate matter
levels with several negative consequences on public health.

Receptor models

Receptor-based models utilize chemical measurements at an
individual monitoring site (the receptor) to calculate the rela-
tive contributions from major sources to the pollution at that
site. Receptor-based modeling is also referred to as Bsource
apportionment^ (Liao et al. 2015; Jorquera and Barraza 2012;
Lowenthal et al. 2010) and allow to forecast and quantify
pollutants contributing to receptors (Hu et al. 2014; Gianini
et al. 2013). In contrast with dispersion models that compute
the contribution of a source to a receptor as the product of the
emission rate multiplied by a dispersion coefficient, receptor
models start with the observation of concentrations at a
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receptor and attempt to apportion the measured concentrations
at a sampling point among several source types. This is done
based on the known and characteristic chemical composition
of source and receptor materials. Receptor models are based
on mass balance equations and are intrinsically statistical in
the sense that they do not include a deterministic relationship
between emissions and concentrations. However, mixed
dispersion-receptor modelingmethodologies have been devel-
oped and actually are very promising for future environmental
research.

Receptor model types can be as follows:

– Chemical Mass Balance (CMB) currently endorsed by
EPA (EPA, Teixeira et al. 2015; Teixeira et al. 2013;
Chen and Liang 2013; Argyropoulos et al. 2012) and
unmixed (Kelly et al. 2013)

– The most advanced Positive Matrix Factorization (PMF)
(Tositti et al. 2014; Peng et al., 2015; Callén et al. 2014;
Heo et al. 2014; Gianini et al. 2013; Jeong et al. 2011).
BSource^ and Breceptor^ are complementary and not
competitive models (Luong, 2014).

These models can be applied to investigate both the sources
of occasional episodes of air pollution and the emission inven-
tory (Taiwo et al. 2014; Hackstadt and Peng 2014; Kuo et al.
2014; Tchepel et al. 2014; dos Santos et al. 2014). Most of
advanced models permit the incorporation of data of wind
trajectory (Inomata et al. 2013).

Stanier and Lee (2014) developed an aerosol screening
model (ASM) as predictive model of vehicular ultrafine par-
ticles (less than 0.1 μm in diameter).

ASM is very important for its applications, e.g., support of
evaluation for decision-making in infrastructure building and
emission controls for health prevention.

A nove l me thod ca l l e d BSou rce Di r ec t i ona l
Apportionment^ (SDA) was validated by Tian et al. (2015).
The SDA method allows to forecast and quantify contribu-
tions of each source category from various directions
(Koracin et al. 2011). An online source tracking method has
been developed in the Nested Air Quality Prediction
Modeling System (NAQPMS) coupled with cloud-process
module for the first time by Ge et al. (2014).

Various studies have applied different AirQ models (Park
et al. 2014; Irwin 2014; Pokorná et al. 2013; Chung et al.
2012; Koracin et al. 2011; Sahu et al. 2011; Friend et al.
2011; Kong et al. 2010), and several works have examined
emerging air pollutants. Some investigations have found that
no threshold of effect can be identified for the common air
pollutants at the population level, involving that an impact
(Hu et al. 2014) can be observed in some individuals even at
low exposure level (Li and Jia 2014). For instance, no thresh-
old is used for PM2.5, and the exposure-response relationship
for mortality is not significantly different from linear. Li and

Jia have applied a similar approach for their modeling research
on the gas/particulate partitioning behavior for PBDEs in air.

Liu et al. (2015a, 2015b) for the first time investigated the
sources and contributions of PAHs using three receptor
models (principal component analysis (PCA), PMF, and
Multilinear Engine 2 (ME2)); thanks to results obtained, for
the first time the cancer risks for each identified source were
quantitatively calculated by combining the incremental life-
time cancer risk (ILCR) values with the estimated source
contributions.

Callén et al. (2014), using a PMFmodel, assessed the ILCR
related to source apportionment of PM2.5-bound polycyclic
aromatic hydrocarbons (Callén et al. 2014).

Clarke et al. (2014) used the CMB model, applying it for
the first time to solve odor signature issues. In fact, the olfac-
tory annoyance caused by industrial emissions perceived at
receptor level is often the result of a combination of different
smells. The olfactory annoyance represents a true emerging
industrial hygiene problem. Heo et al. (2014) assessed the
relationship between fine particle air pollution and mortality
using a PMF model in Seoul, Korea.

Gariazzo et al. have developed the EXPAHmodel. A mod-
el to estimate PAH and PM2.5 exposure in children and elderly
people in Rome (Italy) has been developed and applied using
data from the EXPAH project. Unlike the approach of epide-
miological studies, which estimate exposure using ambient
data from representative sites, this new model assesses expo-
sure by taking into account variables such as indoor concen-
trations in different living environments estimated based on
outdoor air and the daily time spent in each of these environ-
ments. Application of the method to a city, starting from the
map of ambient air pollutants, allows obtaining an exposure
map by applying the exposure formula over the model cells.
However, the approach assumes that the individuals studied
spend most of their time in the vicinity of their homes, which
according to various statistical surveys is particularly true of
elderly subjects and children. It should also be considered that
they suffer more often from severe health outcomes due to air
pollution; the approach is therefore sound also from the sci-
entific standpoint. The pollutant concentration in each micro-
environment studied (home, school, work, other indoor sites,
walking, commuting, and other outdoor areas) was used to
develop an infiltration model to calculate exposure. Based
on data provided by the monitoring campaigns carried out in
the framework of the EXPAH project (action 3.3), indoor/
outdoor infiltration factors were obtained for the main micro-
environments identified, by applying a linear best fit proce-
dure that assumes a direct link between indoor and outdoor
concentrations. Results demonstrate a good correlation be-
tween the two concentrations, pointing at an outdoor origin
of the indoor pollutants and demonstrating the applicability of
an infiltration factor to estimate indoor concentrations.
Starting from the ambient air concentrations estimated by a
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Chemical Transport Model over the study area, indoor con-
centrations were calculated by applying the infiltration factors.

The historical city center was found to be the most exposed,
with PAH and BaP concentrations up to 2 and 0.6 ng/m3,
respectively; concentrations declined approaching the out-
skirts, reaching values as low as 0.4 and 0.12 ng/m3 on a
yearly basis for PAHs and BaP, respectively. The Total
Toxicity Equivalent Concentration (TTEC) was also evaluat-
ed using the same data, to take into account the toxicity of
each PAH compound. Annual average TTECT values of
0.48 ng/m3 were estimated for children and the elderly. As
regards PM2.5, yearly average concentrations up to 16 μg/m3

were calculated in the downtown area. The PM2.5 exposure
maps showed a more uniform diffusion, with a less marked
decline in the outskirts compared with PAHs. No differences
were found between PAH and BaP exposure for children and
the elderly, whereas small differences were found for PM2.5.
This is mainly due to the predominance of home and other
indoor microenvironments in the daily activities data used for
these two groups, which show similar occupancy times.
Seasonality was a strong variable in overall exposure. For
children, an average exposure to PAHs and BaP up to 4.0
and 1.1 ng/m3, respectively, was estimated in the winter, and
exposures lower than 0.6 and 0.15 ng/m3, respectively, during
the warm season. These data highlight the inability of current
legal PAH limits to represent the actual annual average expo-
sure of the population.

Performance of Air Quality models and evaluation
of their real-world limitations

The extent to which a specific air quality model is suitable for
the assessment of source impacts depends upon several factors
as topographic and meteorological complexities of the area;
accuracy of emissions inventory, meteorological data, air
quality data; and complexities of atmospheric processes.

Meteorological conditions are broadly representative, and
air quality model projections are not further complicated if
related to areas spatially uniform. Indeed, areas subject to
major topographic influences experience meteorological com-
plexities that are often difficult to measure and simulate.
Models with adequate performance are available for increas-
ingly complex environments.

The monitoring of the impact of point sources on the am-
bient air quality is still a difficult task, in particular for elevated
sources. The difficulty is linked to the complexity and unpre-
dictability of meteorological elements that control the disper-
sion of air pollutants. It should be noted that because of the
high variability of the wind direction, the sites of maximum
pollution are not predictable. In fact, the elevated point
sources emit well above the ground and, in case of tempera-
ture inversion, frequently above the inversion layer. The

meteorological conditions observed during Bnormal^ condi-
tions, instead, generally ensure a good dispersion of the pol-
lutants. Under very turbulent atmospheric conditions charac-
terized by thermal instability of the atmosphere associated
with strong insolation and weak winds, the plume of the point
sources of medium elevation may reach the ground in the
vicinity of the source, giving rise to exceedances of short-
term limit values.

Such complexities and related challenges for the air
quality simulation should be considered when selecting
the most appropriate air quality model for an application.
Another important aspect of air quality models is how
the pollutant concentrations respond to changes in emis-
sion inputs. It is generally acknowledged that the emis-
sion inputs are one of causes of uncertainty of results of
models.

The operational evaluations of different air quality models
have yielded an array of statistical metrics that are so diverse
and numerous that it is difficult to judge the overall perfor-
mance of all air models.

For US EPA (2015), the air quality models are accompa-
nied by several sources of uncertainty. An Birreducible^ un-
certainty stems from the Bunknown^ conditions as the turbu-
lent velocity field which may not be correctly counted for in
the model. So, there are deviations than the observed concen-
trations in individual events due to variations in the
Bunknown^ conditions.

We can synthesize the uncertainties in the following:

1. Uncertainties in the input conditions (emission character-
istics and meteorological data are an example)

2. Errors in the measured concentrations
3. Inadequate model physics and formulation

The main meteorological parameters that affect negatively
the accuracy of air quality models predictions are therefore

& Boundary layer depth
& Surface and boundary layer wind speed and direction
& Surface and boundary layer temperatures
& Turbulence
& Surface parameters
& Cloud cover and solar radiation
& Cloud microphysics
& Precipitation

Errors in meteorology are still a major source of error in all
air quality models. If the model wind does not affect air pol-
lutants correctly, then all models will not predict the observed
pollution episodes, irrespective of the air quality modeling
system used.

For example, the deposition episodes during rain events
represent a very difficult condition to model accurately

Environ Sci Pollut Res (2017) 24:6426–6445 6437



because not only wind speeds and directions must be accu-
rately predicted but also the occurrence and magnitude of
rainfall.

Competent and experienced atmospheric scientists, meteo-
rologists, and physical and software analysts are an essential
prerequisite to the successful application of air quality models.
The need for such specialists is critical when the more sophis-
ticated models are used or the area being investigated has very
complicated meteorological or topographic features. In fact, it
is important to note that a model applied improperly or with
inappropriate data can lead to serious errors regarding the
source impact or the effectiveness of a control strategy.

Suitability of Air Quality models

Gaussian plume models use a Bsteady-state^ approximation,
which assumes that over the model time step, the emissions,
meteorology, and other model inputs are constant throughout
the model domain, resulting in a resolved plume with the
emissions distributed throughout the plume according to a
Gaussian distribution. However, this formulation allows for
only relatively inert pollutants, with very limited consider-
ations of transformation and removal (e.g., deposition), and
further limits the domain for which the model may be used.
Thus, Gaussian models may not be appropriate if model in-
puts are changing sharply.

Lagrangian puff models, instead, are non-steady-state and
assume that model input conditions are changing over the time
step. Lagrangian models can also be used to determine near-
and far-field impacts from a limited number of sources with a
high resolution. Generally, Lagrangianmodels have been used
for relatively inert pollutants but are more complex than
Gaussian models. Some Lagrangian models treat in-plume
gas and particulate chemistry. Photochemical Eulerian models
assume that emissions are spread evenly throughout each
model grid cell. Typically, Eulerian models have difficulty
with fine-scale resolution of individual plumes. However,
these types of models can be appropriately applied for assess-
ment of near-field and regional-scale reactive pollutant im-
pacts from specific sources or all sources.

In a proposed rule, the US EPA (2015) reports a list of AirQ
Models useful both for any air pollution prevision and classi-
cal contaminants.

A procedure for air quality models benchmarking was de-
fined in EU by SubGroup4 of WG2 in Forum for Air quality
Modelling in Europe (FAIRMODE) (Thunis et al. 2011).
WG2 is involved in the benchmarking of emission inventories
in selected cities. The proposed procedure was meant as a
support to both model users and model developers. The
benchmarking procedure was finalized to support modeling
groups in their application of AirQ models in the frame of
the European Air Quality Directive (2008). This procedure
is based mainly on already existing technical aids: the

evaluation tools developed in the CityDelta (CD) and
EuroDelta (ED) of European projects (the advantages of using
this tool is that every group will use the same scale and also a
decent level of harmonization will be reached across EU) and
the ENSEMBLE European systems (a web-based platform
developed for multipurpose model application that allows on-
line model inter-comparison and evaluation). These tools can
be properly adapted and renewed taking into account the ex-
perience gathered worldwide on air quality model evaluations
and available software. Some of the most known ones include
the Model Validation Kit of the Harmonization initiative
which contains the BOOT software (Chang and Hanna
2004), the ASTM Guidance (ASTM 2000), the USA-EPA
AMET (Appel and Gilliam 2008) package, and the VERDI
tool.

The added value of the proposed procedure by the
European Council derives from the fact that all AirQ models
used for regulatory purposes will be evaluated with a single
model tool and will have a common place where to compare,
assess, and experiment each other’s case study, both on past or
present, using the online web facility; furthermore, the data
relevant to various types of analysis will be available from a
single source point.

AirQ software

Recently, several sophisticated approaches have been used in
environmental epidemiological studies to refine the spatial
resolution of monitoring data by applying geographic infor-
mation systems (GIS)-based interpolation methods. Also,
LUR models are available in modern epidemiological litera-
ture for the analysis of cohort study health data. LUR models,
in fact, integrate some landscape characteristics such as prox-
imity to roadways and other outdoor sources of air pollution.
So today, it is very easy to come across approaches that use air
quality models (e.g., AERMOD, etc.) and micro-
environmental personal exposure modeling tools to support
air pollution exposure and health studies. Some studies have
also used results from atmospheric dispersion models for a
refined analysis of health data (Isakov et al. 2009; Callén
et al. 2014; Liu et al. 2015a, 2015b).

The WHO European Center for Environment and Health
(WHO 2014) has proposedAirQ software model 2.2 as a valid
and reliable tool to estimate the potential health effects of air
pollution, to assign score points to criteria pollutants, and to
enable assessment of scenarios characterized by varied
pollutants.

AirQ software is a Windows software that collects, man-
ages, and displays results from air quality information data
and noise levels. It is designed to calculate the magnitude of
the impacts of air pollution on health in a given population.
AirQ software 2.2.3 and the new version AirQ+1.0 software
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(WHO 2016) can be applied for any city, country, or region of
the world to reply to important epidemiological and ecological
questions such as the following: How much of a particular
health outcome is attributable to selected air pollutants? or
Compared to the current scenario, what would be the change
in health effects if air pollution levels changed in the future?

The program keeps a searchable database of results, so
data can be picked out by sample, location, and date. It
can plot linear graphs of readings with time, or polar
ones against wind direction. The approach proposed by
the WHO can be classified into categorical and statistical
groups (WHO. World Health Organization 2014). The
approach was based on the Air Quality Health Impact
Assessment (AirQ 2.2.3) software developed by the
WHO European Centre for Environment and Health,
Bilthoven Division. The software was used to estimate
the impact of short-term exposure to six classic atmo-
spheric pollutants (O3, CO, NOx, SOx, PM10, and
PM2.5) on the health of residents living in a certain pe-
riod and area.

The program is designed to evaluate the following:

& The impact of exposure to atmospheric pollutants on mor-
tality and morbidity (both chronic and acute diseases)

& Impacts on health caused by long-term exposure, assum-
ing that the pollution level remains constant during the
simulation years

The health impact is measured by the following:

& Reduction in life for certain classes of age
& Years of life lost (Yoll) in the first year of the simulation
& Years of life lost in the subsequent 10 years (Fattore 2008)

The assessment is based on the attributable proportion
(AP), defined as the fraction of the health outcome in a certain
population attributable to exposure to a given atmospheric
pollutant. The AP is calculated by a general formula:

AP ¼ ∑ RR cð Þ−1ð Þ � P cð Þf g
.
∑ RR cð Þ � P cð Þð Þ

where AP is the attributable proportion of the health outcome,
RR is the relative risk for a given health outcome, and P(c) is
the amount of the population in category Bc^ of exposure. If
the baseline frequency of the health outcome in the population
being investigated is known, the rate attributable to the expo-
sure can be calculated as

IE ¼ I� AP

where IE is the rate of the health outcome attributable to the
exposure and I is the baseline frequency of the health outcome
in the population under investigation.

Finally, when the size of the population is known, the num-
ber of cases attributable to the exposure can be estimated as

NE ¼ IE� N

where NE is the number of cases attributable to the exposure
and N is the size of the population studied.

The approach proposed by the WHO has not been
widely adopted; in fact, only five papers are found in
Medline (Ghozikali et al. 2015; Gholampour et al. 2014;
Naddafi et al. 2012). Of these, four were published be-
tween 2011 and 2014: three are Iranian studies and one
is an Italian study. The Iranian scientists are very inter-
ested in this application because of the poor air quality
of Iranian cities. If one considers all the papers pub-
lished worldwide, the total is about 10. In particular,
Fattore et al. 2011 assessed the outcomes of PM2.5 ex-
posure and found that short-term exposure was the most
significant health impact on 24,000 inhabitants of two
Italian cities. This study showed that O3 and NO2 each
caused about three excess cases of total mortality.

In Iran, Ghozikali and colleagues (2016) have examined
the associations between O3, NO2, and SO2 concentrations
and hospitalizations for COPD among the residents of
Tabriz and found that for every 10 μg/m3 increase in their
concentrations, the risk of hospitalization increased by about
0.58, 0.38, and 0.44%, respectively.

Miri et al. (2016) have studied the effect (total mortality,
cardiovascular and respiratory mortality, hospitalization due
to cardiovascular and respiratory diseases, chronic obstructive
pulmonary disease, and acute myocardial infarction) of PM10,
PM2.5, NO2, SO2, and O3 pollutants on people’s health of
Mashhad city. Miri et al. report that for each 10 μg/m3, a
relative risk rate of pollutant concentration for total mortality
due to PM10, PM2.5, SO2, NO2, and O3 was increased by 0.6,
1.5, 0.4, 0.3, and 0.46%, respectively, and the attributable
proportion of total mortality attributed to these pollutants
was equal to 4.24, 4.57, 0.99, 2.21, 2.08, and 1.61% (CI
95%), respectively, of the total mortality (correct for the
non-accident) that occurred in the year of study.

Gholampour et al. 2014 have studied outdoor PM exposure
and health impacts in two urban and industrial areas in Tabriz.
The deaths associated with TSP, PM10, and PM2.5 concentra-
tions were 327, 363, and 360, respectively; cardiovascular
mortality for TSP and PM10 was 202 and 227, respectively;
and mortality due to respiratory disease was 99 (TSP) and 67
(PM10). The study by Naddafi and co-workers was performed
in Tehran and examined PM10, SO2, NO2, and O3 concentra-
tions to assess human exposure and health impacts in terms of
attributable proportion of the health outcome, annual number
of excess cases of mortality for all causes, and cardiovascular
and respiratory diseases. The annual average concentrations of
PM10, SO2, NO2, and O3 were 90.58, 89.16, 85, and
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68.82 μg/m3, respectively. The short-term effects of
PM10 had the highest health impact on the 8,700,000
inhabitants, causing an excess of total mortality of
2194 out of 47,284 in a year. In contrast, SO2, NO2,
and O3 concentrations caused approximately 1458,
1050, and 819 excess cases of total mortali ty,
respectively.

Skotak and Swiatczak (2008) studied the adverse
health effect associated with the PM10 exposure in
some areas in Poland, and they showed ill-health’s end-
points in polluted industrial regions in the southern part
of Poland.

Boldo and the Air Pollution and Health: a European
Information System (APHEIS) group (2006) have quantified
the public health impact of long-term exposure to PM2.5 in
terms of attributable number of deaths and the potential gain in
life expectancy in 23 European cities. Results show 16,926
premature deaths from all causes, including 11,612 cardiopul-
monary deaths and 1901 lung-cancer deaths. These deaths
would have been prevented annually if long-term exposure
to PM2.5 levels were reduced to 15 μg/m3 in each city. So,
this reduction would increase life expectancy at age 30 by a
range between 1 month and more than 2 years in the APHEIS
cities.

Tominz evaluated, in Trieste city, the possible health ben-
efits by exposure reduction of PM10 to values not over 60, 50,
40, 30, 20, and 10 μg/m3, using PM10 data of the year 2002.
Tominz found that 1.8% (CI 95% 0.6%; 2.9%) of natural
deaths, 2.2% (CI 95% 0.6%; 3.7%) of cardiovascular deaths,
2.5% (CI 95% 0; 7.3%) of respiratory deaths, 1.5% (CI 95%
0.6; 2.4%) of cardiovascular admissions, and 1.6% (CI 95% 0;
3.3%) of respiratory admissions were attributable to PM10

concentrations over 20 μg/m3.
The findings of these very few studies are crucial to

improve air pollution management; in fact, the magni-
tude of certain health impacts underscores the need for
urgent action to reduce the health outcomes of air
pollution.

AirQ+ is the WHO update version of AirQ software devel-
oped in May 2016. Both long- and short-term exposure to
ambient air pollution from several pollutants can be studied.
All calculations performed by AirQ+ software are based on
methodologies and concentration-response functions well
established by epidemiological studies. Additionally, AirQ+
can estimate also the effects of household air pollution related
to solid fuel use (SFU). Researchers have the possibility to use
values for a pollutant not included in AirQ+ database if RRs
and other input data are available. However, in this case, it is
highly recommended to use results from a meta-analysis rath-
er than from a single local study. The concentration-response
functions used in the software are based on the systematic
review of all studies available until 2013 and their meta-
analysis.

Discussion and conclusion

This brief review highlights that air pollution is still a critical
public health issue and that further studies for a better corre-
lation of air quality and population health are required. The
AirQ model is intended for exposure assessment, risk assess-
ment, epidemiological and geographical information systems,
and other applications. Several approaches can provide useful
information for toxicity evaluation of various pollutant cate-
gories and to add a new tool of environmental epidemiology.
An understanding of air pollutant source transport is crucial,
and it is a basic mechanism in determining the fate of air
pollutants and their effects on human health. Assessment of
the health effects of air pollution requires detailed exposure
estimates. However, combining the data from different air
monitoring stations appears to underestimate individual expo-
sure. Although most health outcomes are not limited to a sin-
gle pollutant, nearly all studies focus on the risks related to
single pollutants and do not consider their mixtures. There is a
clear need to develop methods for evaluating and managing
the effects of air pollution through a multipollutant approach.
In fact, as the link between air pollution and several illnesses
has been established by a long time, air quality forecast will
play a very important role in mitigating health risk. If predic-
tions show exceeding pollution levels with respect to legal
guidelines, local authorities can take several preventive mea-
sures or better manage the risks (e.g., encouraging car drivers
to lower their speed, reducing emission from main sources of
pollution as industries and home warming, etc.) (Fig. 1).

The knowledge of several public health figures should
therefore be harnessed and exploited, and chemists and biol-
ogists should work in team with engineers, physicists, and

Fig. 1 DEPSEEA flowchart

6440 Environ Sci Pollut Res (2017) 24:6426–6445



software scientists, who are becoming increasingly essential,
to support population health studies.

Public health is already based on contributions from several
disciplines, including engineering, industrial design, and sta-
tistics, but today a multidisciplinary training is urgently need-
ed, especially for environmental doctors, whose knowledge is
objectively insufficient to apply critically the new tools. The
future of public health and of environmental epidemiology
therefore needs to be entrusted to a multidisciplinary team that
has a deeper knowledge of the new available statistic tools.
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