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Solving hypersensitive optimal control problems is a long-standing challenge for decades in optimization engineering, mainly due
to the possible nonexistence of the optimal solution to meet the required error tolerance under double-precision arithmetic and the
hypersensitivity of the optimal solution with respect to the initial conditions. In this paper, a new high-precision single shooting
method is presented to address the above two difficulties. Multiple-precision arithmetic and Taylor series method are introduced
to provide the accurate optimal solution with arbitrary higher significant digits and arbitrary higher integral accuracy, respectively.
Besides, a new modified bidirectional single shooting method is developed, which fully utilizes the three-segment structure of the
hypersensitive optimal control problems and provides appropriate initial guess that is close to the optimal solutions. Numerical
demonstrations in a typical hypersensitive optimal control problem are presented to illustrate the effectiveness of this new method,
which indicates that the accurate optimal solution of this challenging problem can be easily solved by this simple single shooting

method within several iterations.

1. Introduction

An optimal control problem and its associated Hamiltonian
boundary value problem (HBVP) are called hypersensitive
if the time interval of interest is long relative to the rates
of expansion and contraction of the linearized Hamiltonian
dynamics in certain directions in a neighborhood of the
optimal solution. Solving hypersensitive optimal control
problems (HOCPs) is a challenging task, which has been
studied extensively for decades [1-6].

Typically, there are two types of methods, usually catego-
rized as direct and indirect methods, for solving HOCPs. The
direct method converts the optimal control problem into a
nonlinear programming problem (NLP) by appropriate dis-
cretization [7]. Various direct methods have been developed
during the past few decades, such as direct multiple shooting
method [8], gradient-based optimization techniques [9, 10],
differential inclusion method [11], interior point method [7,
12], collocation method [13, 14], pseudospectral method [4,
15-17], and control parameterization method [18-20]. Direct
methods are straightforward and robust to accommodate

complex conditions, such as path constraints and interme-
diate constraints. When applying direct methods to solve
HOCPs, the key is to use a higher density of nodes in the first
and third segment, according to the three-segment structure
characteristic of HOCPs, which is described qualitatively
as “take-off,” “cruise,” and “landing” by analogy to an
airport-to-airport trajectory for an aircraft [1]. Reference [3]
introduced a simple method for mesh point distribution
for solving HOCPs based on density functions, and the
problem of mesh refinement is subsequently converted to a
problem of finding an appropriate density function. Refer-
ence [4] presented a hp-adaptive pseudospectral method to
solve HOCPs, which iteratively determines the number of
segments, the width of each segment, and the polynomial
degree required in each segment. Reference [5] proposed a
symplectic algorithm with nonuniform grids combining with
density functions to solve HOCPs. Later, [21] applied GPOPS-
I1, a commercial software program that employs a Legendre-
Gauss-Radau quadrature orthogonal collocation method to
solve HOCPs. In their method, an adaptive mesh refinement
method is implemented to determine the number of mesh
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intervals and the degree of the approximating polynomial
within each mesh interval to achieve a specified accuracy.
However, there are several disadvantages for solving HOCPs
by direct methods. The first one is that the obtained optimal
solution by direct methods is merely approximate to the
accurate solution. The error between these two solutions is
usually small and acceptable for most optimal control prob-
lems; however, this error may be extremely large and unac-
ceptable for HOCPs, as demonstrated in this paper later.
Besides, direct methods cannot provide insight regarding the
optimal solutions [6].

Unlike direct methods, indirect methods transform the
original problems to HBVPs by first-order optimality con-
ditions [22], which are helpful to provide the dynamical
information of the systems. Besides, the optimal solution is
guaranteed to be a least extremal. However, it is extremely
difficult to solve HOCPs by indirect methods, mainly due
to the high sensitivity to the initial unknowns. Based on
the three-segment structure, [1, 2, 23, 24] developed a
dichotomic basis method to solve HOCPs. The core idea is
the decomposition of contracting and expanding behaviors
of the system by coordinate transformation, and the iterative
process is required due to the approximation of dichotomic
basis. Recently, [6] presented a finite-time Lyapunov analysis
based method to construct an approximate dichotomic basis
and developed a corresponding manifold-following solu-
tion approximation method. However, the optimal solutions
obtained by the above methods are only near-optimal, and,
as pointed in [6], the sensitivity of the optimal solution to
the errors in the unknown boundary conditions may cause
ill-conditioning, which potentially exceeds the available pre-
cision. Thus, to the best of the authors’ knowledge, the
above difficulties are not well solved in the existing literature,
and obtaining the accurate optimal solutions of HOCPs by
indirect methods is still extremely daunting.

In this paper, a new high-precision single shooting
method is presented to address the above two main dif-
ficulties for solving HOCPs by indirect methods: (1) the
possible nonexistence of the optimal solution to meet the
required error tolerance under double-precision arithmetic;
(2) the hypersensitivity of the optimal solution with respect
to the initial conditions. Multiple-precision arithmetic and
Taylor series method, which provide higher significant digits
and higher integral accuracy, respectively, are introduced
to address the first difficulty. A modified bidirectional sin-
gle shooting method (MBISSM) is developed to settle the
second one, which introduces an intermediate point along
the equilibrium segment as the starting point and shoots
to both boundary points simultaneously. Finally, numerical
simulations are provided to demonstrate the effectiveness
and efliciency of the proposed method, which reveals that
the challenging HOCPs can be easily solved within several
iterations by this proposed method.

2. Hypersensitive Optimal Control Problem

Consider the optimal control problem with the dynamical
equations as follows:

x(t) =f[x(),u(@®)], )
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where x(t) € R" and u(t) € R are the state and control
vector at time £, respectively, and f : R” x R™ — R" is the
smooth function. The performance index is

leﬁuﬂﬂmanm, P

where t, and ¢, are the prescribed initial time and terminal
time, respectively. The boundary conditions are defined as

x(ty) = Xp (3)

x(tr) =x;, (4)

where x, and x; are known.

According to the optimal control theory [22], the corre-
sponding Hamiltonian function is implicitly dependent on
time, which is expressed as

Hx(®),u(),A(®)] = Lx(),u(?)]

(5)
+ AW f[x (), u®)],

where A(t) € R” is the costate vector. The Hamiltonian
differential equations are as follows:

_OH[x(t),u(t),A(®)]

x® 0A(t) ’
OH [x(t),u(t),A(t)] ©
. x(t),u(t),
A=~ x (1)
and the optimal control vector u*(t) satisfies
OH [x (), u” (£),A(t)] o @)

ou* (t)

Denote p = (x,A), p = G(p) as an alternate expression
for the Hamiltonian system in (6). For sufficiently large
value of tg, that is, t; is long relative to the rates of
both expansion and contraction in certain directions in the
neighborhood of the optimal solution; this problem becomes
completely hypersensitive. It is a degenerate class of two time-
scale HBVPs that is composed of fast and slow subsystems.
Otherwise, the problem is partial hypersensitive [1, 2]. In this
paper, the completely hypersensitive case is considered, and
the saddle type equilibrium point p. = (X4, Acq) is supposed
to exist. As illustrated in [1, 2], the optimal trajectory shows
the three-segment structure geometrically, which is described

by
p; (), 0<t<ty,
p, (1),
p; (),

P* (t) = tibl <t< tf - tfbl’ (8)

tf_tfbl StStf,

where t;; and t g, denote the durations of the initial and
terminal segment, respectively. p; (¢) is the optimal solution
of the initial segment with initial conditions p;(0) = (x,, A),
p; (¢) is the optimal solution of the terminal segment with
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terminal conditions p,(t f) = (xf, A f), and p; (t) is the opti-
mal solution of equilibrium segment with p; (t) = p,. Please
notice that ty; and tg,; should be large enough to allow
the boundary-layer segments to reach p,, with sufficient
accuracy [2].

Based on the observation that p;(t) = Peg> [1, 23] pre-
sented a dichotomic basis method for HOCPs. In their
method, the original optimal control problem is spitted into
three subproblems.

(a) Subproblem A. Solve Hamiltonian system p = G(p)
with the optimal control determined by (7), initial conditions
defined in (3), and terminal conditions given as

P (?ibl) = Peq’ (9)

where t;,; > t;; is the guessing time duration of the initial
segment.

(b) Subproblem B. Solve Hamiltonian system p = G(p)
without control effort, that is,
u=0 (10)

together with the initial conditions and terminal conditions
as follows:

P (Zibl) = peq’
~ (11)

Pt ~Em) = Peoy
where szl > gy is the time duration of the terminal
segment. Since the control variables are totally determined,

this subproblem is actually an initial value problem solved by
a numerical integration method.

(c) Subproblem C. Solve Hamiltonian system p = G(p) with
the optimal control determined by (7), the initial conditions
defined in (4), and terminal conditions given as

P (tf - fﬂ,l) = Peq- (12)

Please notice that subproblem C has the same structure as
subproblem A, except that the time direction is opposite. Thus
it requires a backward integration to complete numerical
computation.

Dichotomic basis method is elegant and efficient; how-
ever, the obtained optimal solution by this method is only
near-optimal. Thus, obtaining the accurate optimal solution
of HOCPs by indirect methods is still an open challenge.

3. High-Precision Single Shooting Method

In this section, a new high-precision single shooting method
is developed to obtain the accurate optimal solution for
HOCPs, which combines with three important themes: mul-
tiple-precision arithmetic, Taylor series method, and a
MBISSM. In this proposed method, multiple-precision arith-
metic and Taylor series method provide the ability of high-
precision computation with higher significant digits and
higher integral accuracy, respectively, and the MBISSM pro-
vides appropriate initial guess that is in the close neighbor-
hood of the optimal solution.

3.1. Multiple-Precision Arithmetic. Currently, most optimiza-
tion applications and algorithms utilize double-precision (64-
bit) accuracy, which allows numerical computations to be
accurate to ~15 significant digits and is more than sufficient
for most optimal control problems. However, for a rapidly
growing body of applications, such as HOCPs considered in
this paper, double-precision arithmetic may not be sufficient
any more. Therefore, a higher level of numeric precision is
required, and multiple-precision arithmetic is an effective
way.

Typically, the ability of multiple-precision arithmetic is
commonly provided in software, as hardware support for
higher precision is severely lacking. It is highly likely that
a commodity processor supporting higher floating-point
precision will be developed in the near future [25]. Quadruple
(128-bit or ~30 significant digits) or octal (256-bit or ~60
significant digits) precision arithmetic is a typical choice. For
some specific problems, hundreds or even more significant
digits are required to obtain numerically meaningful results.

Nowadays there are several commercial or freely available
multiple-precision software packages, which usually pro-
vide high-level language interfaces, custom data types, and
operator overload features. In this paper, a Multiprecision
Computing Toolbox developed by Advanpix [26] is applied
for high-precision computation. This software is a MATLAB
extension for computing with arbitrary precision; that is,
the toolbox equips MATLAB with a new multiple-precision
numeric type and extensive set of mathematical functions
that are capable of computing with arbitrary precision. Thus
many existing MATLAB programs can be directly converted
to achieve arbitrary precision with small efforts.

3.2. Taylor Series Method. Numerical methods for integrating
ordinary differential equations have been studied since the
end of the last century, and a large number of integration
formulas have been developed. Typically, most numerical
integration methods are designed to approximate the exact
solution of the ordinary differential equations, which gives
rise to truncation errors. Generally, the truncation errors
remain to be sufficiently small for most optimal control
problems with common numerical integration methods,
such as the well-known Runge-Kutta methods. However, for
HOCPs considered in this paper, the truncation errors would
be amplified to be incredibly large with these methods, even
when multiple-precision arithmetic is applied.

The truncation errors can be reduced by two different
ways: by reducing the step size and by using the higher-
order integration formula. If the step size between two
adjacent values becomes smaller, the truncation errors of
the numerical integrations would decay. The disadvantage
is that the step size may decrease to be so small that it
may take extremely long time to complete the integration,
and the round-off error would be increased [27]. Thus, a
higher-order integration formula, called Taylor series method
[28], is preferred to provide accurate numerical integration
solution. Taylor series method is one of the oldest methods,
which traces back to Newton and Euler. It has an advantage
that its formula at an arbitrarily high order can be easily
expressed in the united form with large step sizes and thus



small values of computing time is required [29]. Therefore,
from the viewpoint of numerical simulations, it is rather easy
and attractive to use this method at a very high order so as to
reduce the truncation errors to a required level.

Consider the initial value problem as follows:

y(t) =g[ty®)],
(13)

Yy (to) = Yo

where y(t) € R”, t, is the specified initial time, y, is the
prescribed initial conditions, and g[t,y(f)] is the smooth
function. According to the rules of Taylor series method, the
value of the solution y(t,,,) att;,; = t; + h;,, is approximated
by the nth degree Taylor series of y(t) developed at ¢; and
evaluated at t = t;,,, that is,

dy (t;) 1d"y(t;), ,
Y(ti+1) = Y(ti) + dt hi+1 +oet ; drn hi+1
=y + gt y:) By +- - (14)

1d"7'g(thy) 0 et
+ = -1 hi+1 = Yitp
nl dt

where h;, | is the step size and y(t,) is defined as

1

y (t) = Yo (15)

In this paper, a variable step size and variable order
(VSVO) scheme, which aims to control the integration error
automatically by adjusting the integration step size through
the criteria related to the prescribed tolerance and variable
order formulation, is implemented during the integration by
Taylor series method. The details of VSVO scheme can be
found in [30].

3.3. Modified Bidirectional Single Shooting Method. Single
shooting methods are one of the most commonly used
numerical methods to solve HBVPs, which attempt to iden-
tify appropriate initial conditions for a related initial value
problem to provide the solution of the original boundary
value problem. If the boundary conditions are not satisfied
to the desired accuracy, the selecting process of initial
conditions is repeated with a new set of initial conditions until
the desired accuracy is achieved. Single shooting methods
are typically classified as forward single shooting method
(FSSM), backward single shooting method (BSSM), and
bidirectional single shooting method (BISSM), according
to their different integration directions. As illustrated in
Figure 1, FSSM and BSSM, which start from the initial and
terminal boundary points, respectively, are unidirectional.
Their solving procedures are all the same except for the
opposite integral direction. Other than the above unidirec-
tional shooting methods, BISSM starts from both boundary
points and shoots to an arbitrary intermediate point [31].
However, these methods are not appropriate to solve HOCPs,
mainly due to the extreme difficulty of selecting proper initial
guess, even if multiple-precision arithmetic and Taylor series
method are incorporated.
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FIGURE 2: Modified bidirectional single shooting method
(MBISSM).

In this paper, a new MBISSM is presented to address the
above difficulty. As illustrated in Figure 2, this MBISSM starts
from an arbitrary intermediate point inside the time interval
and shoots to both boundary points simultaneously. Denote
an intermediate point p(t;) at #; € (f,, ) along the equilib-
rium segment as the starting point, which is the unknown
to be determined numerically by the shooting method.
According to the observation that this optimal solution is
near the equilibrium value p., during equilibrium segment
as suggested by three-segment structure, it is reasonable to
set p,q as the initial guess, which is expressed as follows:

Pguess (ti) = Peq' (16)

In this MBISSM, the boundary conditions are given as

X (to) = Xo»

17)

x(tr) =%y
which are both required to be satisfied by backward and
forward integrations from the starting point, respectively.
Denote plt, | p(t) = {x(ty | p(t)).Alty | p(t;)} and
pts | p(t) = {x(t; | p()), Ats | p(£;))} to be the state
and costate vectors at f = f, and t = { by integrating p(t;)
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backward and forward, respectively. Thus, the optimization
problem is stated as follows:

t t;)) = Xp»
Find p (t;) such that {X( o |P{8)) =3, (18)

x(tf | p(ti)) =Xg.

Once the optimal solution at the starting point is obtained
by the MBISSM, denoted as p*(¢;), the states at the initial
and terminal time are completely determined by integrating
from p*(¢;), denoted as x*(t, | p*(¢;)) and x*(tf | p*()),
respectively. The initial state errors, which are the differences
between x"(f, | p*(¢;)) and the given initial value x, defined
in (3), can be expressed as

Ax(to | p™ (1)) =x" (1o 1 p" (1) — xo. (19)

Denote x(t f | Xo,Ay) as the state that is integrated from

X and Ay = A*(t, | p*(t;)). The terminal state errors are
denoted as

Ax(t; | x0,A5) =x(t; | X0, A5 ) — X (20)

Due to the existence of the initial state errors defined in
(19), the Euclidean norm of the terminal state errors may be
extremely larger for the HOCPs, which may violate the error
tolerance. In this case, a lower error tolerance for solving (18)
is required with the help of multiple-precision arithmetic,
until the required accuracy is satisfied.

Although multiple shooting methods are wildly demon-
strated to be superior to the single shooting methods in
terms of the convergence domain [32], they do not provide
any information regarding the flow structure in the phase
space, which aids the development of a simpler approximate
solution method for solving HOCPs [6]. Thus, multiple
shooting methods are not considered in this paper.

4. Numerical Demonstration

Consider the following hypersensitive optimal control prob-
lem adopted from [1], which is to determine the control, u(t),
on the time interval t € [0, ¢ f] to minimize the performance
index as follows:

j= L th (2 () + 3 (6) + o (1)] dt (21)
- 2 o 1 2 .

The dynamic constraints are expressed as

X, () =x, (1),

(22)
%y () = —x; (8) = X (£) + u ()
with the boundary conditions defined as
x,(0) =1, (23)
x, (0) = 0, (24)
x, (t;) =075, (25)
x,(t;) =0, (26)

where ¢ ; is fixed. It is known that, for sufficiently large value
of t(, this optimal control problem becomes hypersensitive
[1]. Thus, the Hamiltonian function is formulated as

H[x(t),u(t),A ()]
= % (KO +x5O+u O]+ 2, Ox 0 (@27)
+ A, () [-x, () - x} () +u@®)],
where A(t) = [A;(1),A,(£)]" is the costate vector associated

with x(t), the governing costate differential equations of
which are given as

COH [x(8),u(t),A(1)]

A1 (t) = axl )
= —x, (£) + A, () + 34, () x] (), (28)
i) = _OH [x(8),u(),A®)] _ ()=, (8).

0x; (t)

According to optimal control theory [22], the optimal
control is determined by

OH [x (1), u™ (), A ()]
ou* (t)

=u* () + A, (t) =0, (29)

that is,
ut (1) ==L, (). (30)
Substituting (30) into the state equations in (22) yields

X, (1) = x, (1),
(31
%y (1) = —x; () — X, (£) = A, ()

which constitute the Hamiltonian differential equations
together with the costate equations in (28), and the corre-
sponding equilibrium value is p., = [0,0,0, 0]”.

In this paper, all computations are executed in a desktop
computer with a 2.20 GHz CPU. All of the codes are imple-
mented under MATLAB, and the required accuracy is set as
1072,

4.1. Optimal Solutions with Double-Precision Arithmetic. In
this section, several numerical tests are implemented to
demonstrate the performance of the proposed MBISSM with
double-precision arithmetic. The middle point with ¢; =
t¢/2 is chosen as the starting point for the MBISSM. The
FFSM and a commercial software GPOPS-II [21], which is
a Legendre-Gauss-Radau quadrature orthogonal collocation
based direct method, are implemented for the comparison.
The simulation results of the BSSM and the BISSM are not
provided in this section, as they are quite close with the
FFSM’s. Although GPOPS-II adopts a direct method to solve
the original optimal control problem described in ((21)-(26)),
it provides highly accurate costates estimation, which permits
the ability to compare its optimal solution directly with other
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TABLE 1: Simulation results by MBISSM, FESM, and GPOPS-II with double-precision arithmetic.
£ (s) Euclidean norm of terminal state errors Convergent CPU time (s)
4 MBISSM FFSM GPOPS-II MBISSM FESM GPOPS-II
10 2.819%x 107" X 1.658 x 1077 116.6 X 3.4
20 2237 %1077 X 1.847 x 107* 31.2 X 4.2
30 3.632x107° X 1.092 x 107! 23.1 X 4.3
40 1.45x 1077 X 9.661 x 10" 203 X 4.4
50 1.499 x 10' X 9.829 x 10" 171 X 43
60 6.472 x 10° X 5.618 x 107 17.8 X 4.5
110 X X s} X X 5.1
200 X X [} X X 5.2

indirect methods. MATLAB function ode45, which is based
on an explicit Runge-Kutta (4,5) formula with adaptive step
control, is used as numerical integration algorithm and the
error tolerance for all of these three methods is set at 107'2.

Eight test cases with varying terminal time ¢ ; in the range
of [10,200] are implemented, and the numerical solutions
are provided in Table 1. In Table 1, comparisons of MBISSM,
FFSM, and GPOPS-II in the Euclidean norm of terminal state
errors and convergent CPU time are illustrated. The character
“X” is used to denote the divergent cases. The initial guesses
for these methods are all the same, that is, the equilibrium
value p. . As illustrated in Table 1, all the test cases by the
FFSM are divergent, and 6 cases are successfully convergent
by the MBISSM, which reveals that the MBISSM has much
better convergence property when compared with the FSSM.
GPOPS-II has the best convergence property without a fail-
ure. However, the corresponding Euclidean norm of terminal
state errors is much larger than the MBISSM’s. As described in
the previous section, the terminal state errors by MBISSM are
mainly caused by the tiny initial state errors defined in (19).
Unlike the MBISSM, the terminal state errors by the GPOPS-
II are totally determined by the number of mesh intervals
and the degree of the approximating polynomial within each
mesh interval.

Taking £, = 50's case, for example, the optimal solution
at the middle point is obtained as follows:

—f> = 6.45536833498639 x 10°°,

e
i (2

t
x; <3f> = —6.61537533239143 x 10°°,
, (32)
At <?f> = 2.99999567350630 x 10°*,
* tf -8
A (3) = 6.45965578930295 x 10 °.

Obviously, the above solution is approximate zero, which
indicates that the optimal solution at the middle point is
indeed in the close neighborhood of the equilibrium value
with pgq [0,0,0,0]" and guarantees the success of the
proposed MBISSM with the equilibrium values as the initial
guess. Due to the fact that the initial guess is extremely close

to the accurate optimal solution, this HOCP can be easily
solved in only 6 iterations by the MBISSM. With the above
optimal solution at the middle point as the starter, the optimal
solution obtained at t, by the MBISSM can be calculated by
backward integration, given as

x7 (0) = 0.999999999999180,

x, (0) = —0.000000000000271,

(33)
A% (0) = 2.603163099258960,
A5 (0) = 0.236067977499456.
Thus the initial state errors defined in (19) are
Ax, (0) = x} (0) - x, (0) = -8.2x 107",
(34)

Ax, (0) = x5 (0) = x, (0) = —2.71 x 107,

where the initial conditions x;(0) and x,(0) are defined
in ((23)-(24)). The integrated trajectory with x,(0), x,(0),
A1(0), and A5(0) as the initial starter is shown in Figure 3,
which illustrates that the terminal state errors defined in
(20) reach two orders of magnitude and the maximum state
errors are three orders of magnitude for the whole trajectory.
Fortunately, with the help of multiple-precision arithmetic,
these errors can be significantly reduced to meet the required
error tolerance, which will be discussed later.

For comparison, the corresponding initial optimal
costates with £ = 50 s by GPOPS-II are given as follows:

A7 (0) = 2.603163100374669,
(35)
A (0) = 0.236067977366574

which are provided by GPOPS-II via a highly accurate
costates estimation method. The integrated trajectory with
x1(0), x,(0), A1(0), and A5(0) as the initial starter is shown
in Figure 4, which reveals that the terminal state errors
reach as high as four orders of magnitude and the maximum
state errors are five orders of magnitude for the whole
trajectory. Because the large terminal state errors by GPOPS-
II are directly determined by the discrete characteristics of
direct methods, they cannot be reduced effectively even with
multiple-precision arithmetic.



Mathematical Problems in Engineering

400 T T T

300 +

200 F- - [

1004 0.2 4

States

500

-100

=200

~500

~300 : : :
0 10 20 30

— x(t)
- = x(t)
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obtained by MBISSM for terminal time £, = 50s with double-
precision arithmetic.
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FIGURE 4: States profiles along the trajectory integrated from the
fixed initial states and the corresponding optimal initial costates
obtained by GPOPS-II for terminal time £, = 50s with double-
precision arithmetic.

4.2. Optimal Solutions with Multiple-Precision Arithmetic. As
demonstrated previously, although the proposed MBISSM
has much higher convergence property than the FSSM, it
still fails to be convergent for larger terminal time and the
terminal state errors of convergent case may also be extremely
large. Fortunately, both of the above shortcomings can be
fully addressed with multiple-precision arithmetic and Taylor
series method.

Still taking the t; = 50s case, for example, the same
problem is resolved by the MBISSM with multiple-precision
arithmetic and Taylor series method as integration algorithm.
The corresponding iterative formulation of Taylor coeflicients
is

ey _ L0
x — (%),
! +1 (=)
[k+1] 1 kl P _ Ikl
X —?<— 2 Zx Pxl -, >,
(36)
[k+1] [k] [k] k- n=p P
A ‘T( +1; +3ZA "Zx
ker] _ 1 [k _ 3kl
b= k+1 (=" =A%),
where k = 0,1,...,m — 1, m is the order of Taylor series.

Multiple-precision arithmetic with 30 significant digits is
adapted for high-precision optimization. The integral accu-
racy for the Taylor series method and the error tolerance
for the MBISSM are set at 10" and 107, respectively.
This HOCP can be easily solved in only 10 iterations by the
MBISSM, and the convergent CPU time is about 980's. The
optimal solution at the middle point is obtained as follows:

t
x;‘ (%) = 6.45536835897444817728091151098

X 1078,

t
x; (%) = —6.61537535985934926089400692506

x 107,
(37)

t
/\’f (Ef) = 2.99999567382193482349955449625
x 1078,

t
A, (%) = 6.4596557861702446143763973621

x 1078,

With the above optimal solution at the middle point as the
starter, the optimal solution at initial time can be calculated
by backward integration, that is,

x;‘ (0) = 1.00000000000000000000000000000,

x; (0) = —2.49674476502450236412812090912
x 1072,
(38)
/\T (0) = 2.60316309926254841367437467726,
/\; (0) = 2.360679774997916414724683759212

x 107",



Thus the initial state errors defined in (19) are

Ax, (0) =x; (0) — x, (0) =0,
Ax, (0) = x; (0) — x, (0)
(39)
= —2.49674476502450236412812090912
x 1077,
The integrated trajectory with x;(0), x,(0), A](0), and A5(0)
as the initial starter is shown in Figure 5, and the Euclidean

norm of terminal state errors defined in (20) is about 8.7455 X
107", As the error tolerance is set at a higher accuracy of

x; (0)=1,

x; (0)
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10?7, the obtained optimal solution accuracy 8.7455 x 10~**
still satisfies the required accuracy 107'%. If the accuracy
cannot meet the required accuracy, a higher significant digits
and a higher integral accuracy are required.

Another case with terminal time ¢ ; = 200's is also imple-
mented, which fails with double-precision arithmetic as
illustrated in Table 1. For this case, 90 significant digits are
used for high-precision computation. The integral accuracy
for the Taylor series method and the error tolerance for this
single shooting method are set at 10" and 107, respect-
ively. This problem is easily solved by the proposed high-
precision single shooting method within 10 iterations, and the
convergent CPU time is about 35 hours. The obtained optimal
solution at t = 0 is given as

(40)

= —5.57488926652873071685938602638128927705372911638218741237980296620560640489334856949249866  (41)

A1 (0)

(42)

= 2.60316309926255757333545904831747724935957041065781988207219177679102777660491239842757615,

A5 (0)

= 2.36067977499789696409173668731276235440618359611525724270862087044025986692985578709359839 (43)

x 107"

Thus the corresponding initial state errors defined in (19) are

Ax, (0) = x; (0) — x; (0) =0,

Ax, (0) = x, (0) — x, (0)

= —5.57488926652873071685938602638128927705372911638218741237980296620560640489334856949249866

x 10758,

The integrated trajectory with x,(0), x,(0), A](0), and A (0)
as the initial starter is shown in Figure 6, and the Euclidean
norm of terminal state errors defined in (20) is about 1.5841 x
107%°, which meets the required accuracy 107*2.

Lower significant digits are used, that is, the first 55
significant digits of A](0) and A} (0), which are

/V; (0) = 2.603163099262557573335459048317477249359570410657819882,

(45)

/\; (0) = 2.360679774997896964091736687312762354406183596115257242 x 107"

With (23)-(24) and (45) as the initial starter of trajectory inte-
gration, the terminal state errors defined in (20) are provided

in Table 2. The integral accuracy for the Taylor series method
remains unchanged, which is 107, As illustrated in Table 2,
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TaBLE 2: Comparison of Euclidean norm of terminal state errors by MBISSM with different significant digits.
Significant digits Terminal state errors
85 5.866875762628193513683714399836181990749066000576664570626536775036996028775307020565 x 10~
80 1.2729135942414578912275331034096639697677188650860207411613500771425023492253212 x 107>
75 8.32800893193697128535236564651012081921145896143028040583575297035124161334 x 107"
70 1.100962781462392971848264179350886082349518980048139710140583435933765 x 107"
65 1.2582068831722865274799518796876135992863954934328056170904360060 x 10~
60 2.67148789475288413499359451519048554798453717463573873843464 x 1072
55 2.104524873696096706792124497334559383710609981183820732 x 10°
1 1
0.8 0.8 |
0.6 0.6
0.4t 0.4
w02} w 0.2 :
[ o] 1
= =~ s 1 !
N RS s 0 V -\’}
1 I
-0.2 7§+ 02§ -
1 |
—04 } -0.4
¥ !
-0.6 ! -0.6 |
1y I
i ]
-0.8 L i i i i -0.8 i i i
0 10 20 30 40 50 0 50 100 150 200
t(s) t(s)
—_— xl(t) —_— xl(t)
- = x,(t) - = x()

FIGURE 5: States profiles along the trajectory integrated from the
fixed initial states and the corresponding optimal initial costates
obtained by MBISSM for terminal time ¢, = 50 s with 30 significant
digits.

the Euclidean norm of terminal state errors increases rapidly
along with the deceasing of significant digits, which reaches
as high as about 2.10452x 10° for the 55 significant digits case.

If lower integral accuracies of Taylor series method are
used with 90 significant digits, the terminal state errors
defined in (20) are provided in Table 3, taking (23)-(24) and
(42)-(43) as the initial starter of trajectory integration. As
illustrated in Table 3, the terminal state errors increase rapidly
along with the raising of integral accuracy. It is amazingly
found that the terminal state errors are four orders of
magnitude large if the integral accuracy is set at 10~°, which
obviously cannot meet the required error tolerance. Based on
the above discussions, it can be concluded that no optimal
solution may exist to meet the required error tolerance for
lower significant digits and lower integral accuracy, which
explains why the MBISSM fails to solve the same problem
with double-precision arithmetic in section.

5. Conclusion

In this paper, a new high-precision single shooting method
is presented to solve the challenging hypersensitive optimal

FIGURE 6: States profiles along the trajectory integrated from the
fixed initial states and the corresponding optimal initial costates
obtained by MBISSM for terminal timet ; = 200 s with 90 significant
digits.

control problem, which consists of multiple-precision arith-
metic, Taylor series method, and a new MBISSM. Multiple-
precision arithmetic and Taylor series method are introduced
to provide higher significant digits and integral accuracy,
and the MBISSM is developed to generate appropriate initial
guess, which is extremely close to the optimal solution by
utilizing three-segment structure characteristic of HOCPs.
Thus, the two main difficulties, the possible nonexistence of
the optimal solution to meet the required tolerance under
double-precision arithmetic and the hypersensitivity of the
optimal solution with respect to the initial conditions by
indirect methods, are satisfactorily solved. The numerical
simulations demonstrate the efficiency of this proposed
method, the optimal solution of which can be easily solved
within several iterations. The simulation results also reveal
the fact that no optimal solution may exist to meet the
required error tolerance for lower significant digits and lower
integral accuracy, which is still not widely recognized yet in
optimization engineering.

The main disadvantage of the proposed high-precision
single shooting method is that it may require much larger
CPU time. Taking the £, = 200s case with 90 significant
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TaBLE 3: Comparison of the Euclidean norm of terminal state errors by MBISSM with different integral accuracies of Taylor series method.

Integral accuracy

Terminal state errors

10785
10780
10775
10—70
10—65
10—60
10—55
10750

1.58319633679772217944824131350505236807202739692078827429906812432096942480802199853304275 x 102
3.72525147090499732555084530502769934173983207752374155382811547722333645443103106733571409 x 10~
3.81437611392372690108266166748050457344969141070869052138948837041124626661690251076409706 x 10~
1.13268310209557943195606354923552665677244000325670771361005795912304125278779540527586414 x 107
5.03071114527927667540803559488399586213189718894019354724386973494151029974516002963841624 x 107**
4.71217759584233098925431899981529901744063117797769340938845177106494597110360867737808901 x 1077
5.88575074985461247363291315566785488575603113859669264078215794228281756486137147031727330 x 1072
8.64647234216576719278782329532914219591521188043541077338325766415336171636888697563052874 x 10°

digits, for example, it may take several hours to complete a
single iteration. Thus, a faster computation ability is required
for future researches.
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