Evidence for a Sympatric Origin of Ribolla gialla, Gouais Blanc and Schiava cultivars (V. vinifera L.)

G. de Lorenzis^{1,*}, S. Imazio², L. Brancadoro¹, O. Failla¹, A. Scienza¹

(1) Dipartimento di Scienze Agrarie e Ambientali - Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy

(2) Dipartimento di Scienze Agrarie e degli Alimenti - Università degli Studi di Modena e Reggio Emilia, via Amendola, 2, Padiglione Besta, 42122 Reggio Emilia, Italy

Submitted for publication: November 2013 Accepted for publication: January 2014

Key words: Fingerprinting, geographical origin, relationship, SSR, Vitis vinifera

Ribolla gialla is an autochthonous grape variety cultivated in Friuli Venezia Giulia (Italy) and in Slovenia, and probably originated in Eastern Central Europe. Just like Ribolla gialla, the Gouais blanc and Schiava cultivars also appear to have originated in the same geographical area. To verify this hypothesis, a pool of varieties probably sharing the same historical and geographical origin were taken into account. The fingerprinting, by 35 SSR loci, of Gouais blanc, Ribolla gialla, Schiava grossa and Schiava lombarda (synonyms of Schiava bresciana), is presented and the correlation among historical, geographical and genetic information of these cultivars was investigated. Gouais blanc and Traminer, already suggested as key varieties in the development of European grape diversity and as parents for some French varieties, interestingly enough seems to be linked to Ribolla gialla. The putative parentage was verified using 58 microsatellite markers. The genetic results suggest a common geographical origin for Gouais blanc, Ribolla gialla and the Schiava group: these cultivars appear to be related through sympatric origin. The hypothesis of Ribolla gialla as a progeny of Gouais blanc and Traminer was ruled out. The data proved a second-degree relationship between Gouais blanc and Ribolla gialla and a third or more distant degree of relationships between Ribolla gialla and Traminer.

INTRODUCTION

It is largely documented that the original sites of domestication of wine and table cultivars of Vitis vinifera L. are in western Asia, most likely in eastern Anatolia and the Caucasian region (Olmo, 1995; Zohary & Hopf, 2000; This et al., 2006a). From the first centres of domestication, the cultivated grapevines moved towards Europe, possible through secondary centres of domestication, following the ancient routes of civilisation (Forni, 2012). The result of the primary and secondary domestication events, and successive local breeding processes, was the huge genetic variability of grapevine varieties, which are widespread in all the traditional winemaking areas, forming a rich germplasm diversity. Commencing from the first decade of the last century, as a consequence of the massive replanting of European vineyards after the devastating attack of Phylloxera (Daktulosphaira vitifoliae Fitch, a homopteran insect introduced from North America at the end of nineteenth century), a significant part of these locally bred and grown varieties began to decline and progressively were substituted by a limited numbers of elite local and international cultivars.

Nowadays, projects aimed at the recovery and

exploitation of cultivars with historical and geographical relevance are in progress in a number of viticultural regions. Ribolla gialla, a traditional variety of the Collio area (Gorizia province, North-Eastern Italy), is one such example. According to its microsatellite allelic profile, Ribolla gialla is identical to Rebula, a variety from the Slovenian winegrowing area of Brda, on the Italian border (Rusjan et al., 2010; De Lorenzis et al., 2013). Ribolla gialla is considered an ancient and traditional cultivar of these two neighbouring regions (Cosmo & Polsinelli, 1957), with a strong relationship with their terroirs (Calò et al., 2006). In Italy, the first documented evidence of a wine made from Ribolla gialla dates back to 1409, when, during a banquet in honour of Pope Gregory XII, Ribolla wine from the Rosazzo Abbey was served (Peterlunger et al., 2004). The historical importance of this variety is traceable through the centuries in its usage in the Collio area: for example, Ribolla gialla was offered by municipal authorities to welcome foreign representatives or illustrious visitors, and supplied to the rich Venetian Republic markets (Calò & Costacurta, 2004). In the past few decades it was used to produce wines aimed

*Corresponding author: Gabriella de Lorenzis, e-mail address: gabriella.delorenzis@unimi.it [Tel.: +39 02 50316556; fax +39 02 50316553] Aknowledgements: The research was done in the framework of the project "MIGLIORVITE", funded by the Agriculture Department of Lombardy Region, Italy. The research was also co-funded by Cantina Produttori Cormons. The authors wish to thank Dr José Vouillamoz from Agroscope (Switzerland), for providing the Gouais blanc variety, and Dr Stella Grando from Fondazione Edmund Mach (Italy), for technical support at the local markets and appreciated by consumers for their typicality; now, Ribolla gialla grapes are back in vogue due to the growing interest in traditional and local grapevine landraces.

In the framework of the exploitation of local germplasm, the exploration of inter- and intravarietal genetic diversity is fundamental to define the most appropriated strategies. Some of these autochthonous grapevine varieties could have the same geographical origin (sympatry) and share important events in their cultural and economic history. This could be the case of Ribolla gialla, Gouais blanc, and the group of Italian cultivars called "Schiava".

Gouais blanc, or Heunisch weiss in German, is an old variety that was widespread all over Central Europe. It possibly was introduced from the Eastern Mediterranean Basin along the Danube route in East-Central Europe. It was brought to France by the Roman Emperor Probus during the 3rd century AD as a gift to the Gauls from his Croatian homeland (Aeberhard, 2005). It was cultivated up to the modern age in Austria, France, Germany and Switzerland. In Italy, a few Gouais blanc plants have been identified in Valle d'Aosta and other mountain valleys of Piedmont, attesting to its likely cultivation in the north-west area of the Alps (Schneider & Mannini, 2006). It is considered a qualitatively mediocre variety because of its vigour and high productivity; indeed, "Gouais" has a denigrating meaning, from the old French adjective "gou" (Bowers et al., 1999a). At present it is a neglected variety that is only maintained in germplasm collections. Nevertheless, it is a variety that is of paramount importance for the evolution of the West European V. vinifera varietal assortment, being the progenitor of several important varieties including the well-known Chardonnay and Gamay (Bowers et al., 1999a). Gouais blanc, together with Traminer and Pinot noir, have already been proposed as possible parents for several French varieties (Bowers et al., 2000). Based on the molecular analysis of 2 344 unique genotypes by 20 nuclear SSR, Lacombe et al. (2012) recently identified 63 genotypes (confirmed and new) related to Gouais blanc through a first-degree relationship, and among the kin group of half kinships the largest was the Gouais blanc kin group.

In Italy, the name "Schiava" (Schiava bianca, Schiava bresciana, Schiava gentile, Schiava grigia, Schiava grossa, Schiava lombarda, Schiava nostrana) is customary to identify a group of varieties possibly sharing some phenotypic traits, as well as a possible common geographical origin in Slavonia, a geographical and historical region in Eastern Croatia (Scienza & Failla, 1996). These cultivars were widely cultivated in Lombardia, Veneto, Trentino Alto Adige and Friuli (Northern Italian regions). Schiava grossa is cultivated as Trollinger in Austria and Germany (Vouillamoz & Arnold, 2010) and Tirolan in Croatia (E. Maletic, personal communication, 2014). It is supposed that the "Schiava" group arrived in Northern Italy and Germany from Pannonia (an ancient province of the Roman Empire bounded north and east by the Danube) with the Longobards, a Germanic population that invaded Italy in the eight century A.D. (Scienza & Failla, 1996). In Italy, these varieties are still cultivated in Trentino Alto Adige and Lombardia, although they have been neglected for decades in the Veneto and Friuli regions (Cosmo & Polsinelli, 1962). The generic varietal name *Sclave* has appeared in the Lombard notarial deeds since the 11th century, and in the Venetian-Lombard region it definitely was the most frequently mentioned variety in land rental documents, in acts of donation and duties and in lease payments (Scienza, 1999). According to molecular analysis reported in Fossati *et al.* (2001), the Schiava accessions collected in the different cultivation areas were classified into two main genotypes: Schiava grossa and Schiava lombarda.

The aim of this work was to investigate the genetic relationship among Ribolla gialla, Gouais blanc and "Schiava" cultivars probably sharing a common historical and geographic origin, based on the results of 35 microsatellite markers (SSR). Moreover, Ribolla gialla as a potential progeny of Gouais Blanc and Traminer was investigated by deep genotyping (58 SSR loci). Nuclear simple sequence repeat (SSR) markers are a useful tool to determine the genetic diversity of *V. vinifera* cultivars (Cipriani *et al.*, 2010; Laucou *et al.*, 2011; Bacilieri *et al.*, 2013; Imazio *et al.*, 2013), to solve cases of homonyms (This *et al.*, 2006a, 2006b) and synonyms, and to establish pedigree analysis (Bowers *et al.*, 2000; Vouillamoz & Grando, 2006; Boursiquot *et al.*, 2012; Lacombe *et al.*, 2012).

MATERIALS AND METHODS

Plant material

Accessions of Barbera, Bela Glera, Chardonnay, Gouais blanc, Nebbiolo, Pinot noir, Prosecco tondo, Ribolla gialla, Schiava bresciana, Schiava grossa, Schiava lombarda, Syrah, Traminer cultivars were analysed in this study. The samples were collected from the experimental station of Riccagioia scpa (Pavia - Italy), except for Gouais blanc, which was collected from the Agroscope collection (Changins - Swiss).

Gouais blanc, Ribolla gialla and Schiava samples were selected as cultivars sharing a possible common origin; Pinot noir and Traminer as second parents of some Gouais blanc progenies (Bowers *et al.*, 2000); Chardonnay as progeny of Gouais blanc and Pinot noir (Bowers *et al.*, 1999a); Bela Glera and Prosecco tondo as autochthonous Slovenian and Italian cultivars related to the growing area of Ribolla gialla (Štajner *et al.*, 2008); and Barbera, Nebbiolo and Syrah as outgroups.

Molecular analysis

DNA extractions were performed with a DNeasy Plant Mini Kit (Qiagen, Courtaboeuf, France), starting at 0.02 g of dried young leaves. Microsatellite analyses were performed on 35 microsatellite markers (SSR): 20 SSR loci used in Laucou *et al.* (2011), except VVIV37, nine loci selected by the *Vitis* Microsatellite Consortium (VMC1e8, VMC2b3, VMC2b5, VMC2h4, VMC5a1, VMC5c1, VMC5c5, VMC2h4, VMC5h5), VrZag62, VrZag79, VrZag83 and VrZag93 (Sefc *et al.*, 1999), and VVMD17, VVMD34 and VVMD36 (Bowers *et al.*, 1999b). For Chardonnay cultivars, the allelic profile reported in Bowers *et al.* (1999a) was taken into account.

To investigate the relationship among Gouais blanc, Ribolla gialla and Traminer, an enhanced pedigree was performed at 23 additional SSR loci up to 58 SSR markers, as in Vouillamoz and Arnold (2010). PCR amplification conditions and capillary electrophoresis detection were carried out as reported in De Lorenzis *et al.* (2012).

Data analyses

GenAlEx 6.2 software (Peakall & Smouse, 2006) was used to compare and identify samples with an identical allelic profile. The true-to-typeness for each sample was verified. Principal coordinates analysis (PCA, GenAlEx 6.2 software) was used to display genetic divergence among samples based on distance matrix. The dissimilarity matrix obtained by the first three principal coordinates was used to build a Neighbor-Joining dendrogram with MEGA 4.0 software (Tamura, 2007).

TABLE 1

Relationship analyses were carried out on 58 SSR loci for Gouais blanc, Ribolla gialla and Traminer. The analyses were performed by calculating the number of loci with at least one allele identical by state (IBS), the identity by descent (IBD: Δ_7 and Δ_8) and relatedness (*r*) coefficients. Δ_7 , Δ_8 and *r* coefficients were calculated by COANCESTRY 1.0 software (Wang, 2011). A total of 1 000 bootstrapping samples were adopted to estimate the 95% confidence intervals. Allele frequencies were calculated based on the allelic profiles of 87 cultivars that were representative of the European germplasm (Josè Vouillamoz's SSR database, Swiss), genotyped at the same set of markers (data not shown).

Locus	Barbera	Bela Glera	Gouais blanc	Nebbiolo	Pinot noir	Prosecco tondo	Ribolla gialla	Schiava grossa	Schiava lombarda	Syrah	Traminer
VMC1b11	181	171	169	165	165	165	171	171	183	165	171
	183	181	183	191	171	181	183	171	185	187	171
VMC1-0	206	208	208	218	226	208	222	208	222	230	226
VMC1e8	208	218	222	222	230	218	228	230	222	232	228
VMC0L2	180	180	164	184	162	164	164	164	164	168	164
VMC2b3	184	186	164	188	168	180	184	188	188	178	184
	193	193	187	185	189	193	193	189	189	193	193
VMC2b5	229	229	189	189	193	193	215	193	193	197	229
	209	203	207	215	203	207	201	203	_a	219	201
VMC2h4	225	209	225	215	203	215	221	217	_a	219	233
	181	168	172	168	172	168	172	172	172	172	172
VMC4f3	206	168	172	168	178	172	188	182	182	206	178
VMC5a1	168	162	158	166	154	162	164	154	168	164	154
	168	168	168	166	164	168	168	164	168	168	164
10.05 1	145	145	145	145	145	145	153	151	_a	145	145
VMC5c1	145	145	173	145	164	165	153	151	_a	171	171
	119	119	119	121	119	119	119	121	119	119	119
VMC5c5	123	125	119	123	121	125	119	123	123	119	121
VMC5h2	193	207	193	207	193	193	193	193	_a	193	191
	193	207	193	207	207	207	193	207	_a	207	193
	176	176	178	176	168	172	170	168	178	178	170
VMC5h5	194	194	194	188	178	176	194	188	194	194	178
	190	188	198	192	188	188	194	192	194	188	188
VrZag62	198	194	206	198	194	202	198	194	198	194	194
	241	249	235	241	235	245	235	237	237	241	241
VrZag79	255	257	241	249	241	255	247	257	247	247	247
	185	185	191	191	189	185	185	197	191	195	185
VrZag83	191	191	197	197	201	191	191	203	197	201	197
	189	199	189	189	189	197	189	189	189	189	189
VrZag93	229	199	189	189	189	199	189	189	189	199	225
	288	292	294	290	288	288	290	298	290	290	290
VVIB01	294	296	298	298	294	292	294	298	298	294	296

TABLE 1 (CONTINUED)

Locus	Barbera	Bela Glera	Gouais blanc	Nebbiolo	Pinot noir	Prosecco tondo	Ribolla gialla	Schiava grossa	Schiava lombarda	Syrah	Traminer
VVIH54	166	168	150	166	166	166	166	168	168	162	160
v v 11134	168	176	168	180	168	176	168	168	178	166	166
VVIN16	148	148	150	148	150	148	148	150	150	148	148
	158	152	150	156	158	150	150	156	152	152	156
VVIN73	262	262	262	262	262	262	262	264	262	260	262
	262	262	262	262	264	262	262	264	262	262	262
VVIP31	191	175	175	179	179	179	175	179	183	183	175
	193	179	183	195	183	191	189	191	183	189	189
VVIP60	318	320	320	316	318	320	320	316	320	314	304
	320	320	320	320	320	326	320	320	330	316	320
VVIQ52	79	76	76	83	83	76	76 70	79	76	81	79
	83	87 257	83	83	83	83 255	79 255	85	85 262	83	83
VVIV67	355	357	361	359	357	355	355	369	363	357	359
	361 224	369 224	361 232	365 230	367 226	359 224	367 230	369 234	369 228	375 224	367 230
VVMD5	224	224	232	230 234	226	224	230	234 236	228	224	230 236
	224	244	238	234 247	230	244	232	230 247	230	230	230 237
VVMD7	247	237	247	247	237	245	237	247	251	237	251
	211	221	247	211	211	243	247	221	221	211	221
VVMD17	211	221	223	221	211	221	221	221	221	223	221
	239	245	243	247	245	239	239	245	239	245	245
VVMD21	245	245	245	247	245	245	245	245	245	263	245
	205	205	205	205	213	209	205	209	209	205	205
VVMD24	213	213	205	209	215	213	205	213	213	209	213
	238	238	246	240	244	240	252	246	236	246	246
VVMD25	254	240	262	242	254	244	262	260	246	246	246
	183	177	177	181	183	177	177	179	179	185	183
VVMD27	187	177	179	185	187	191	183	183	183	187	191
	233	237	229	235	219	237	229	237	227	219	231
VVMD28	259	255	247	267	237	245	233	245	245	229	233
	250	252	250	240	240	262	250	256	254	240	240
VVMD32	270	264	270	262	270	264	250	270	270	272	270
	236	236	236	236	236	236	236	236	236	236	236
VVMD34	236	238	238	238	236	238	236	236	236	236	236
VVMD36	249	249	271	259	261	247	271	271	_a	261	249
v v IVID30	249	249	283	259	261	249	271	303	_ ^a	291	259
VVS2	127	139	129	151	133	131	139	131	131	129	131
¥ ¥ 62	129	143	139	151	147	141	149	151	139	129	149

^a'-': missing data.

RESULTS AND DISCUSSION

Genetic relationships

A set of 35 SSR loci were used to genotype Barbera, Bela Glera, Gouais blanc, Nebbiolo, Pinot noir, Prosecco tondo, Ribolla gialla, Schiava bresciana, Schiava grossa, Schiava lombarda, Syrah and Traminer. Twelve unique allelic profiles were identified, and only Schiava bresciana and Schiava lombarda shared the same allelic profile. The SSR allelic profiles of the identified genotypes are listed in Table 1. By comparing our results with DNA profiles published in previous works, the true-to-typeness of Barbera (This *et al.*, 2004), Bela Glera (Štajner *et al.*, 2008), Gouais blanc (Bowers *et al.*, 1999a), Nebbiolo (Schneider *et al.*, 2003), Pinot noir (Vouillamoz & Grando, 2006), Prosecco tondo (Crespan *et al.*, 2007), Ribolla gialla (Rusjan *et al.*, 2010), Schiava grossa (Vouillamoz & Arnold, 2010), Syrah (Vouillamoz

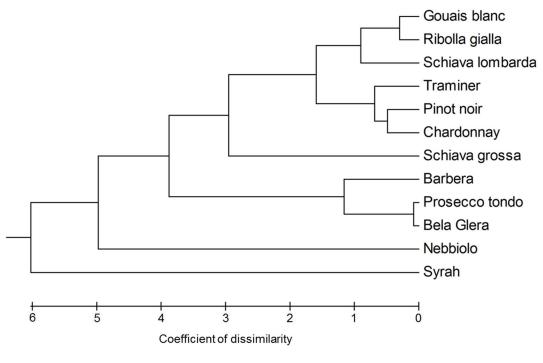


FIGURE 1

Neighbor-Joining dendrogram based on dissimilarity matrix of the first three PCA coordinates, showing the genetic relationship among 12 grapevine cultivars as determined by SSR data.

& Grando, 2006) and Traminer (Regner *et al.*, 2000) was ascertained. The allelic profiles of Schiava bresciana and Schiava lombarda did not match with any genotype in the available databases.

In order to understand the genetic similarity among cultivars, PCA was calculated based on the 35 SSR loci data matrix. The first three coordinates accounted for 68.18% of the total variation (28.09%, 21.03% and 19.06%, respectively). Based on the dissimilarity matrix obtained from the first three coordinates, a dendrogram displaying the relationship among samples was built (Fig. 1). The dendrogram showed two main clusters (threshold of dissimilarity value = 2): i) the first one comprising Chardonnay, Gouais blanc, Pinot noir, Ribolla gialla, Schiava lombarda and Traminer; ii) the second one including Barbera and two varieties cultivated in the north-east of Italy and Slovenia, namely Bela Glera and Prosecco tondo. The other varieties were grouped in minor clusters. Inside the first main cluster, two very distinct subsets were identified: the first one including Gouais blanc, Ribolla gialla and Schiava lombarda, with the second one including Chardonnay, Pinot noir and Traminer. The Schiava grossa variety, clustered without any other samples, appeared to be related more to the first main cluster, while Nebbiolo and Syrah were grouped as outgroups. The dendrogram showed a clear genetic grouping of varieties largely consistent with their geographic origin. As expected, the molecular analysis highlighted the similarity among Gouais blanc, Ribolla gialla and one cultivar of "Schiava" (Schiava lombarda). This result was in agreement with the hypothesis of a common geographical origin for those varieties. The differences in the allelic profiles of the Schiava cultivars were confirmed, but the dissimilarity of these two genotypes was lower than expected if following the results obtained by Fossati et al.

(2001). Our results, based on the analysis of 35 SSR loci, could reject the Fossati *et al.* (2001) hypothesis that the term "Schiave" more likely refers to a similarity in the vine training system than to a similar genetic background. The latter hypothesis was based on an analysis of only five SSR loci and five AFLP primers combinations, which are known sometimes to produce irreproducible AFLP-banding profiles (Benjak *et al.* 2006).

Furthermore, the dendrogram grouped together the Gouais blanc, Ribolla gialla and Schiava lombarda cultivars, which share some phenotypic and oenological traits: high vigour and high-yielding capacity, large berries and bunches, and medium sugar and high acidity levels in the berry juice (O. Failla, personal communication, 2013). A further indication of the common origin of Gouais blanc and Schiava is linked to the semantics of the variety name. In Germany, the medieval term "Heunisch" was used to identify the local wines in contrast to "Fränkisch" (foreign wine). "Heunisch" and "Schiava" appear to have the same semantic value: "Heunisch" - "Hunnisch" i.e. Huns'; and "Schiava" - "Slavus" i.e. Slavic (from Slavonia), two old populations coming from Eastern Europe (Scienza & Failla, 1996). Following the Venetian meaning of the term "Slavus", the Slavs in particular were considered to be the populations coming from the Northern Balkans.

Moreover, the second main cluster showed a consistent relationship with geographical area. In this cluster we find Bela Glera and Prosecco tondo strongly related to Friuli Venezia Giulia (the Italian region), Istria and Slovenia. Both names sometimes were used erroneously to identify the same variety (Crespan *et al.*, 2007). The name Prosecco tondo could have arisen from the village of Prosecco (Trieste, Friuli Venezia Giulia), and its synonyms are Teran Bijeli in Croatia (Maletić *et al.*, 1999), and Briška Glera and Števerjana in Slovenia (Štajner *et al.*, 2011). Varieties called "Glera" are cultivated in Italy (Cividale and Tieste) and in neighbouring countries (Crespan *et al.*, 2009; Rusjan *et al.*, 2010). The allelic profile of Bela Glera was genetically dissimilar to the other Glera/Prosecco tondo allelic profiles reported in previous works (Štajner *et al.*, 2008; Crespan *et al.*, 2009; Rusjan *et al.*, 2010). This dissimilarity could be explained by the use of the word "Glera" to identify a group of white grapevine varieties (Vertovec, 1844). What was surprising was the presence of Barbera, one of the most important red grape varieties grown in the north-west of Italy, in the third cluster.

Two varieties largely cultivated in the Alpine Arc, Nebbiolo and Syrah, were grouped as an outgroup. Nebbiolo is considered one of the noblest Italian varieties, and its growing area is limited to the mountains of Valle d'Aosta, Piemonte and Valtellina, while Syrah is the famous Rhone Valley red grape cultivar cultivated worldwide. The dissimilarity between the first main cluster and the outgroup varieties was consistent with the genetic distance between Pinot noir and Syrah proved by Vouillamoz and Grando (2006).

Kinship analysis

Considering the broad participation of Gouais blanc and Traminer in the parentship, origin and spread of the grape landraces, Ribolla gialla could be considered a good candidate for having a strong relationship with these two varieties. In order to investigate a possible relationship between Gouais blanc, Ribolla gialla and Traminer, 58 SSR loci were used to generate a deep genotyping and to suggest the most likely pedigree among these varieties. The allelic profile of each analysed cultivar is listed in Table 2.

Gouais blanc and Ribolla gialla shared at least one allele for locus 53 out of 58 loci (IBS = 53), and the IBD and relatedness coefficients values were: $\Delta_7 = -0.0610 \pm 0.0145$; $\Delta_8 = 0.5031 \pm 0.0377$; and $r = 0.1905 \pm 0.0023$ respectively. These results are not typical of the PO (parent-offspring) relationship, as the IBS value should have been 58 (100% of analysed loci) and the IBD and r values should have been close to the theoretical values 0, 1 and 0.5. The putative PO relationship between Gouais blanc and Ribolla gialla can be ruled out, because it would seem improbable that five discrepancies can be explained by mutations, null alleles or PCR errors (Vouillamoz & Grando, 2006). Nevertheless, these values could explain a second-degree relationship.

At the same time, the supposed close relationship

TABLE 2

Allelic profiles of 23 additional SSR loci for Gouais blanc, Ribolla gialla and Traminer cultivars. Reference variety: 'Pinot noir'.

Locus	Gouais blanc	Ribolla gialla	Traminer	Pinot Noir
VMC1a10	142	156	156	156
VMC1c10	168	168	168	156
VMC2-5	157	157	157	189
VMC2a5	171	171	189	189
VMC2h11	184	168	168	180
VMC2b11	184	184	180	182
VMC2-7	152	156	152	152
VMC2e7	156	160	160	158
VMC2610	97	93	93	93
VMC2f10	99	99	103	115
VMC3d12	198	205	198	205
	205	205	205	222
VMC4c6	157	163	163	163
	163	165	165	163
VMC5g8	303	303	313	313
	311	317	317	317
VMC6e1	141	165	151	151
	165	170	161	165
VMC6e10	91	109	109	107
	107	132	113	109
VMC6g1	198	191	170	170
	198	198	170	178
VMC0411	136	126	132	122
VMC8d11	142	136	136	132

Locus	Gouais blanc	Ribolla gialla	Traminer	Pinot Noir
VMC9610	197	205	197	195
VMC8f10	205	233	233	197
VMC9-C	147	147	155	147
VMC8g6	155	155	169	169
VMC015	248	244	242	244
VMC9b5	262	250	244	248
VMC1(C)	177	177	177	177
VMC16f3	181	177	183	183
VrZag21	202	202	200	200
	206	215	206	206
VrZag29	112	112	112	112
	112	116	116	116
VVMD6	194	194	205	205
	214	212	212	205
VVMD26	249	249	249	249
	251	249	251	255
VVMD31	212	210	204	216
	214	212	216	216
VVS4	168	168	151	168
	168	168	151	173
VVS29	171	171	171	171
	179	179	171	179

TABLE 2 (CONTINUED)

between Ribolla gialla and Traminer has to be dismissed. Ribolla gialla is genetically dissimilar to Traminer, sharing only 47 out of 58 analysed loci. The IBD and *r* coefficient values calculated for these pair of varieties do not match the theoretical values of the assignment of kinship categories (Δ_7 = -0.1675 ± 0.0732; Δ_8 = 0.3281 ± 0.0165; *r* = -0.0035 ± 0.0282), suggesting that Ribolla gialla and Traminer could be third or more distant relatives. These data provide strong evidence that Ribolla gialla is not a progeny of 'Gouais blanc x Traminer'.

CONCLUSIONS

During the process of domestication, the role of winegrowers was to improve the quality and quantity of the production of grapes by selecting seedlings from spontaneous crosses among different domesticated forms of V. vinifera subsp. sativa, and possible also among its wild relative forms of V. vinifera subsp. sylvestris. Gouais blanc has played an important role in the origin of the main grapevines of Central Europe, as is evident from several published research works providing information on the Gouais blanc progeny. Although the hypothesis that Ribolla gialla is a full sibling of two ancient cultivars widely involved in the history of grape breeding (Gouais blanc and Traminer) has been rejected, the genetic data suggest a high correlation among Ribolla gialla, Gouais blanc and the Schiava cultivars. Right now we are not able to determine the hierarchy of or identify the missing links among these varieties, but our results have highlighted

the first evidence of a common ancestral variety and the possible sympatric origin of these grapevines in Eastern-Central Europe.

LITERATURE CITED

Aeberhard, M., 2005 (1st ed). Geschichte der alten Traubensorten: Ein historisch-ampelographischer Rückblick, Aarcadia Verlag, Solothurn.

Bacilieri, R., Lacombe, T., Le Cunff, L., Di Vecchi-Staraz, M., Laucou, V., Genna, B., Péros, J.P., This, P. & Boursiquot, J.M., 2013. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol. doi: 10.1186/1471-2229-13-25

Benjak, A., Konradi, J., Blaich, R. & Forneck, A., 2006. Different DNA extraction methods can cause different AFLP profiles in grapevine (*Vitis vinifera* L.). Vitis 45, 15-21.

Boursiquot, J.M., Lacombe, T., Laucou, V., Julliard, S., Perrin, F.X., Lanier, N., Legrand, D., Meredith, C. & This P., 2009. Parentage of Merlot and related winegrape cultivars of southwestern France: Discovery of the missing link. Aus. J. Grape Wine Res. 15, 144-155.

Bowers, J.E., Boursiquot, J.M., This, P., Chu, K., Johansson, H. & Meredith, C.P., 1999a. Historical genetics: The parentage of Chardonnay, Gamay and other wine grapes of northeastern France. Science 285, 1562-1565.

Bowers, J.E., Dangl, G.S. & Meredith, C.P., 1999b. Development and characterization of additional microsatellite DNA markers for grape. Am. J. Enol. Vitic. 50, 243-246.

Bowers, J.E., Siret, R., Meredith, C.P., This, P. & Boursiquot, J.M., 2000. A single pair of parents proposed for a group of grapevine varieties in Northeastern France. Acta Horticulturae 528, 129-132.

Calò, A. & Costacurta, A., 2004 (1st ed). Dei vitigni italici. Ovvero delle loro storie, caratteri e valorizzazione. Matteo, Treviso.

Calò, A., Scienza, A. & Costacurta, A., 2006 (1st ed). Vitigni d'Italia. Edagricole, Bologna.

Cipriani, G., Spadotto, A., Jurman, I., Di Gaspero, G., Crespan, M., Meneghetti, S., Frare, E., Vignani, R., Cresti, M., Morgante, M., Pezzotti, M., Pe, E., Policriti, A. & Testolin, R., 2010. The SSR-based molecular profile of 1005 grapevine (*Vitis vinifera* L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 121, 1569-1585.

Cosmo, I. & Polsinelli, M., 1957 (1st ed). Ribolla gialla. Annali della sperimentazione agraria, Roma.

Cosmo, I. & Polsinelli, M., 1962 (1st ed). Commissione per lo studio ampelografico dei principali vitigni ad uve da vino coltivati in Italia. Ministero dell'Agricoltura e delle Foreste, Roma.

Crespan, M., Cancellier, S., Chies, R., Giannetto, S., Meneghetti, S. & Costacurta, A., 2009. Molecular contribution to the knowledge of two ancient varietal populations: 'rabosi' and 'glere'. Acta Horticulturae 827, 217-220.

Crespan, M., Crespan, G., Giannetto, S., Meneghetti, S. & Costacurta A., 2007. 'Vitouska' is the progeny of 'Prosecco tondo' and 'Malvasia bianca lunga'. Vitis 46, 192-194.

De Lorenzis, G., Imazio, S., Biagini, B., Failla, O. & Scienza, A., 2012. Pedigree reconstruction of the Italian grapevine Aglianico (*Vitis vinifera* L.) from Campania. Mol. Biotechnol. doi: 10.1007/s12033-012-9605-9

De Lorenzis, G., Imazio, S., Rusjan, D., Vouillamoz, J.F., Nikolaou, N., Failla, O. & Scienza, A., 2013. Genetic investigation of grapevine varieties 'Ribolla Gialla' (Italy), 'Rebula' (Slovenia) and 'Robola' (Ionian Islands). Scientia Horticulturae 150, 425-431.

Forni, G., 2012. The origin of "Old World" viticulture. In: Maghradze, D., Rustioni, L., Scienza, A., Turok, J. & Failla, O. (eds). Caucasus and Northern Black Sea Region. Vitis, Special Issue, 27-38.

Fossati, T., Labra, M., Castiglione, S., Failla, O., Scienza, A. & Sala, F., 2001. The use of AFLP and SSR molecular markers to decipher homonyms and synonyms in grapevine cultivars: The case of the varietal group known as "Schiave". Theor. Appl. Genet. 102, 200-205.

Imazio, S., Maghradze, D., De Lorenzis, G., Bacilieri, R., Laucou, V., This, P., Scienza, A. & Failla O., 2013. From the cradle of grapevine domestication: Molecular overview and description of Georgian grapevine (*Vitis vinifera* L.) germplasms. Tree Genetics and Genomes. doi: 10.1007/ s11295-013-0597-9

Lacombe, T., Boursiquot, J.M., Laucou, V., Di Vecchi-Staraz, M., Péros, J.P. & This, P., 2012. Large-scale parentage analysis in an extended set of grapevine cultivars (*Vitis vinifera* L.). Theor. Appl. Genet. doi: 10.1007/s00122-012-1988-2

Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.P., Dessup, M., Dessup, T., Ortigosa, P., Parra, P., Roux, C., Santoni, S., Varés, D., Pèros, J.P., Boursiquot, J.M. & This, P., 2011. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor. Appl. Genet. 122, 1233-1245.

Maletić, E., Sefc, K.M., Steinkellner, H., Kontić, J.K. & Pejić, I., 1999. Genetic characterization of Croatian grapevine cultivars and detection of synonymous cultivars in neighboring regions. Vitis 38, 79-83.

Olmo, H.P., 1995 (2nd ed). Grapes. Longman, London.

Peakall, R. & Smouse, P.E., 2006. GENALEX 6: GENETIC analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295.

Peterlunger, E., Zurlini, L., Crespan, G., Colugnati, G. & Del Zan, F., 2004. Friuli Venezia Giulia. In: Del Zan, F., Failla, O. & Scienza, A. (eds). La vite e l'uomo dal rompicapo delle origini al salvataggio delle relique, vol I. ERSA – Agenzia Regionale per lo Sviluppo Rurale, Gorizia. pp. 769 – 852.

Regner, F., Stadlhuber, A., Eisenheld, C. & Kaserer, H., 2000. Considerations about the evolution of grapevine and the role of Traminer. Acta Horticulturae 528, 179-184.

Rusjan, D., Jug, T. & Štajner, N., 2010. Evaluation of genetic diversity: Which of the varieties can be named 'Rebula' (*Vitis vinifera* L.)? Vitis 49, 189-192.

Scienza, A., 1999. Cosa significa la definizione: "Vitigni antichi". In: Scienza. A. & Valenti, L. (eds). Vitigni antichi della Lombardia, vol I. Provincia di Pavia, Pavia. pp. 11 – 34.

Scienza, A. & Failla, O., 1996 (1st ed). La circolazione dei vitigni in ambito Padano-Veneto ed Atesino: le fonti storico-letterarie e l'approccio biologico-molecolare. Istituto Trentino del Vino, Trento.

Schneider, A. & Mannini, F., 2006 (1st ed). Vitigni del Piemonte, varietà e cloni. Regione Piemonte, Tipolito Subalpina.

Schneider, A., Boccacci, P. & Botta, R., 2003. Genetic relationships among grape cultivars from North-Western Italy. Acta Horticulturae 603, 229-233.

Sefc, K.M., Regner, F., Turetschek, E., Glossl, J. & Steinkellner, H., 1999. Identification of microsatellite sequences in *Vitis riparia* and their applicability for genotyping of different *Vitis* species. Genome 42, 367-373.

Štajner, N., Korosec-Koruza, Z., Rusjan, D. & Javornik, B., 2008. Microsatellite genotyping of old Slovenian grapevine varieties (*Vitis vinifera* L.) of the Primorje (coastal) winegrowing region. Vitis 47, 201-204.

Štajner, N., Rusjan, D., Korošec-Koruza, Z. & Javornik, B., 2011. Genetic characterization of old Slovenian grapevine varieties of *Vitis vinifera* L. by microsatellite genotyping. Am. J. Enol. Vitic. 62, 250-255.

Tamura, K., Dudley, J., Nei, M. & Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.

This, P., Jung, A., Boccacci, P., Borrego, J., Botta, R., Costantini, L., Crespan, M., Dangl, G.S., Eisenheld, C., Ferreira-Monteiro, F., Grando, S., Ibáñez, J., Lacombe, T., Laucou, V., Magalhães, M., Meredith, C.P., Milani, N., Peterlunger, E., Regner, F., Zulini, L. & Maul, E., 2004. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448-1458.

This, P., Lacombe, T. & Thomas, M.R., 2006a. Historical origin and genetic diversity of wine grapes. Trends Genet. 22, 511-519.

This, P., Siret, R., Lacombe, T., Moreau, R.F., Vares, D. & Boursiquot J.M., 2006b. Grape and wine varietal authentication by DNA analysis. Acs symposium series, USA. doi: 10.1021/bk-2007-0952.ch014

Vertovec, M., 1844 (1st ed). Vinoreja. Agroind Vipava, Vipava.

Vouillamoz, J.F. & Arnold, C., 2010. Microsatellite pedigree reconstruction provides evidence that 'Müller-Thurgau' is a grandson of 'Pinot' and 'Schiava Grossa'. Vitis 49, 63-65.

Vouillamoz, J.F. & Grando, M.S., 2006. Genealogy of wine grape cultivars: Pinot is related to Syrah. Heredity 97, 102-110.

Wang, J., 2011. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resources 11, 141-145.

Zohary, D. & Hopf, M., 2000 (3^{rd} ed). Domestication of plants in the old world. Oxford University Press, Oxford.