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The state observation problem is tackled for a system of 𝑛 coupled reaction-diffusion PDEs, possessing the same diffusivity
parameter and equipped with boundary sensing devices. Particularly, a backstepping-based observer is designed and the
exponential stability of the error system is proven with an arbitrarily fast convergence rate. The transformation kernel matrix is
derived in the explicit form by using the method of successive approximations, thereby yielding the observer gains in the explicit
form, too. Simulation results support the effectiveness of the suggested design.

1. Introduction

Model-based control and advanced process monitoring of
Distributed-Parameter Systems (DPSs), governed by Partial
Differential Equations (PDEs), typically require full state
information. However, the available measurements of DPS
are typically located on the boundary of the spatial domain
that motivates the need of the state observer [1, 2].

For linear infinite-dimensional systems the Luenberger
observer theory was established by replacing matrices with
linear operators [2–4], and the observer design was confined
to determining a gain operator that stabilizes the associated
error dynamics. In contrast to finite dimensional systems,
finding such a gain operator is not trivial even numerically
because operators were not generally representedwith a finite
number of parameters.

Design methods, which are not relying on any discretiza-
tion or finite-dimensional approximation (thereby preserving
the infinite-dimensional representation of the system during
the entire design process) andwhich are yielding the observer
gains in the explicit form, have only recently been investi-
gated. In this context, the backstepping method appears to
be a particularly effective systematic design approach which
can be applied for a broad class of systems governed by
PDEs [5, 6]. Basically, the backstepping approach relies on

the application of an invertible Volterra integral transfor-
mation mapping, a predefined exponentially stable target
system, into the observer error dynamics.

For systems governed by parabolic PDEs defined on a
one-dimensional (1D) spatial domain, a systematic observer
design approach using boundary sensing is introduced in [6].
Recently, the backstepping-based observer design was pre-
sented in [7] for reaction-diffusion processes with spatially
varying reaction coefficient and a certain weighted average
of the state over the spatial domain as measured output. In
[8, 9], backstepping-based observer design was addressed for
reaction-diffusion processes evolving in multidimensional
spatial domains. In [10], the backstepping-based design for
parabolic processes was applied by adopting a nonconven-
tional target system for the error dynamics, embedding
certain discontinuous output injection terms.

More recently, high-dimensional systems of coupled
PDEs were considered in the backstepping-based boundary
control and observer design settings. The most intensive
efforts of the current literature seem however to be oriented
towards coupled hyperbolic processes of the transport type
[11–15]. In [14], a 2 × 2 linear hyperbolic system was sta-
bilized by a single observer-based boundary control input,
with an additional feature that an unmatched disturbance,
generated by an a priori known exosystem, was rejected. Both
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the controller and the observer were designed by following
the backstepping approach. In [12] a state estimator in a semi-
infinite three-dimensional (3D) domain is presented for a
coupled model of magnetohydrodynamic flow, and Fourier
transform methods were applied to put the system in a
form, where the 1D backstepping method is applicable. In
[15], a backstepping-based observer was designed for a sys-
tem of two diffusion-convection-reaction processes coupled
through the corresponding boundary conditions. In [13], a
2 × 2 system of coupled linear heterodirectional hyperbolic
systems was stabilized by a backstepping-based observer-
controller under some boundedness restriction on the spa-
tially dependent coupling coefficients. In [11], observer-con-
troller design was studied for a system of 𝑛 + 1 coupled first-
order heterodirectional hyperbolic linear PDEs (𝑛 of which
featured rightward convecting transport and one leftward)
with a single boundary input. Some specific results concern-
ing the backstepping-based output feedback boundary stabi-
lization of parabolic coupled PDEs have been presented in
the literature. In [16] the controller/observer design for the
linearized 2 × 2 model of thermal-fluid convection has been
treated.

In thiswork, the observer design is developed for a class of
𝑛 coupled diffusion-reaction PDEs in the 1D spatial domain
𝑥 ∈ [0, 1]. The task of the present paper is to generalize
some results presented in [6], where explicit backstepping
observers were developed for a scalar unstable reaction-
diffusion equation. Here a generalization ismade for a set of 𝑛
reaction-diffusion processes, which are coupled through the
corresponding reaction terms. The motivation to this inves-
tigation comes from chemical processes [17] where coupled
temperature-concentration parabolic PDEs were involved to
describe system dynamics.This generalization is shown to be
far from being trivial because the underlying backstepping-
based treatment gives rise to more complex development of
finding out an explicit form of the observer gains in the form
of matrix Bessel series, and, furthermore, it turns out to be
unfeasible in the general case where each process possesses its
own diffusivity parameter. In this work we therefore address
the simplified case where all processes possess the same
diffusivity value, and we postpone the more general case
for further investigations (see Remark 2). The present paper
can be considered as the observer design counterpart of our
recent work [18], where the stabilizing boundary controller
design problem was addressed for a similar class of systems
differing only in the boundary conditions from that consid-
ered in the present work. Subsequently, in [19], the stabilizing
boundary control design problem in the general case of
different diffusivity parameters was addressed and solved.

Particularly, in the present context, two output injections
are needed in the observer dynamics (one distributed along
the spatial domain and another one located at the uncon-
trolled boundary).

The structure of the paper is as follows. After introducing
some useful notation in Section 1.1, Section 2 states the prob-
lem to be investigated and introduces the proposed observer
structure with the underlying backstepping transformation
and (matrix) kernel PDE. In Section 3, the explicit solution
of the kernel PDE is derived. In Section 4, the proposed

observer design is summarized and the main result of this
paper is presented. Section 5 discusses supporting simulation
results, and Section 6 collects some concluding remarks and
future perspectives of this research.

1.1. Notation. The notation used throughout is fairly stan-
dard. 𝐿

2
(0, 1) stands for theHilbert space of square integrable

scalar functions 𝑧(𝜁) on (0, 1) with the corresponding norm

‖𝑧 (⋅)‖2
= √∫

1

0

𝑧
2
(𝜁) 𝑑𝜁. (1)

Throughout the paper the notation
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2
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stands for the corresponding norm of a generic vector
function 𝑍(𝜁) = [𝑧

1
(𝜁), 𝑧
2
(𝜁), . . . , 𝑧

𝑛
(𝜁)] ∈ [𝐿

2
(0, 1)]

𝑛.
With reference to a generic real-valued symmetric matrix

𝑊 of dimension 𝑛, 𝜎
1
(𝑊) denotes the smallest eigenvalue of

𝑊. Finally, 𝐼
𝑛×𝑛

stands for the identity matrix of dimension 𝑛.

2. Problem Formulation and
Backstepping Transformation

The following 𝑛-dimensional system of coupled reaction-
diffusion processes, equipped with Neumann-type boundary
conditions and governed by the boundary-value problem

𝑄
𝑡
(𝑥, 𝑡) = 𝜃𝑄

𝑥𝑥
(𝑥, 𝑡) + Λ𝑄 (𝑥, 𝑡) , (4)

𝑄
𝑥
(0, 𝑡) = 0, (5)

𝑄 (1, 𝑡) = 𝑈 (𝑡) , (6)

is under study. Hereinafter,

𝑄 (𝑥, 𝑡) = [𝑞
1
(𝑥, 𝑡) , 𝑞

2
(𝑥, 𝑡) , . . . , 𝑞

𝑛
(𝑥, 𝑡)]

𝑇

∈ [𝐿
2
(0, 1)]

𝑛

(7)

is the vector collecting the state of all systems,

𝑈 (𝑡) = [𝑢
1
(𝑡) , 𝑢
2
(𝑡) , . . . , 𝑢

𝑛
(𝑡)]
𝑇

∈ R
𝑛 (8)

is the boundary input vector, Λ = {𝜆
𝑖𝑗
} ∈ R𝑛×𝑛 is a real-

valued square matrix, and 𝜃 ∈ R+ is a positive scalar. The
open-loop system (4)–(6) (with 𝑈(𝑡) = 0) may possess
arbitrarily many unstable eigenvalues when the symmetric
part (Λ + Λ

𝑇
)/2 of matrix Λ possesses sufficiently large
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positive eigenvalues. For system (4)–(6) of 𝑛 coupled reac-
tion-diffusion processes, the following observer

𝑄
𝑡
(𝑥, 𝑡) = 𝜃𝑄

𝑥𝑥
(𝑥, 𝑡) + Λ𝑄 (𝑥, 𝑡)

+ 𝐺 (𝑥) [𝑄 (0, 𝑡) − 𝑄 (0, 𝑡)] ,

𝑄
𝑥
(0, 𝑡) = 𝑀[𝑄 (0, 𝑡) − 𝑄 (0, 𝑡)] ,

𝑄 (1, 𝑡) = 𝑈 (𝑡)

(9)

is proposed with 𝐺(𝑥) being a 𝑛th order square matrix of
observer gain functions and𝑀 ∈ R𝑛,𝑛 being a square matrix
of constant observer gains. The error variable

𝑄 (𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) − 𝑄 (𝑥, 𝑡) (10)

is then governed by the error system

𝑄
𝑡
(𝑥, 𝑡) = 𝜃𝑄

𝑥𝑥
(𝑥, 𝑡) + Λ𝑄 (𝑥, 𝑡) − 𝐺 (𝑥)𝑄 (0, 𝑡) , (11)

𝑄
𝑥
(0, 𝑡) = −𝑀𝑄 (0, 𝑡) , (12)

𝑄 (1, 𝑡) = 0. (13)

To design the observer gains 𝐺(𝑥) and 𝑀, the backstepping
approach is involved to find out an invertible transformation

𝑄 (𝑥, 𝑡) =
̃
𝑍 (𝑥, 𝑡) − ∫

𝑥

0

𝑃 (𝑥, 𝑦)
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦, (14)

where𝑃(𝑥, 𝑦) is a 𝑛×𝑛matrix kernel functionwhose elements
are denoted as 𝑝

𝑖𝑗
(𝑥, 𝑦), 𝑖, 𝑗 = 1, 2, . . . , 𝑛, which maps the

error system (11)–(13) into the exponentially stable (the expo-
nential stability properties of the target error system (15)–(17)
will be investigated inTheorem 4) target error dynamics

̃
𝑍
𝑡
(𝑥, 𝑡) = 𝜃

̃
𝑍
𝑥𝑥
(𝑥, 𝑡) − 𝐶

̃
𝑍 (𝑥, 𝑡) , (15)

̃
𝑍
𝑥
(0, 𝑡) = 0, (16)

̃
𝑍 (1, 𝑡) = 0. (17)

The following lemma is in order.

Lemma 1. The error system (11)–(13) is transferred by (14) into
the target error dynamics (15)–(17) provided that the design
terms𝑀 and 𝐺(𝑥) are selected as

𝐺 (𝑥) = 𝜃𝑃
𝑦
(𝑥, 0) , (18)

𝑀 = 𝑃 (0, 0) , (19)

where 𝑃(𝑥, 𝑦) is a solution to the kernel PDE

𝑃
𝑥𝑥
(𝑥, 𝑦) − 𝑃

𝑦𝑦
(𝑥, 𝑦)

= −

1

𝜃

[𝑃 (𝑥, 𝑦) 𝐶 + Λ𝑃 (𝑥, 𝑦)] ,

(20)

𝑃 (𝑥, 𝑥) =

Λ + 𝐶

2𝜃

(𝑥 − 1) , (21)

𝑃 (1, 𝑦) = 0. (22)

Proof. Employing the Leibnitz differentiation rule, the spatial
differentiation of (14) results in

𝑄
𝑥
(𝑥, 𝑡) =

̃
𝑍
𝑥
(𝑥, 𝑡) − 𝑃 (𝑥, 𝑥)

̃
𝑍 (𝑥, 𝑡)

− ∫

𝑥

0

𝑃
𝑥
(𝑥, 𝑦)

̃
𝑍 (𝑦, 𝑡) 𝑑𝑦,

(23)

𝑄
𝑥𝑥
(𝑥, 𝑡) =

̃
𝑍
𝑥𝑥
(𝑥, 𝑡) − [

𝑑

𝑑𝑥

𝑃 (𝑥, 𝑥)]
̃
𝑍 (𝑥, 𝑡)

− 𝑃 (𝑥, 𝑥)
̃
𝑍
𝑥
(𝑥, 𝑡) − 𝑃

𝑥
(𝑥, 𝑥)

̃
𝑍 (𝑥, 𝑡)

− ∫

𝑥

0

𝑃
𝑥𝑥
(𝑥, 𝑦)

̃
𝑍 (𝑦, 𝑡) 𝑑𝑦.

(24)

In turn, the temporal differentiation of (14) and recursive
integration by parts yield

𝑄
𝑡
(𝑥, 𝑡) =

̃
𝑍
𝑡
(𝑥, 𝑡) − ∫

𝑥

0

𝑃 (𝑥, 𝑦)
̃
𝑍
𝑡
(𝑦, 𝑡) 𝑑𝑦

=
̃
𝑍
𝑡
(𝑥, 𝑡) − 𝑃 (𝑥, 𝑥) 𝜃

̃
𝑍
𝑥
(𝑥, 𝑡)

+ 𝜃𝑃 (𝑥, 0)
̃
𝑍
𝑥
(0, 𝑡) + 𝜃𝑃

𝑦
(𝑥, 𝑥)

̃
𝑍 (𝑥, 𝑡)

− 𝜃𝑃
𝑦
(𝑥, 0)

̃
𝑍 (0, 𝑡)

− 𝜃∫

𝑥

0

𝑃
𝑦𝑦
(𝑥, 𝑦)

̃
𝑍 (𝑦, 𝑡) 𝑑𝑦

+ ∫

𝑥

0

𝑃 (𝑥, 𝑦) 𝐶
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦.

(25)

By evaluating (14) at 𝑥 = 0 and 𝑥 = 1 and considering (17),
one derives that

𝑄 (0, 𝑡) =
̃
𝑍 (0, 𝑡) , (26)

𝑄 (1, 𝑡) = −∫

1

0

𝑃 (1, 𝑦)
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦. (27)

Substituting (14), (16) and (24)–(26) into (11) and performing
lengthy but straightforward computations yield

̃
𝑍
𝑡
(𝑥, 𝑡) − 𝜃

̃
𝑍
𝑥𝑥
(𝑥, 𝑡) + 𝐶

̃
𝑍 (𝑥, 𝑡)

= −{𝜃 [

𝑑

𝑑𝑥

𝑃 (𝑥, 𝑥)] + 𝜃𝑃
𝑦
(𝑥, 𝑥) + 𝜃𝑃

𝑥
(𝑥, 𝑥)

− Λ − 𝐶}
̃
𝑍 (𝑥, 𝑡) + [𝑃 (𝑥, 𝑥) 𝜃 − 𝜃𝑃 (𝑥, 𝑥)]

̃
𝑍
𝑥
(𝑥, 𝑡)

+ [𝜃𝑃
𝑦
(𝑥, 0) − 𝐺 (𝑥)]

̃
𝑍 (0, 𝑡) + ∫

𝑥

0

[𝜃𝑃
𝑦𝑦
(𝑥, 𝑦)

− 𝜃𝑃
𝑥𝑥
(𝑥, 𝑦) − 𝑃 (𝑥, 𝑦) 𝐶 − Λ𝑃 (𝑥, 𝑦)]

⋅
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦.

(28)

By evaluating (23) at 𝑥 = 0 and considering (16), it follows
that

𝑄
𝑥
(0, 𝑡) = −𝑃 (0, 0)

̃
𝑍 (0, 𝑡) . (29)
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Substituting (29) and (26)-(27) into (12) and (13), one derives
the conditions

[𝑀 − 𝑃 (0, 0)]
̃
𝑍 (0, 𝑡) = 0,

∫

1

0

𝑃 (1, 𝑦)
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦 = 0.

(30)

Clearly, to obtain the target error PDE (15) the right hand side
of (28) should be identically zero. To meet this requirement,
it suffices to employ relations (30) and exploit the identity
(𝑑/𝑑𝑥)𝑃(𝑥, 𝑥) = 𝑃

𝑥
(𝑥, 𝑥) + 𝑃

𝑦
(𝑥, 𝑥), thereby obtaining both

the kernel boundary-value problem

𝜃 (𝑃
𝑥𝑥
(𝑥, 𝑦) − 𝑃

𝑦𝑦
(𝑥, 𝑦))

= −𝑃 (𝑥, 𝑦) 𝐶 − Λ𝑃 (𝑥, 𝑦) ,

(31)

2𝜃

𝑑

𝑑𝑥

𝑃 (𝑥, 𝑥) = Λ + 𝐶, (32)

𝑃 (1, 𝑦) = 0 (33)

and the observer gain design conditions in the form of (18)-
(19). Integrating (32) with respect to 𝑥 and considering (19)
result in

𝑃 (𝑥, 𝑥) =

1

2𝜃

(Λ + 𝐶) 𝑥 + 𝑃 (0, 0)

=

1

2𝜃

(Λ + 𝐶) 𝑥 +𝑀.

(34)

Evaluating (34) at 𝑥 = 1 yields

𝑃 (1, 1) =

1

2𝜃

(Λ + 𝐶) +𝑀. (35)

By evaluating (33) at𝑦 = 1 it is concluded that𝑃(1, 1) = 0,
thus getting from (35) that

𝑀 = −

1

2𝜃

(Λ + 𝐶) . (36)

Considering (34) and (36), one finally rewrites (31)–(33)
in the form of (20)–(22). Lemma 1 is proven.

Remark 2. The present paper is confined to the case in
which all the coupled PDEs (4) possess the same diffusivity
parameter 𝜃. The reason behind this is that in the more
general case where each process has its own diffusivity 𝜃

𝑖

(𝑖 = 1, 2, . . . , 𝑛), the corresponding “generalized” version

Θ(𝑃
𝑥𝑥
(𝑥, 𝑦) − 𝑃

𝑦𝑦
(𝑥, 𝑦))

= −𝑃 (𝑥, 𝑦) 𝐶 − Λ𝑃 (𝑥, 𝑦) ,

Θ

𝑑

𝑑𝑥

𝑃 (𝑥, 𝑥) + Θ𝑃
𝑥
(𝑥, 𝑥) + Θ𝑃

𝑦
(𝑥, 𝑥) = Λ + 𝐶,

𝑃 (𝑥, 𝑥)Θ = Θ𝑃 (𝑥, 𝑥) ,

𝑃 (1, 𝑦) = 0

(37)

of (20)–(22), where Θ = diag(𝜃
𝑖
), sets an overdetermined

boundary-value problem that has no solution, unless specific
constraints are imposed on the matrix 𝐶 and on the form
of the kernel matrix 𝑃(𝑥, 𝑦). This topic calls for further
investigation and will be published elsewhere.

3. Solving the Kernel PDE (20)–(22)

For later use, the following result is reproduced.

Theorem 3. Problem (20)–(22) possesses a solution

𝑃 (𝑥, 𝑦) = −

∞

∑

𝑛=0

2 (1 − 𝑥) ((1 − 𝑦)
2

− (1 − 𝑥)
2
)

𝑛

𝑛! (𝑛 + 1)!

⋅ (

1

4𝜃

)

𝑛+1

[

𝑛

∑

𝑖=0

(

𝑛

𝑖

)Λ
𝑖
(Λ + 𝐶)𝐶

𝑛−𝑖

]

(38)

which is of class 𝐶∞ in the domain 0 ≤ 𝑦 ≤ 𝑥 ≤ 1.

Proof. By the invertible change of variables

𝑥 = 1 − 𝑦,

𝑦 = 1 − 𝑥,

(39)

one transforms (20)–(22) into

𝑃
𝑥𝑥
(𝑥, 𝑦) − 𝑃

𝑦𝑦
(𝑥, 𝑦)

=

1

𝜃

[𝑃 (𝑥, 𝑦) 𝐶 + Λ𝑃 (𝑥, 𝑦)] ,

𝑃 (𝑥, 𝑥) = −

Λ + 𝐶

2𝜃

𝑥,

𝑃 (𝑥, 0) = 0.

(40)

Following [20], the existence of a solution to problem (40)
can be shown by transforming it into an integral equation
using the change of the variables

𝜉 = 𝑥 + 𝑦,

𝜂 = 𝑥 − 𝑦.

(41)

Setting

𝐻(𝜉, 𝜂) = 𝑃 (𝑥, 𝑦) = 𝑃(

𝜉 + 𝜂

2

,

𝜉 − 𝜂

2

) (42)

the relations

𝑃
𝑥
= 𝐻
𝜉
+ 𝐻
𝜂
,

𝑃
𝑥𝑥

= 𝐻
𝜉𝜉
+ 2𝐻
𝜉𝜂
+ 𝐻
𝜂𝜂
,

𝑃
𝑦
= 𝐻
𝜉
− 𝐻
𝜂
,

𝑃
𝑦𝑦

= 𝐻
𝜉𝜉
− 2𝐻
𝜉𝜂
+ 𝐻
𝜂𝜂

(43)
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are obtained, and the matrix kernel boundary-value problem
(40), written in the new coordinates, takes the form

𝐻
𝜉𝜂
(𝜉, 𝜂) =

1

4𝜃

𝐻 (𝜉, 𝜂) 𝐶 +

1

4𝜃

Λ𝐻 (𝜉, 𝜂) , (44)

𝐻(𝜉, 0) = −

1

4𝜃

(Λ + 𝐶) 𝜉, (45)

𝐻(𝜉, 𝜉) = 0. (46)

Integrating (44) with respect to 𝜂 from 0 to 𝜂 and
considering the relation 𝐻

𝜉
(𝜉, 0) = −(1/4𝜃)(Λ + 𝐶), which

follows from (45), one obtains

𝐻
𝜉
(𝜉, 𝜂) = −

1

4𝜃

(Λ + 𝐶)

+

1

4𝜃

∫

𝜂

0

[𝐻 (𝜉, 𝑠) 𝐶 + Λ𝐻 (𝜉, 𝑠)] 𝑑𝑠.

(47)

Integrating (47) with respect to 𝜉 from 𝜂 to 𝜉 yields

∫

𝜉

𝜂

𝐻
𝜏
(𝜏, 𝜂) 𝑑𝜏

= ∫

𝜉

𝜂

−

1

4𝜃

(Λ + 𝐶) 𝑑𝜏

+

1

4𝜃

∫

𝜉

𝜂

{∫

𝜂

0

[𝐻 (𝜏, 𝑠) 𝐶 + Λ𝐻 (𝜏, 𝑠)] 𝑑𝑠} 𝑑𝜏

(48)

which can further be manipulated to

𝐻(𝜉, 𝜂) − 𝐻 (𝜂, 𝜂)

= −

1

4𝜃

(Λ + 𝐶) (𝜉 − 𝜂)

+

1

4𝜃

∫

𝜉

𝜂

{∫

𝜂

0

[𝐻 (𝜏, 𝑠) 𝐶 + Λ𝐻 (𝜏, 𝑠)] 𝑑𝑠} 𝑑𝜏.

(49)

An explicit form of 𝐻(𝜂, 𝜂) is subsequently derived. For
this purpose, (46) is used to obtain

𝐻(𝜂, 𝜂) = 0. (50)

By substituting (50) into (49) one derives an integral
equation for𝐻(𝜉, 𝜂):

𝐻(𝜉, 𝜂)

= −

1

4𝜃

(Λ + 𝐶) (𝜉 − 𝜂)

+

1

4𝜃

∫

𝜉

𝜂

{∫

𝜂

0

[𝐻 (𝜏, 𝑠) 𝐶 + Λ𝐻 (𝜏, 𝑠)] 𝑑𝑠} 𝑑𝜏.

(51)

The method of successive approximations is then applied
to show that (51) has a smooth solution. Let us start with an
initial approximation

𝐻
0
(𝜉, 𝜂) = 0 (52)

and set up the recursive formula for (51) as follows:

𝐻
𝑛+1

(𝜉, 𝜂)

= −

1

4𝜃

(Λ + 𝐶) (𝜉 − 𝜂)

+

1

4𝜃

∫

𝜉

𝜂

{∫

𝜂

0

[𝐻
𝑛
(𝜏, 𝑠) 𝐶 + Λ𝐻

𝑛
(𝜏, 𝑠)] 𝑑𝑠} 𝑑𝜏.

(53)

Provided that this recursion converges, solution 𝐻(𝜉, 𝜂)

can be represented as

𝐻(𝜉, 𝜂) = lim
𝑛→∞

𝐻
𝑛
(𝜉, 𝜂) . (54)

Let

Δ𝐻
𝑛
(𝜉, 𝜂) = 𝐻

𝑛+1
(𝜉, 𝜂) − 𝐻

𝑛
(𝜉, 𝜂) (55)

stand for the difference between two consecutive terms.Then,
the recursion

Δ𝐻
0
(𝜉, 𝜂) = 𝐻

1
(𝜉, 𝜂) = −

1

4𝜃

(Λ + 𝐶) (𝜉 − 𝜂) , (56)

Δ𝐻
𝑛+1

(𝜉, 𝜂)

=

1

4𝜃

∫

𝜉

𝜂

{∫

𝜂

0

[Δ𝐻
𝑛
(𝜏, 𝑠) 𝐶 + ΛΔ𝐻

𝑛
(𝜏, 𝑠)] 𝑑𝑠} 𝑑𝜏

(57)

is correspondingly concluded from (52)-(53) and (54) is
alternatively represented as

𝐻(𝜉, 𝜂) =

∞

∑

𝑛=0

Δ𝐻
𝑛
(𝜉, 𝜂) . (58)

Since variables 𝜉 and 𝜂 lie in the bounded domain 0 ≤ 𝜂 ≤

𝜉 ≤ 2, one can apply (56) to show that






Δ𝐻
0
(𝜉, 𝜂)






≤

1

𝜃

(‖Λ‖ +






𝐶






) = 𝑁. (59)

In order to apply the mathematical induction method,
suppose that





Δ𝐻
𝑛
(𝜉, 𝜂)





≤ 𝑁
𝑛+1

(𝜉 + 𝜂)
𝑛

𝑛!

. (60)

Then, by employing (57), (59), and (60) one arrives at






Δ𝐻
𝑛+1

(𝜉, 𝜂)






≤

1

4𝜃

(‖Λ‖ +






𝐶






)

⋅

𝑁
𝑛+1

𝑛!











2 ∫

𝜂

0

∫

𝜏

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏 + ∫

𝜉

𝜂

∫

𝜂

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏











=

𝑁
𝑛+2

4𝑛!











2 ∫

𝜂

0

∫

𝜏

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏

+ ∫

𝜉

𝜂

∫

𝜂

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏











.

(61)
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It is readily shown (cf. [21], equation (2.14)) that the next
estimate











2 ∫

𝜂

0

∫

𝜏

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏 + ∫

𝜉

𝜂

∫

𝜂

0

(𝜏 + 𝑠)
𝑛
𝑑𝑠 𝑑𝜏











≤ 4

(𝜉 + 𝜂)
𝑛+1

(𝑛 + 1)

(62)

holds. Therefore, combining (61) and (62), one gets






Δ𝐻
𝑛+1

(𝜉, 𝜂)






≤ 𝑁
𝑛+2

(𝜉 + 𝜂)
𝑛+1

(𝑛 + 1)!

. (63)

Thus, by mathematical induction, (63) holds for all 𝑛 ≥ 0.
It then follows from theWeierstrass𝑀-test that the series (58)
converges absolutely and uniformly in 0 ≤ 𝜂 ≤ 𝜉 ≤ 2. By (56)-
(57), it follows that

Δ𝐻
1
(𝜉, 𝜂)

= −

𝜉
2
𝜂 + 𝜉𝜂

2

2

(

1

4𝜃

)

2

[(Λ + 𝐶)Λ + 𝐶 (Λ + 𝐶)] .

(64)

Iterating on the computations, one observes the pattern
which leads to the following formula:

Δ𝐻
𝑛
(𝜉, 𝜂) = −

(𝜉𝜂)
𝑛

(𝜉 − 𝜂)

𝑛! (𝑛 + 1)!

(

1

4𝜃

)

𝑛+1

⋅ [

𝑛

∑

𝑖=0

(

𝑛

𝑖

)Λ
𝑖
(Λ + 𝐶)𝐶

𝑛−𝑖

] .

(65)

The solution to the integral equation (51) is therefore
given by the next series expansion

𝐻(𝜉, 𝜂) = −

∞

∑

𝑛=0

(𝜉𝜂)
𝑛

(𝜉 − 𝜂)

𝑛! (𝑛 + 1)!

(

1

4𝜃

)

𝑛+1

⋅ [

𝑛

∑

𝑖=0

(

𝑛

𝑖

)Λ
𝑖
(Λ + 𝐶)𝐶

𝑛−𝑖

]

(66)

which is absolutely and uniformly converging.
Converting (66) into the original 𝑥, 𝑦 variables, one

obtains the series expansion (38) for the Kernel matrix
𝑃(𝑥, 𝑦) which solves the kernel boundary-value problem
(40). Straightforward inspection reveals that (38) is infinitely
times continuously differentiable. Returning back to the
original (𝑥, 𝑦) variables, one obtains (38). Theorem 3 is thus
proven.

3.1. Inverse Transformation. Transformation (14) is a matrix
Volterra integral equation of the second type. Since 𝑃(𝑥, 𝑦) is
continuous by Theorem 3, there exists a continuous inverse
kernel 𝐿(𝑥, 𝑦) (see, e.g., [11, 22] for the scalar case which is
straightforwardly extended to the present vector case) such
that

𝑄 (𝑥, 𝑡) =
̃
𝑍 (𝑥, 𝑡) + ∫

𝑥

0

𝐿 (𝑥, 𝑦)
̃
𝑍 (𝑦, 𝑡) 𝑑𝑦 (67)

implicitly defined on 𝑇 = {(𝑥, 𝑦) ∈ 𝑅
2
: 0 ≤ 𝑦 ≤ 𝑥 ≤ 1} by

𝐿 (𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) + ∫

𝑥

𝑦

𝐿 (𝑥, 𝑠) 𝑃 (𝑠, 𝑦) 𝑑𝑠. (68)

Relation (68) can in fact be easily derived by substituting
(14) into (67) and performing straightforward manipulations
of the resulting integral equation. The method of successive
approximations can be then applied to show that (68) gives
rise to a unique 𝑅(𝑥, 𝑦), which has as much regularity as
𝑃(𝑥, 𝑦) has. Detailed computations, which follow similar
steps as those carried out in the proof of Theorem 3, are
skipped for brevity.

4. Main Result

Taking advantage of the explicit solution (38) to the kernel
boundary-value problem (20)–(22), the explicit representa-
tion

𝑀 = −

Λ + 𝐶

2𝜃

,

𝐺 (𝑥) = 𝜃

∞

∑

𝑛=0

4𝑛 (1 − 𝑥) (2𝑥 − 𝑥
2
)

𝑛−1

𝑛! (𝑛 + 1)!

(

1

4𝜃

)

𝑛+1

⋅ [

𝑛

∑

𝑖=0

(

𝑛

𝑖

)Λ
𝑖
(Λ + 𝐶)𝐶

𝑛−𝑖

]

(69)

of the observer gains is straightforwardly derived by specify-
ing (18)-(19) accordingly.

The stability features of the target error dynamics (15)–
(17) are going to be studied. The following result is in force.

Theorem 4. If the design matrix 𝐶 is selected such that its
symmetric part𝐶

𝑠
= (𝐶+𝐶

𝑇

)/2 is positive definite, then system
(15)–(17) is exponentially stable in the space [𝐿

2
(0, 1)]

𝑛 with the
convergence rate specified by







̃
𝑍 (⋅, 𝑡)





2,𝑛

≤







̃
𝑍 (⋅, 0)





2,𝑛

𝑒
−𝜎
1
(𝐶
𝑠
)𝑡
. (70)

Proof. Consider the Lyapunov function𝑉(𝑡) = (1/2) ∫

1

0

̃
𝑍
𝑇
(𝜉,

𝑡)
̃
𝑍(𝜉, 𝑡) 𝑑𝜉 = (1/2)‖

̃
𝑍(⋅, 𝑡)‖

2

2,𝑛
.The corresponding timederiv-

ative along the solutions of (15)–(17) is given by

�̇� (𝑡) = ∫

1

0

̃
𝑍
𝑇
(𝜉, 𝑡) Θ

̃
𝑍
𝑥𝑥
(𝜉, 𝑡) 𝑑𝜉

− ∫

1

0

̃
𝑍
𝑇
(𝜉, 𝑡) 𝐶

̃
𝑍 (𝜉, 𝑡) 𝑑𝜉.

(71)

Integrating by parts taking into account the BCs (16) and
(17) and exploiting the diagonal form of matrix Θ yield

∫

1

0

̃
𝑍
𝑇
(𝜉, 𝑡) Θ

̃
𝑍
𝑥𝑥
(𝜉, 𝑡) 𝑑𝜉

=
̃
𝑍
𝑇
(𝜒, 𝑡) Θ

̃
𝑍
𝑥
(𝜒, 𝑡)








𝜒=1

𝜒=0

− ∫

1

0

̃
𝑍
𝑇

𝑥
(𝜉, 𝑡) Θ

̃
𝑍
𝑥
(𝜉, 𝑡) 𝑑𝜉 ≤ −𝜃

𝑚







̃
𝑍
𝑥
(⋅, 𝑡)







2

2,𝑛
,

(72)
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where 𝜃
𝑚

= min
1≤𝑖≤𝑛

𝜃
𝑖
> 0. Since 𝜎

1
(𝐶
𝑠
) is assumed to be

positive then exploiting the trivial inequality ̃
𝑍
𝑇
(𝜉, 𝑡)𝐶

̃
𝑍(𝜉,

𝑡) ≥ 𝜎
1
(𝐶
𝑠
)
𝑇̃
𝑍(𝜉, 𝑡)

̃
𝑍(𝜉, 𝑡) and employing (72), one manip-

ulates (71) to derive

�̇� (𝑡) ≤ −𝜃
𝑚







̃
𝑍
𝜉
(⋅, 𝑡)







2

2,𝑛
− 2𝜎
1
(𝐶
𝑠
)𝑉 (𝑡)

≤ −2𝜎
1
(𝐶
𝑠
)𝑉 (𝑡) ,

(73)

thereby concluding the exponential stability of the target
error dynamics in the space [𝐿

2
(0, 1)]

𝑛 with a convergence
rate obeying the estimate (70). Theorem 4 is proven.

The next theorem specifies the proposed observer design
and summarizes the main result of this paper.

Theorem 5. The observer (9), with gains𝑀 and𝐺(𝑥) set as in
(69) and with matrix 𝐶 being selected such that its symmetric
part 𝐶

𝑠
= (𝐶 + 𝐶

𝑇

)/2 is positive definite, reconstructs the state
of system (4)–(6) with an arbitrarily fast convergence rate in
accordance with






𝑄 (⋅, 𝑡)





2,𝑛

≤ 𝐴






𝑄 (⋅, 0)





2,𝑛

𝑒
−𝜎
1
(𝐶
𝑠
)𝑡
, (74)

where 𝐴 is a positive constant independent of 𝑄(𝜉, 0).

Proof. In Lemma 1 and Theorem 3, it was shown that the
error system (11)–(13) is transferred, by means of (14), into
the target error dynamics (15)–(17) provided that the gains𝑀
and𝐺(𝑥) are selected as in (18)-(19) where solution 𝑃(𝑥, 𝑦) to
kernel PDE (20)–(22) is given by (38). Specifying (18)-(19) in
light of the actual form of solution (38), it straightforwardly
results in (69), where 𝑃(0, 0) is derived by specifying (21) at
𝑥 = 0 and 𝑃

𝑦
(𝑥, 0) is readily obtained by differentiating (38)

with respect to 𝑦 at 𝑦 = 0.
The asymptotic stability features of (15)–(17), subject to

the design requirement that the arbitrary design parameter
𝐶
𝑠
= (𝐶 + 𝐶

𝑇

)/2 is positive definite, were demonstrated in
Theorem 4. In particular, according to (70), the correspond-
ing convergence rate can be made arbitrarily fast by a proper
selection of the 𝐶matrix.

From now on, we follow [20] to derive analogous con-
vergence properties for the original system (4)–(6) as well.
Observing that 𝜉 + 𝜂 = 𝑥, one derives from (58)–(60) that
‖𝑃(𝑥, 𝑦)‖ ≤ 𝑁𝑒

2𝑁𝑥, and the same bound can be derived
for the norm of the inverse transformation kernel matrix
𝐿(𝑥, 𝑦) as well; that is, ‖𝐿(𝑥, 𝑦)‖ ≤ 𝑁𝑒

2𝑁𝑥. A straightforward
generalization of [20, Th 4] yields that those two bounded-
ness relations, coupled together, establish the equivalence of
norms of ̃𝑍(𝑥, 𝑡) and 𝑄(𝑥, 𝑡) in [𝐿

2
(0, 1)]

𝑛 which means that
there exists a positive constant𝐴 independent of𝑄(𝜉, 0) such
that the estimate (74) is in force as a direct consequence of
(70). Theorem 5 is proven.

5. Simulation Results

5.1. Academic Example. To validate the proposed observer,
system (4)–(6) of coupled reaction-diffusion processes is

specified for simulation purposes with 𝑛 = 3 and with
parameters

𝜃 = 2,

Λ =
[

[

[

1 2 3

4 5 3

2 5 1

]

]

]

.

(75)

The initial conditions are set to 𝑞
1
(𝑥, 0) = 𝑞

2
(𝑥, 0) =

𝑞
3
(𝑥, 0) = 2sin(𝜋𝑥) + 2sin(3𝜋𝑥). For solving the underlying

PDEs, a standard finite-difference approximation method is
used by discretizing the spatial solution domain 𝑥 ∈ [0, 1]

into a finite number of 𝑁 uniformly spaced solution nodes
𝑥
𝑖
= 𝑖ℎ, ℎ = 1/(𝑁 + 1), 𝑖 = 1, 2, . . . , 𝑁. The value 𝑁 = 40

is then used. The resulting 40th order discretized system
is subsequently solved by fixed-step Runge-Kutta ODE4
method with step 𝑇

𝑠
= 10
−4.

The unstable behaviour of the plant subject to the open-
loop input vector 𝑈(𝑡) = [5sin𝑡, 10sin2𝑡, 15sin3𝑡]𝑇 is dis-
played in Figure 1, which for certainty shows the diverging
spatiotemporal evolution of the states 𝑞

1
(𝑥, 𝑡) and 𝑞

3
(𝑥, 𝑡).

Observer (9), (69) has been implemented by selecting
the design matrix 𝐶 = 10𝐼

3×3
and by specifying the initial

conditions at 𝑞
1
(𝑥, 0) = 𝑞

2
(𝑥, 0) = 𝑞

3
(𝑥, 0) = 0. Figure 2

displays the spatiotemporal evolution of the observed states
𝑞
1
(𝑥, 𝑡) and 𝑞

3
(𝑥, 𝑡), which clearly mimic the corresponding

actual states. Figure 3 shows the temporal evolution of the
norm ‖𝑄(⋅, 𝑡)‖

2,3
, which tends to zero exponentially, thus

confirming the correct functioning of the proposed observer
and supporting the theoretical analysis.

5.2. Application Example. To provide a more valuable val-
idation of the proposed scheme, we consider the coupled
temperature-concentration dynamics of a Chemical Tubular
Reactor (CTR) at low fluid superficial velocities, when con-
vection terms become negligible, dealt with in [17]. After a
suitable transformation, the next dimensionless model was
derived

𝜕𝑥
1

𝜕𝑡

= 𝐷
1

𝜕
2
𝑥
1

𝜕𝜉
2
+ 𝑘
0
𝛿 (1 − 𝑥

2
) 𝑒
−𝛾/(1+𝑥

1
)
,

𝜕𝑥
2

𝜕𝑡

= 𝐷
2

𝜕
2
𝑥
2

𝜕𝜉
2
+ 𝑘
0
(1 − 𝑥

2
) 𝑒
−𝛾/(1+𝑥

1
)
,

𝑥
1𝜉
(0, 𝑡) = 𝑥

2𝜉
(0, 𝑡) = 0,

𝑥
1
(1, 𝑡) = 𝑢

1
(𝑡) ,

𝑥
2
(1, 𝑡) = 𝑢

2
(𝑡) ,

(76)

where the states𝑥
1
and𝑥
2
denote the normalized temperature

and concentration, respectively, and the underlying physical
parameters take the values

𝐷
1
= 𝐷
2
= 0.167,

𝛿 = 0.5,

𝑘
0
= 2.426 ⋅ 10

7
,

𝛾 = 20.

(77)
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Figure 1: Spatiotemporal evolution of 𝑞
1
(𝑥, 𝑡) (a) and 𝑞

3
(𝑥, 𝑡) (b).
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Figure 2: Spatiotemporal evolution of 𝑞
1
(𝑥, 𝑡) (a) and 𝑞

3
(𝑥, 𝑡) (b).
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Its linearization around the constant profiles

𝑥
∗

1
(𝜉, 𝑡) = 0.1,

𝑥
∗

2
(𝜉, 𝑡) = 0.98

(78)

gives rise to model (4)–(6) with the following diffusivity and
reaction parameters:

𝜃 = 0.167,

Λ = [

1.018 0.154

2.037 0.308

] .

(79)

The open-loop control input 𝑈(𝑡) = [5sin𝑡, 10sin2𝑡]𝑇
was selected. The plant ICs are set to 𝑥

1
(𝑥, 0) = 𝑥

2
(𝑥, 0) =

2sin(𝜋𝜉) + 2sin(3𝜋𝜉). The unstable open-loop behaviour of
the plant state 𝑥

2
(𝜉, 𝑡) is displayed in Figure 4(a). Observer

(9), (69) has been implemented by selecting the design
matrix 𝐶 = 20𝐼

2×2
and by specifying ICs 𝑥

1
(𝜉, 0) =

𝑥
2
(𝜉, 0) = 0. Figure 4(b) shows that the observer is able to

correctly reconstruct the unstable profile of the plant state
𝑥
2
(𝜉, 𝑡). Figure 5 shows the temporal evolution of the norm

‖𝑄(⋅, 𝑡)‖
2,2
, which confirms the correct functioning of the

observer for the estimation of the state variable 𝑥
2
(𝜉, 𝑡), too.
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Figure 4: Spatiotemporal evolution of 𝑥
2
(𝜉, 𝑡) (a) and 𝑥

2
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6. Conclusions

The backstepping-based anticollocated observer design of a
system of 𝑛 coupled parabolic linear PDEs has been tackled,
and an explicit representation of the underlying observer
gains has been derived which allows one to enforce an
arbitrarily fast exponential decay of the observation error
dynamics in the space [𝐿

2
(0, 1)]

𝑛.The extension to the case of
different diffusivities and spatially dependent parameters and
the observer-based output feedback design of a stabilizing
controller𝑈(𝑡) are among the most interesting future lines of
related investigations that will be pursued in our future work.
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