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PAPER

Exploring Fourier transform mid-infra-red spectrometry to predict
biochemical parameters in horse’s blood

Andrea Minuti , Luigi Calamari , Giulia Ferronato , Annarita Ferrari , Olga Gachiuta, Paolo Bani
and Erminio Trevisi

Dipartimento di Scienze Animali, degli Alimenti e della nutrizione - DIANA, Facolt�a di Scienze Agrarie, Alimentari ed Ambientali,
Universit�a Cattolica del Sacro Cuore, Piacenza, Italy

ABSTRACT
The aim of this study was to evaluate the use of Fourier transform mid-infra-red (FT-MIR) spec-
trometry to analyse blood biochemical parameters of the horse. For this purpose, mid infrared
transmission spectra were acquired from plasma samples from 72 healthy horses. Each sample
was also analysed using reference clinical chemical methods, and these results were used as cal-
ibrating values to develop predictive models by partial least squares method. The validation was
carried out using external validation method. The coefficient of determination (R2) and the ratio
of prediction to deviation (RPD) showed high values for parameters regarding energy and pro-
tein metabolism. Among energy parameters, an excellent prediction model was developed for
total cholesterol (R2¼ 0.94; RPD¼ 4.40) and triglycerides (R2¼ 0.96; RPD¼ 5.0) while fair results
were obtained for cholesterol fractions (R2 range: 0.75–0.80; RPD range: 2.0–2.3). Among protein
metabolism parameters, excellent prediction models were developed for total protein, albumin,
globulin (R2 range: 0.96–0.99; RPD range: 5.40–9.30) and good prediction model for urea
(R2¼ 0.90; RPD¼ 3.2), confirming previous results with the plasma of dairy cows. Our results
highlight that FT-MIR spectrometry offers an accurate measurement of important plasma bio-
markers for the evaluation of energy (cholesterol and triglycerides) and protein metabolism
(urea), as well as for health status (albumin/globulin ratio). Our results may open an interesting
perspective of a more cost-effective approach to monitoring the metabolic status and health
conditions of the horse, with the future possibility to predict some blood biomarkers by the
practitioner in field.

HIGHLIGHTS

� FT-MIR potential to measure blood parameters in horses was explored;
� Infra-red spectrometry can be used in horse’s clinical chemistry;
� Fast and cost-effective metabolic status evaluation in horses;
� Accurate FT-MIR predictions for plasma protein and lipid fractions in horses.
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Introduction

Plasma or serum chemistry profiling can identify levels
of several proteins, enzymes, electrolytes and other
biochemical molecules that give information on gen-
eral health status and metabolic condition as well as
on individual organs’ functionality. Therefore, plasma
chemistry is used in diagnostic investigation to pro-
vide supportive evidence of a suspected diagnosis, as
a prognostic indicator, to monitor metabolic changes
that can be used to track the progress of disease in
animals under treatment (Burlikowska et al. 2015) and
to reveal health disorders already in a preclinical stage.

Moreover, in sport horses, the routinary evaluation of
a metabolic profile can provide important information
in terms of nutritional status and performance evalu-
ation in sport horses (Lindner 2000). The standard
methodology to analyse those parameters is expensive
and the time to get the results from the lab is often
too long.

Infra-red, vibrational, spectroscopy deals with meas-
urements of the electromagnetic spectrum that origi-
nates from transitions between quantised energy
states due to vibrations of molecular bonds (Long
2005). Applications of infra-red spectroscopy as an

CONTACT Dr Andrea Minuti andrea.minuti@unicatt.it Dipartimento di Scienze Animali, degli Alimenti e della nutrizione – DIANA, Facolt�a di
Scienze Agrarie, Alimentari ed Ambientali, Universit�a Cattolica del Sacro Cuore, Piacenza, Italy

Supplemental data for this article can be accessed here.

� 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ITALIAN JOURNAL OF ANIMAL SCIENCE
2019, VOL. 18, NO. 1, 1223–1230
https://doi.org/10.1080/1828051X.2019.1647121

http://crossmark.crossref.org/dialog/?doi=10.1080/1828051X.2019.1647121&domain=pdf&date_stamp=2019-07-31
http://orcid.org/0000-0002-0617-6571
http://orcid.org/0000-0002-1632-9762
http://orcid.org/0000-0001-9153-8540
http://orcid.org/0000-0001-5945-8540
http://orcid.org/0000-0002-5334-1015
http://orcid.org/0000-0003-1644-1911
https://doi.org/10.1080/1828051X.2019.1647121
http://creativecommons.org/licenses/by/4.0/
https://doi.org./10.1080/1828051X.2019.1647121
http://www.tandfonline.com


analytical tool in different areas of animal production
are receiving growing interest and attention. This
technology has several advantages over other analyt-
ical techniques: rapidity of analysis, no use of chemi-
cals, minimal or no sample preparation and easy
applicability in different work environments (on/in/at-
line applications) (Kruse-Jarres et al. 1990; Shaw et al.
1998). This, along with the availability of cost-effective
micro infra-red instruments available in the field, offer
the possibility to use the developed prediction models
to measure directly in field an ever-wider set of
parameters on different biological fluids. In particular,
FT-MIR technology provides information on a levy
large number of analytes because of the absorptions
bands are sensitive to chemical composition of indi-
vidual constituents (Karoui 2018). The application of
infra-red spectroscopy in clinical chemistry showed
interesting results for human (Shaw et al. 1998; Shaw
and Mantsch 2006) and we have recently reported in
dairy cows accurate FT-MIR prediction models for sev-
eral plasma biomarkers to evaluation animals’ metab-
olism and inflammatory status, including cholesterol
and plasmatic protein fractions (Calamari et al. 2016).
At the moment, to the best of our knowledge, no
reports have investigated the possibility of using infra-
red spectroscopy to analyse a set of biochemical
parameters included in a metabolic profile in horses.
The objective of the present research was to test the
feasibility of developing prediction models of the
main blood biochemical parameters for horses using
Fourier transform mid-infra-red spectrometry (FT-MIR).

Materials and methods

Study design

The research protocol and the animal care were in
accordance with the european directive 2010/63/EU
on the protection of animals used for scientific pur-
poses. The trial involved 72 horses raised in 5 stables
located in North-West Italy. The blood samples were
collected during routine check-up performed by the
veterinary staff of the stables from spring 2015 to win-
ter 2016. Every animal was sampled only one-time
during sample collection. The horses were similarly
distributed for sex with 33 males and 39 females. The
age of the horses ranged from 3 to 24 years with 22
young horses (less than 10 years old), 33 adult horses
(from 10 to 18 years old) and 18 old horses (greater
than 18 years old). The most numerous breeds were:
Arabian (33 horses), Spanish Anglo-Arabian (14
horses), Sella Italiano (9 horses), Nederlands horse (4
horses) and others (12 horses). The detailed

information about race/breed, sex, age, physiological
stage, working activities and diet of the horses is
included in Supplementary Table S1.

Blood sampling and analyses with
reference methods

Blood samples were collected before the morning
meal, by venipuncture from the jugular vein, using 10-
mL Li-heparin treated tubes (Vacuette, containing 18U
of Li-heparin/mL, Kremsm€unster, Austria) and immedi-
ately cooled in an ice-water bath. The plasma
obtained by centrifugation (3500�g for 16min at 4 �C)
was separated into two aliquots: the first aliquot was
immediately used to collect the infra-red spectra; the
second one was stocked at �20 �C until metabolites
analysis and the results were to develop prediction
models based on mid-infra-red spectra. Plasma metab-
olites used as calibrating values were analysed at
37 �C by an automated clinical analyser (ILAB 650,
Instrumentation Laboratory, Lexington, MA, USA) using
the methodology previously described by Calamari
et al. (2016) and reported in Table 1. Commercial kits
from Instrumentation Laboratory SpA (Werfen, Italy)
were used to measure glucose, total cholesterol, urea,
Ca, P, Mg, total protein, albumin, total bilirubin, and
creatinine from Wako (Chemicals GmbH, Neuss,
Germany) to measured non-esterified fatty acids
(NEFA) and Zn. Electrolytes, Na, K and Cl were meas-
ured by the potentiometer method (ion-selective elec-
trode connected to ILAB 650). Kinetic analysis was
adopted to determine the activity of enzymes: alkaline
phosphatase (AP; EC 3.1.3.1), aspartate aminotransfer-
ase (AST; EC 2.6.1.1), c-glutamyltransferase (GGT; EC
2.3.2.2), lactate dehydrogenase (LDH; EC 1.1.1.27) using
Instrumentation Laboratory kits (Instrumentation
Laboratory SpA). Ceruloplasmin and haptoglobin were
measured using the methodology described by
Calamari et al. (2016). Triglycerides were measured
using a kit of Instrumentation Laboratory. Triglycerides
were measured using Trinder endpoint methodology
(glycerol oxidase/peroxidase), after hydrolysis of trigly-
cerides to glycerol. The high-density lipoproteins
(HDL) and low-density lipoproteins (LDL) cholesterol
were measured using a commercial kit (Randox
Laboratories Limited, Crumlin, UK) using Trinder end-
point methodology [cholesterol oxidase (CHOD)/perox-
idase (POD)] after a hydrolysis of cholesterol esters to
free cholesterol. Paraoxonase (PON) activity was meas-
ured according to the methodology described by
Bionaz et al. (2007). Myeloperoxidase (MPO) activity
was measured according to the methodology
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described by Bradley et al. (1982), and Ferric Reducing
Antioxidant Power (FRAP) according to Benzie and
Strain (1999).

FT-MIR spectroscopy

FT-MIR measurements were performed with a
MilkoScan FT (Foss Electric, Hillerød, Denmark). The
instrument was equipped with a flow cell with a heat-
ing system and a homogeniser to standardise the
samples conditions. The spectra were collected in the
range of 5012–925 cm�1 with a spectral resolution of
3.8 cm�1. Every collected spectrum was composed by
1060 points as percentage transmittance. The

absorbance was then calculated for each spectrum,
and only informative areas between 3200 and
900 cm�1 were retained (Foss Electric 2002). Ten milli-
litres of plasma were required to acquire 10 interfero-
grams that were averaged to produce a
single spectrum.

Data analysis

The infra-red spectra of the analysed samples were
processed by the OPUS# (Bruker Optik GmbH,
Ettlingen, Germany) software to develop calibrations
curves for each parameter by using partial least square
(PLS) fit method. The Mahalanobis distances were

Table 1. Analytical reference methods (Calamari et al. 2016) and descriptive statistic of the variables measured in 72 horse
plasma samples using the reference methods.

Analytical reference methods Descriptive statistic

Item Methodology Wavelength, nm CVa Mean SDb Min.c Max.d CVe

Minerals
Ca, mmol/L Endpoint 570 1.40 3.10 0.12 2.77 3.42 4
Na, mmol/L ISE device 0.90 139.60 1.20 136.70 142.50 1
K, mmol/L ISE device 1.30 3.83 0.51 2.14 5.12 13
Cl, mmol/L ISE device 1.50 104.70 1.50 101.70 108.30 1
Zn, lmol/L Endpoint 546 10.48 1.40 7.22 15.89 13
Mg, mmol/L Rate 340 1.40 0.71 0.06 0.56 0.82 8
Inorganic P, mmol/L Endpoint 340 2.00 1.17 0.20 0.75 1.66 17

Enzymes
ASTf, U/L Rate 340 2.10 304.60 103.70 201.30 755.00 34
LDHg, U/L Rate 340 1.00 451.90 138.70 229.90 928.20 31
APh, U/L Rate 405 1.70 130.30 37.80 67.20 227.90 29
Paraoxonase, U/mL Endpoint 405 6.77 103.10 19.60 64.80 147.20 19
GGTi, U/L Rate 405 3.72 27.97 7.33 9.90 48.51 26
Myeloperoxidase, U/L Rate 450 5.13 492.70 84.00 272.30 665.10 17
Ceruloplasmin, mmol/L Endpoint 546 3.48 2.82 0.68 1.58 4.98 24

Protein and energy markers
NEFAj, mmol/L Endpoint 546 1.50 0.19 0.13 0.05 0.51 69
Glucose, mmol/L Endpoint 510 1.50 5.35 0.38 4.50 6.17 7
LDLk cholesterol, mmol/L Endpoint 600 3.30 0.63 0.23 0.20 1.31 37
HDLl cholesterol, mmol/L Endpoint 600 3.10 1.36 0.20 0.93 1.97 14
Urea, mmol/L Endpoint 340 1.20 5.27 0.93 3.38 7.63 18
Total cholesterol, mmol/L Endpoint 510 2.10 2.42 0.36 1.59 3.42 15
Triglycerides, mmol/L Endpoint 510 2.40 0.32 0.09 0.13 0.62 30
Albumin, g/L Endpoint 600 1.80 35.09 1.70 30.90 39.32 5
Globulin, g/L 32.70 3.93 25.70 44.50 12
Total protein, g/L Endpoint 546 1.20 67.80 3.81 60.00 79.00 6

Other parameters
Creatinine, mmol/L Endpoint 510 5.40 106.50 13.10 80.50 137.70 12
Haptoglobin, g/L Endpoint 450 13.54 1.01 0.30 0.16 2.03 30
FRAPm, mmol/L Endpoint 600 7.70 164.60 32.10 73.50 246.00 20
Total bilirubin, mmol/L Endpoint 546 6.70 25.19 8.54 10.54 55.06 34

aCoefficient of variation¼ calculated on the results obtained between runs according to the National Committee for Clinical Laboratory Standards
(Document EP3-T: Guidelines for Manufacturers for Establishing Performance Claims for Clinical Chemistry Methods, Replication Experiment Evaluation,”
Villanova, PA, 1982.).
bStandard deviation.
cminimum.
dmaximum.
ecoefficient of variation of the plasma variables measured with reference method.
faspartate aminotransferase.
glactate dehydrogenase.
halkaline phosphatase.
ic-glutamyl transferase.
jnon-esterified fatty acids.
klow-density lipoproteins.
lhigh-density lipoproteins.
mferric reducing antioxidant power.
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used for the detection of outliers. According to Shaw
and Mantsch (2006), for each parameter two inde-
pendent datasets were created: a calibration dataset
with 54 samples (75% of the total samples) and a val-
idation dataset constituted by 18 samples (25% of the
total samples). The calibration and the validation data-
sets were automatically created by the software for
each parameter in order to be similar in terms of
mean, range and standard deviation. The spectra data
from calibration dataset were preprocessed by maths
functions that included: (a) vector normalisation (SNV;
it normalises a spectrum by first calculating the aver-
age intensity value and subsequent subtraction of this
value from the spectrum. Then the sum of the
squared intensities is calculated, and the spectrum is
divided by the square root of this sum); (b) First
derivative (it calculates the first derivative of spectrum.
This method emphasises steep edges of a peak. It is
used to emphasise pronounced but small features
over a broad background); and (c) First
derivativeþ SNV. The developed calibration model was
internal validated using cross-validation (live-one-out)
procedure. To assess the accuracy of the prediction
models, the following statistics were used: (i) the coef-
ficients of determination R2 for calibration; (ii) the root
mean square error of estimation (RMSEE) for calibra-
tion and (iii) the number of extracted factors. The pre-
diction models with the highest R2 and lowest RMSEE
and number of extracted factors were retained.

The prediction models were applied to the valid-
ation dataset containing the samples previously
excluded from the calibration. The accuracy of the
model was evaluated using R2 for validation, root
mean square error of prediction (RMSEP) and RPD
according to the criteria suggested by Urbano
Cuadrado et al. (2005) and Williams (2014). Moreover,
the bias between predicted and reference values in
the validation dataset was estimated according to
Bland and Altman (1986) using SAS software (SAS
Institute Inc., Cary, NC, USA; release 8.0). A t-test was
applied to establish if the mean value of differences
was significantly different from zero (p< .05), that
would indicate the existence of a fixed bias.

Results

Descriptive statistics are displayed in Table 1. The
horses selected for this study were all clinically healthy
with the concentrations of the blood parameters
within the reference ranges reported for horses with-
out clinical signs of disease (Calamari et al. 1990, 2010;
Abeni et al. 2013). The blood parameters with the

lowest variability (CV <10%; Table 1), in ascending
order, were Na, Cl, Ca, albumin, total protein, glucose
and Mg. The greatest variability (CV �30%; Table 1), in
ascending order, was observed for triglycerides, hapto-
globin, LDH, AST, total bilirubin, LDL cholesterol
and NEFA.

Table 2 shows the summary of PLS prediction mod-
els. The number of extracted factors with the PLS pro-
cedure for each prediction model ranged from 1 to 8.
A low number (�4) of extracted factors was observed
for Ca, Na, K, Zn, AST, LDH, AP, paraoxonase, myelo-
peroxidase, ceruloplasmin, albumin, globulin, total pro-
tein, creatinine, haptoglobin, FRAP, total bilirubin,
whereas a high number (�6) was found for Mg, inor-
ganic P, GGT, NEFA, glucose, LDL cholesterol, HDL
cholesterol, urea, total cholesterol, triglycerides and
albumin globulin ratio.

The R2 in validation ranged from 0.01 to 0.99.
Values of R2 below 0.66 were observed, in increasing
order, for AST, Ca, LDH, creatinine, Na, K, haptoglobin,
Cl, AP, NEFA, paraoxonase, glucose, FRAP, GGT, Zn,
myeloperoxidase, total bilirubin, Mg and ceruloplas-
min. The R2 in validation ranged from 0.66 to 0.81 for
the prediction model of LDL cholesterol and HDL chol-
esterol. Values of R2 in validation greater than 0.82
were observed, in increasing order, for the prediction
models of inorganic P, urea, total cholesterol, triglycer-
ides, albumin, albumin globulin ratio, globulin and
total protein.

The RPD for validation dataset in our study ranged
from 2 to 3 for the prediction models of LDL choles-
terol, HDL cholesterol and inorganic P. An excellent
prediction ability was obtained for parameters related
to energy and protein metabolism. Among energy
parameters, calibration curves developed for total
cholesterol and triglycerides had RPD values greater
than 4. Among the parameters of protein, urea, albu-
min and albumin globulin ratio showed a RPD greater
than 3 and total protein and globulin showed an RPD
greater than 8 (Table 2). Moreover, the Bland–Altman
plots (Supplementary Figure S1) showed for inorganic
P, urea, albumin, globulin and total protein that there
was a good concordance between the results
obtained by FT-MIR and the reference. Also, the t-test
indicated the absence of a fixed bias between pre-
dicted and reference values (p> .05).

Discussion

The accuracy of infra-red analysis is affected by the
quality of the reference assays used (Barbano and
Clark 1989). Precision has to do with how much
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variability there is about the actual value measured
when the assay is replicated. When an assay is run
repeatedly on the same sample and the results
obtained have little variability, the assay is said to
have high precision (Analytical reference methods in
Table 1). In our study, the reference assays used to
analyse some blood parameters were characterised by
sub-optimal repeatability between runs, with a CV
greater than 10% for haptoglobin, and between 3 and
10%, in ascending order, for HDL cholesterol, LDL
cholesterol, ceruloplasmin, GGT, myeloperoxidase, cre-
atinine, total bilirubin, paraoxonase and FRAP. For
almost all these blood parameters, the prediction
models were characterised by a RPD lower than 2,

which is considered to be the minimal threshold for
acceptable approximate quantitative predictions
(Saeys et al. 2005). Among these blood variables with-
out optimal repeatability in the reference chemistry,
only the prediction models of HDL and LDL choles-
terol could be considered near to acceptability. The
reason for this is likely due to two causes: (i) while for
the peroxidase, myeloperoxidase and GGT the refer-
ence method in the plasma measured the enzyme
activity, the HDL and LDL cholesterol fractions are
measured as concentrations of the metabolites; and
(ii) the plasma concentration of cholesterol fractions is
high compared with concentration of ceruloplasmin
and FRAP. Therefore, an improvement in the reference

Table 2. Summary of partial least squares prediction models obtained with the calibration dataset (n¼ 54 samples) and valid-
ation dataset (n¼ 18 samples) from horse plasma samples.

Calibration model Validation model

Parameters
Number of

extracted factors R2a RMSEEb R2a RPDc RMSEPd Bias

Minerals
Ca, mmol/L 1 0.070 0.110 0.030 1.020 0.150 �0.016
Na, mmol/L 1 0.150 1.070 0.190 1.140 1.280 �0.279
K, mmol/L 4 0.360 0.390 0.210 1.190 0.520 �0.173
Cl, mmol/L 5 0.520 1.030 0.260 1.180 1.430 �0.199
Zn, mmol/L 3 0.310 1.220 0.530 1.490 0.920 �0.189
Mg, mmol/L 7 0.590 0.040 0.560 1.540 0.040 0.008
Inorganic P, mmol/L 8 0.910 0.060 0.880 2.920 0.080 �0.002

Enzymes
ASTe, U/L 1 0.110 93.900 0.010 1.000 115.000 24.200
LDHf, U/L 1 0.130 117.000 0.150 1.100 158.000 39.400
APg, U/L 1 0.190 31.800 0.260 1.200 37.800 4.350
Paraoxonase, U/mL 2 0.320 15.900 0.340 1.200 17.400 �1.870
GGTh, U/L 6 0.640 4.140 0.390 1.310 7.020 1.660
Myeloperoxidase, U/L 2 0.350 67.200 0.530 1.500 61.800 8.640
Ceruloplasmin, mmol/L 3 0.530 0.440 0.580 1.540 0.540 0.040

Protein and energy markers
NEFAi, mmol/L 6 0.570 0.090 0.330 1.230 0.100 0.011
Glucose, mmol/L 7 0.610 0.240 0.340 1.310 0.370 �0.133
LDLj cholesterol, mmol/L 7 0.810 0.100 0.750 2.020 0.130 0.018
HDLk cholesterol, mmol/L 7 0.790 0.090 0.800 2.260 0.090 0.024
Urea, mmol/L 7 0.860 0.320 0.900 3.180 0.390 �0.077
Total cholesterol, mmol/L 7 0.950 0.090 0.940 4.370 0.100 0.040
Triglycerides, mmol/L 7 0.920 0.030 0.960 4.960 0.020 0.002
Albumin, g/L 3 0.960 0.340 0.960 5.370 0.370 0.090
Albumin globulin ratio 7 0.980 0.020 0.970 5.920 0.030 0.006
Globulin, g/L 1 0.960 0.770 0.980 8.400 0.590 �0.216
Total protein, g/L 2 0.980 0.530 0.990 9.330 0.480 0.174

Other parameters
Creatinine, mmol/L 1 0.200 11.400 0.150 1.100 13.200 2.380
Haptoglobin, g/L 1 0.150 0.280 0.240 1.150 0.280 �0.028
FRAPl, mmol/L 4 0.420 22.400 0.370 1.400 27.100 11.300
Total bilirubin, mmol/L 4 0.360 6.870 0.530 1.660 6.110 2.920

aCoefficient of determination.
broot mean square error of estimation.
cresidual prediction deviation.
droot mean square error of prediction.
easpartate amino transferase.
flactate dehydrogenase.
galkaline phosphatase.
hc-glutamyl transferase.
inon-esterified fatty acids.
jlow-density lipoproteins.
khigh-density lipoproteins.
lferric reducing antioxidant power.
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assays for these blood parameters without optimal
repeatability could enhance the predictive ability of
the prediction model based on FT-MIR spectroscopy.

Overall, the prediction models of the enzyme’s
activities measured in this study had poor predictive
ability. The inadequate estimation was at least in part
due to the low proportion of high values in this data-
set. For improving the predictive ability of FT-MIR
spectroscopy in the assessment of enzyme activities, it
could be necessary to obtain a more uniform distribu-
tion of data with more samples with high values.
Moreover, the reference methods asses the enzymes
activity but their absolute concentrations are not
quantified. It is therefore possible that discrepancies
exist between the amount and activity of
the enzymes.

The current study still confirms the difficulty in pre-
dicting mineral content in plasma with FT-MIR spec-
troscopy (apart from inorganic P), in particular for
minerals that are not included in organic compounds.
Similar results were observed in our previous study on
plasma dairy cow (Calamari et al. 2016) and in studies
in cow milk, mainly for electrolytes. In particular,
Soyeurt et al. (2009) showed poor prediction ability in
FT-MIR spectroscopy for Mg, Na and K in milk.
Conversely, Soyeurt et al. (2009) and Toffanin et al.
(2015) have suggested the potential of FT-MIR spec-
troscopy to predict Ca and P content in cow milk. The
difficulty observed in our study to predict mineral con-
tent in blood is likely due to two main reasons. First,
among the minerals measured in the blood, a large
proportion is in ionised form and not included in
organic compounds. Approximately, 50% of total Ca in
plasma is in the ionised form, and approximately 45%
is linked to protein, whereas approximately 70% of Mg
is ionised (Rosol and Capen 1997). Furthermore, in the
present study, as we previously observed in dairy cow
plasma (Calamari et al. 2016), the variability observed
for the minerals in our dataset was lower than for
other blood parameters. As before stated, the devel-
opment of better prediction models requires a dataset
containing samples with a greater variability, which
allows for an improvement in the predictive ability of
FT-MIR spectroscopy. To increase the variability of
these parameters, it would be useful to include some
animals with clinical diseases or with different physio-
logical conditions that alter the minerals’ blood
concentration.

The RPD obtained with the validation of the predic-
tion models ranged from 1.02 to 9.33. According to
Williams (2014), six levels of prediction accuracy can
be established based on RPD values for forages, feeds,

soils, functionality factors, etc. For RPD values below
2.5, the calibration is considered poor and valuable
only for a rough screening; values between 2.5 and
2.9 are considered fair and valuable for screening;
between 3.0 and 3.4 are good and can be used for
quality control; between 3.5 and 4.0 are very good
and allow approximate quantitative predictions
whereas above 4.0 the prediction is considered excel-
lent and can be used for any application. The ranking
of prediction accuracy from RPD is confirmed by the
values of R2. Karoui et al. (2006) propose that values
for R2 between 0.50 and 0.65 allow to be used only
for discrimination between high and low concentra-
tions, values for R2 between 0.66 and 0.81 indicate
approximate quantitative predictions, whereas R2 val-
ues between 0.82 and 0.90 reveal good prediction.
Calibration models with coefficient of determination
above 0.91 are considered to be excellent. Thus, based
on that interpretation of RPD and R2, the prediction
models developed for total cholesterol, triglycerides,
albumin, albumin globulin ratio, globulin and total
protein can be considered as excellent. These results
confirm our previous study on plasma dairy cows
(Calamari et al. 2016). Interesting are in particular the
results obtained with FT-MIR for protein and protein
fractions, considering that the Fourier transform infra-
red spectroscopy technique is a widely used tool in
many different fields even to evaluate secondary and
tertiary protein structure (Qi et al. 2004; Jing et al.
2016), differentiation of plasmin and plasminogen in
milk (Ozen et al. 2003), secondary and tertiary struc-
tural changes in bovine plasminogen (Hayes et al.
2003) and casein (Curley et al. 1998) and casein frac-
tions in goat’s milk (D�ıaz-Carrillo et al. 1993). The abil-
ity of FT-MIR to predict protein fractions (i.e. albumin
and globulin) offers the opportunity for more exten-
sive evaluations than just protein metabolism. In fact,
the hypoalbuminaemia may be caused, for example,
by defective albumin synthesis during an inflammatory
event (Minuti et al. 2013, 2014) that at the same time
causes the rise of globulin fractions. The combined
effect of these changes is a decrease in the albumin
globulin ratio that is of greater clinical significance
than the total protein concentration. Then, FT-MIR
offers the possibility, through the prediction of protein
fractions, also to obtain information concerning
aspects of health status and welfare of animals, in
diagnosing many different problems, including liver,
kidney, gastrointestinal tract disease and inflammatory
conditions (Trevisi and Bertoni 2009; Trevisi and
Minuti 2018).
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Conclusions

The results obtained in this study are very promising
and may open an interesting perspective for an easier
and more cost-effective approach to monitoring bio-
chemical parameters in horse’s blood and more gener-
ally of animals. Our results highlight that FT-MIR
spectroscopy offers accurate measurement of some
plasma biomarkers of great importance for the evalu-
ation of the energy and protein metabolism of horses.
Moreover, the very good ability to predict total protein
and some information concerning the alteration in pro-
tein fractions (albumin and globulin) offers the possibility
to obtain information on health status and conditions
implying alteration of albumin globulin ratio. Our results
also suggest that some other plasma biomarkers related
to mineral metabolism, inflammatory conditions, as well
as enzyme activities are more difficult to predict. For
these plasma biomarkers, further studies are needed
involving a larger population and including horses in dif-
ferent health conditions to increase the variability within
each plasma biomarker. Finally, along with the availabil-
ity of cost-effective micro infra-red instruments that can
be used in the field, together with the possibility of
transferring calibration curves from one instrument to
another, the future possibility to predict some blood bio-
markers by the practitioner at horse-side seems feasible.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This manuscript is based on research supported by the
“Romeo and Enrica Invernizzi foundation” Milan, Italy.

ORCID

Andrea Minuti http://orcid.org/0000-0002-0617-6571
Luigi Calamari http://orcid.org/0000-0002-1632-9762
Giulia Ferronato http://orcid.org/0000-0001-9153-8540
Annarita Ferrari http://orcid.org/0000-0001-5945-8540
Paolo Bani http://orcid.org/0000-0002-5334-1015
Erminio Trevisi http://orcid.org/0000-0003-1644-1911

References

Abeni F, Dal Pr�a A, Bertin G, Calamari L. 2013. Serum protein
fraction in mature horses and relationship with metabolic
and hematological parameters. J Equine Vet Sci. 33:905–911.

Barbano DM, Clark JL. 1989. Infrared milk analysis — chal-
lenges for the future. J Dairy Sci. 72:1627–1636.

Benzie IF, Strain JJ. 1999. Ferric reducing/antioxidant power
assay: direct measure of total antioxidant activity of bio-
logical fluids and modified version for simultaneous meas-
urement of total antioxidant power and ascorbic acid
concentration. Methods Enzymol. 299:15–27.

Bionaz M, Trevisi E, Calamari L, Librandi F, Ferrari A, Bertoni
G. 2007. Plasma paraoxonase, health, inflammatory condi-
tions, and liver function in transition dairy cows. J Dairy
Sci. 90:1740–1750.

Bland JM, Altman DG. 1986. Statistical methods for assessing
agreement between two methods of clinical measure-
ment. Lancet. 1:307–310.

Bradley PP, Priebat DA, Christensen RD, Rothstein G. 1982.
Measurement of cutaneous inflammation: estimation of
neutrophil content with an enzyme marker. J Invest
Dermatol. 78:206–209.

Burlikowska K, Boguslawska-Tryk M, Szymeczko R, Piotrowska
A. 2015. Haematological and biochemical blood parame-
ters in horses used for sport and recreation. J Cent Eur
Agric. 16:370–382.

Calamari L, Abeni F, Bertin G. 2010. Metabolic and hemato-
logical profiles in mature horses supplemented with dif-
ferent selenium sources and doses. J Anim Sci. 88:
650–659.

Calamari L, Cappa V, Parmeggiani F, Galizzi Vecchiotti G.
1990. Nota sul profilo metabolico di cavalli trottatori.
Ippologia. 1:67–70.

Calamari L, Ferrari A, Minuti A, Trevisi E. 2016. Assessment of
the main plasma parameters included in a metabolic pro-
file of dairy cow based on Fourier transform mid-infrared
spectroscopy: preliminary results. BMC Vet Res. 12:4.

Curley DM, Kumosinski TF, Unruh JJ, Farrell HM. 1998.
Changes in the secondary structure of bovine casein by
Fourier transform infrared spectroscopy: effects of calcium
and temperature. J Dairy Sci. 81:3154–3162.

D�ıaz-Carrillo E, Mu~noz-Serrano A, Alonso-Moraga A,
Serradilla-Manrique J. 1993. Near infrared calibrations for
goat’s milk components: protein, total casein, as-, b- and
j-caseins, fat and lactose. J Near Infrared Spectrosc. 1:141.

Foss Electric. 2002. MilkoScan FT120. Type 71200. Reference
manual. Issue 9GB.

Hayes KD, Ozen BF, Nielsen SS, Mauer LJ. 2003. FTIR determin-
ation of ligand-induced secondary and tertiary structural
changes in bovine plasminogen. J Dairy Res. 70:461–466.

Jing X, Yang C, Zhang L. 2016. Characterization and analysis
of protein structures in oat bran. J Food Sci. 81:
C2337–C2343.

Karoui R. 2018. Spectroscopic technique: mid-infrared (mir) and
Fourier transform mid-infrared (FT-MIR) spectroscopies. In:
Da-Wen Sun editor. Modern techniques for food authentica-
tion. Cambridge, (MA): Academic Press; p. 23–50.

Karoui R, Mouazen AM, Dufour �E, Pillonel L, Picque D, Bosset
J-O, De Baerdemaeker J. 2006. Mid-infrared spectrometry:
a tool for the determination of chemical parameters in
Emmental cheeses produced during winter. Lait. 86:83–97.

Kruse-Jarres JD, Janatsch G, Gless U, Marbach R, Heise HM.
1990. Glucose and other constituents of blood deter-
mined by ATR-FTIR-spectroscopy. Clin Chem. 36:401–402.

Lindner A. 2000. Use of blood biochemistry for positive per-
formance diagnosis of sport horses in practice. Rev M�ed
V�et. 151:611–618.

ITALIAN JOURNAL OF ANIMAL SCIENCE 1229



Long DA. 2005. Handbook of vibrational spectroscopy, vol-
umes 1–5, edited by J. M. Chalmers and P. R. Griffiths.
John Wiley & Sons, Chichester, 2002, p. 3862. J. Raman
Spectrosc. 36:271.

Minuti A, Ahmed S, Trevisi E, Piccioli-Cappelli F, Bertoni G,
Bani P. 2013. Assessment of gastrointestinal permeability
by lactulose test in sheep after repeated indomethacin
treatment. J Anim Sci. 91:5646–5653.

Minuti A, Ahmed S, Trevisi E, Piccioli-Cappelli F, Bertoni G,
Jahan N, Bani P. 2014. Experimental acute rumen acidosis
in sheep: consequences on clinical, rumen, and gastro-
intestinal permeability conditions and blood chemistry. J
Anim Sci. 92:3966–3977.

Ozen BF, Hayes KD, Mauer LJ. 2003. Measurement of plas-
minogen concentration and differentiation of plasmin and
plasminogen using Fourier-transform infrared spectros-
copy. Int Dairy J. 13:441–446.

Qi PX, Wickham ED, Farrell HM. 2004. Thermal and alkaline
denaturation of bovine beta-casein. Protein J. 23:389–402.

Rosol T, Capen C. 1997. Calcium-regulating hormones and
diseases of abnormal mineral (calcium, phosphorus, mag-
nesium) metabolism. In: Kaneko J, Harvey J, Bruss M, edi-
tors. Clinical biochemistry of domestic animals. 5th ed.
San Diego (CA): Academic Press; p. 619.

Saeys W, Mouazen AM, Ramon H. 2005. Potential for onsite
and online analysis of pig manure using visible and near
infrared reflectance spectroscopy. Biosyst Eng. 91:393–402.

Shaw RA, Kotowich S, Leroux M, Mantsch HH. 1998.
Multianalyte serum analysis using mid-infrared spectros-
copy. Ann Clin Biochem. 35:624–632.

Shaw RA, Mantsch HH. 2006. Infrared spectroscopy in clinical
and diagnostic analysis. Encycl Anal Chem.

Soyeurt H, Bruwier D, Romnee J-M, Gengler N, Bertozzi C,
Veselko D, Dardenne P. 2009. Potential estimation of
major mineral contents in cow milk using mid-infrared
spectrometry. J Dairy Sci. 92:2444–2454.

Toffanin V, De Marchi M, Lopez-Villalobos N, Cassandro M.
2015. Effectiveness of mid-infrared spectroscopy for pre-
diction of the contents of calcium and phosphorus, and
titratable acidity of milk and their relationship with milk
quality and coagulation properties. Int Dairy J. 41:68–73.

Trevisi E, Bertoni G. 2009. Some physiological and biochem-
ical methods for acute and chronic stress evaluation in
dairy cows. Ital J Anim Sci. 8:265–286.

Trevisi E, Minuti A. 2018. Assessment of the innate immune
response in the periparturient cow. Res Vet Sci. 116:
47–54.

Urbano Cuadrado M, Luque de Castro MD, P�erez Juan PM,
G�omez-Nieto MA. 2005. Comparison and joint use of near
infrared spectroscopy and Fourier transform mid infrared
spectroscopy for the determination of wine parameters.
Talanta. 66:218–224.

Williams P. 2014. The RPD statistic: a tutorial note. NIR News.
25:22–26.

1230 A. MINUTI ET AL.


	Abstract
	Introduction
	Materials and methods
	Study design
	Blood sampling and analyses with reference methods
	FT-MIR spectroscopy
	Data analysis

	Results
	Discussion
	Conclusions
	Disclosure statement
	References


