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The icub software architecture: 
evolution and lessons learned
Lorenzo Natale* , Ali Paikan , Marco Randazzo and Daniele E. Domenichelli

iCub Facility, Istituto Italiano di Tecnologia, Genova, Italy

The complexity of humanoid robots is increasing with the availability of new sensors, 
embedded CPUs, and actuators. This wealth of technologies allows researchers to 
investigate new problems like multi-modal sensory fusion, whole-body control and multi-
modal human-robot interaction. Under the hood of these robots, the software architec-
ture has an important role: it allows researchers to get access to the robot functionalities 
focusing primarily on their research problems and supports code reuse to minimize 
development and debugging, especially when new hardware becomes available. But 
more importantly, it allows increasing the complexity of the experiments that can be car-
ried out before system integration becomes unmanageable, and debugging draws more 
resources than research itself. In this paper, we illustrate the software architecture of the 
iCub humanoid robot and the software engineering best practices that have emerged 
driven by the needs of our research community. We describe the latest development of 
the middleware supporting interface definition and automatic code generation, logging, 
ROS compatibility, and channel prioritization. We show the robot abstraction layer and 
how it has been modified to better address the requirements of the users and to support 
new hardware as it became available. We also describe the testing framework, and we 
have recently adopted for developing code using a test-driven methodology. We con-
clude the paper discussing the lessons we learned during the past 11 years of software 
development on the iCub humanoid robot.

Keywords: humanoid robotics, software engineering, software middleware, Quality of service, test-driven development

1. inTrODUcTiOn

The rapid evolution of humanoid robots is pushing the requirements on their software infrastruc-
ture. The availability of low-cost, off-the-shelf sensors for depth perception, IMUs, tactile and force 
sensing allows robots to be equipped with richer and redundant sensory systems. New actuators 
give joints higher maximum torque, allow designers to increase the dexterity of the robots and to 
implement force or impedance control. New technology for optical or magnetic encoders allows 
measuring movement in various points in the kinematic chain providing redundancy, fault tolerance 
or, in presence of elastic elements, accurate torque measurement. This evolution opened up new 
research problems, such as multi-modal sensory fusion, whole-body force control, and multi-modal 
human–robot interaction to mention just a few. However, exploring these research directions comes 
at a high cost in terms of software development. When existing hardware is replaced with new 
one, it yields to software obsolescence, new development, debugging and consequent changes in 
low-level software layers that trigger the redesign of higher layers. Experiments that build on top of 
simpler capability are possible only if the software architecture supplies researchers with appropriate 
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tools that allow them to focus on the goals of their research. Also, 
the software itself evolves. Languages, operating systems, and 
libraries get upgraded and change, sometimes without maintain-
ing backward compatibility. The appearance of Robot Operating 
System (ROS) and its rapid adoption and growing community 
(Quigley et al., 2009) have changed how people develop software 
and pushed many robot developers to provide ROS compatible 
interfaces for their software or to adopt it altogether.

These problems have been present since the beginning of the 
development of the iCub platform and through the past 11 years 
of its evolution. The iCub is a humanoid robot platform that 
was designed for research in cognitive system. Its main goal is 
to support experimental research and, for this reason, it is not 
designed with a specific application in mind. The hardware 
development of the robot was also driven by research goals. The 
software infrastructure of the robot was designed and adapted 
following these constraints. At the lowest level, it had to support 
new hardware as soon as it was released and reduce the impact of 
hardware changes to the user code. At the higher level, the soft-
ware architecture was designed to support rapid prototyping of 
experiments that required integration of many capabilities: visual 
and speech perception, control of attention, learning, reaching, 
grasping, and, more recently, balancing and walking.

In this paper, we provide a review of the software architecture 
of the iCub robot including recent developments aimed to better 
support the evolution of the robot and the needs of the research 
community. We describe the Yet Another Robot Platform (YARP) 
middleware and how it has been extended with facilities to increase 
determinism in time-critical loops. We present new tools and best 
practices that have been adopted for logging and to aid developers 
in the task of developing component interfaces, defining new data 
types, and interoperate with software developed for other robots 
(including software from the ROS eco-system). We describe the 
robot abstraction layer, which allows the same code to control the 
real robot or a simulation, on-board, or through a network link. 
This abstraction layer separates high-level components from the 
hardware implementation including the communication infra-
structure. The core of the robot abstraction layer has not changed 
much in the years preserving backward compatibility, but it has 
been extended to better support new control modes and sensors. 
We describe the component that provides access to the robot, 
i.e., robotinterface, showing how it can be configured depending 
on the available hardware and to run time-critical control loops 
directly on the robot.

Robotic software applications quickly grow in the number of 
components and are therefore difficult to engineer and develop. 
Software engineering best practices suggest to divide such sys-
tems in simple units that are independently developed, tested, 
and integrated at a later stage. In the second part of the paper, we 
describe the tools that we have developed to support deployment 
and monitoring of components (i.e., the yarpmanager) and, more 
recently, testing. Test-driven development (Beck, 2003) was used 
to develop the YARP middleware but was adopted only recently to 
validate the robot software interface and the control algorithms. 
We developed the Robot Testing Framework (RTF) that allows 
testing robot software using the real robot as well as simulations. 
We describe the design choices that have driven the development 

of the RTF and how it has been adopted for testing software 
components and interfaces of the iCub robot. We conclude the 
paper with a discussion on the lessons we have learned in the 
past years of software development on the iCub robot drawing 
the conclusions of this work.

2. a BrieF OVerVieW OF The icUB 
anD iTs eVOlUTiOn

The iCub is an open humanoid robot platform that was developed 
for research in cognitive systems (Metta et al., 2010; Parmiggiani 
et  al., 2012). It has 53 joints actuated with brushless and DC 
motors. Motion generation is carried out in dedicated boards 
embedded on the robot and interconnected through a local bus 
(initially we used CAN bus, but shifted recently to Ethernet to 
increase the available bandwidth). These boards host program-
mable CPUs that can perform position control with trajectory 
interpolation, velocity, and torque control. The iCub was initially 
equipped with cameras for vision, microphones an IMU on the 
head, and motor encoders for measuring motion. This initial set 
of sensors grew with time, by introducing 6 axis F/T sensors in 
various points of the kinematic chains (roughly located at the 
shoulders and hip, and eventually at the ankles), and a system of 
tactile sensors1 that, starting from the hands and forearms, has 
been extended to cover a large part of the whole robot (for a total 
of 4000 sensing units located on the arms, torso, legs, and feet 
soles). At the same time, inertial units and gyroscopes became 
inexpensive and easy to integrate in the electronics that control 
the tactile systems and the motors. The robot mounts on the head 
a PC104 computer equipped with an Intel CPU that runs Linux. 
This computer works as a bridge interconnecting the CPUs on 
the local bus with the external cluster of computers that performs 
heavy computation outside the robot. Connection with the exter-
nal cluster is achieved using either gigabit Ethernet or wireless.

The software architecture of the robot can be broadly sepa-
rated in two layers. The firmware consists in the first layer and 
runs on the embedded CPUs. Communication between boards 
and PC104 computer uses a custom networking protocol (over 
CAN or Ethernet). The second layer consists in all the software 
components that run on the head computer and on the external 
cluster. These components communicate using a peer-to-peer 
publish-subscribe architecture implemented using the YARP 
middleware (Fitzpatrick et al., 2008; Metta et al., 2010).

3. MiDDleWare

Best practices in robotics advocate adoption of component-
based development (Brugali and Scandurra, 2009) and the 
so-called separation of concerns between computation, com-
munication, coordination, and configuration (Bruyninckx et al., 
2013). Following this approach, components encapsulate robot 
functionality in a way that promotes interoperability, compos-
ability, and reuse, irrespective of the robot, programing language, 

1 Tactile sensors on the iCub are based on capacitive technology (Maiolino et al., 
2013).
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operating system, computing architecture, and communication 
protocol being used.

Computation is the core of the components and includes 
functionalities and algorithms. Communication allows modules 
to exchange data in a way that is agnostic with respect to the 
underlying operating system, medium or protocol. The separa-
tion of concerns is implemented by the middleware in the form of 
read/write primitives to receive and transmit data. Coordination 
is the code required to orchestrate modules: it determines how 
modules interact to achieve a certain task (Lütkebohle et  al., 
2011; Klotzbücher and Bruyninckx, 2012; Paikan et al., 2014a). 
Configuration allows reconfiguration of modules to better adapt 
them to specific domains, it allows controlling all parameters 
that affect the functioning of the system, including dependencies 
across modules and protocols.

Software middleware supports some or all the functionalities 
described above. Generic middleware like CORBA,2 Ice,3 D-Bus,4 
or ∅MQ,5 provide complete communication backbones. They 
are rarely employed in robotics because they lack specific com-
ponents and have a steep learning curve. Robotics middleware 
[OROCOS (Bruyninckx, 2001), Player (Collett et al., 2005), YARP 
(Fitzpatrick et al., 2008), Orca (Brooks et al., 2005), ROS (Quigley 
et al., 2009), OpenRDK (Calisi et al., 2012), Mira (Einhorn et al., 
2012), LCM (Huang et al., 2010) to mention just a few] provide 
a subset of communication paradigms (Remote Procedure Call 
and/or publish-subscribe). Some middleware defines interfaces 
for families of devices (Collett et al., 2005) for better modularity 
and portability.

The iCub software architecture is similar to the port-based 
software abstraction (Stewart et al., 1997) and is built on top of the 
facilities provided by the YARP middleware. To better illustrate 
the communication patterns supported by the YARP middleware, 
we will adopt the terminology introduced in (Eugster et al., 2003) 
for publish-subscribe architectures. Eugster et  al. (2003) intro-
duce three levels of decoupling to characterize various flavors of 
communications, namely: space decoupling, time decoupling, and 
synchronization decoupling. Space decoupling is achieved when 
components produce messages without being explicitly aware 
of the number and location of the receivers. Time decoupling 
guarantees message delivery even if senders and receivers are 
not active or connected at the same time. Finally, synchronization 
decoupling requires that messages are sent and received asynchro-
nously by the communicating entities. When communication 
is asynchronous, it is sometimes important to guarantee that 
messages are correctly received by slow recipients [this is called 
persistence and is another key property of publish-subscribers 
architectures Eugster et al. (2003)]. In this respect, robotic mid-
dleware often implements policies that aim at reducing latency 
in real-time control loops, even at the cost of dropping messages 
[e.g., Fitzpatrick et al. (2008) and Dantam et al. (2015)].

YARP (Fitzpatrick et  al., 2008) implements a variant of the 
publish-subscribe paradigm, i.e., the observer pattern (Gamma 

2 http://www.corba.org/
3 https://zeroc.com/products/ice
4 https://www.freedesktop.org/wiki/IntroductionToDBus/
5 http://zeromq.org/

et  al., 1995), which is a type of distributed publish-subscribe 
providing space and synchronization decoupling. In addition 
it is multi-platform, in that it provides a portable abstraction 
for the operating system, the communication protocol and 
the robot hardware. In YARP Port objects deliver messages of 
any size and type across a network, using various underlying 
 protocols – including shared memory. Ports can be configured to 
implement publish-subscribe with different levels of decoupling 
and dynamically reconfiguration of connections and protocols. 
YARP Ports have read and write primitives that can be blocking 
or non-blocking for synchronous or asynchronous communica-
tion. A component that uses Port objects to perform a synchro-
nous write, waits until all receivers confirm reception of the 
message. Similarly, a component that performs a synchronous 
read waits until a new message is received by the Port. By default, 
Port objects in YARP are configured for both synchronous read 
and write: this guarantees correct delivery of messages without 
extra code. The BufferedPort object is a specialization of a Port, 
which provides synchronization decoupling. BufferedPorts are 
active objects able to store and handle messages internally either 
for transmitting or receiving them using dedicated threads. 
Possible buffering policies are: First In First Out (FIFO) and 
Oldest Packet Drop (ODP). In the first case, messages are queued 
in a list that grows and guarantees that no messages are dropped. 
In the second case, the size of the queue is fixed, and new mes-
sages overwrite old ones to guarantee minimum latency. Read 
operations in a BufferedPort can be blocking in case we want 
execution to wait for incoming messages. Publish subscribe is 
convenient for one-way communication. In some cases, however, 
communication requires replies. In YARP, this is called RPC and 
is supported via two specialization of the Port class: RPCServer 
and RPCClient, respectively, for managing the server and client 
side of the communication.

In the iCub software, architecture components are runnable 
pieces of software (usually implemented as executables, but 
sometimes also as software drivers) that export a certain interface 
using one or more Port (or BufferedPort) objects. The component 
sends and receives data through its Port objects; depending on 
the type of service provided by the components the port can be 
configured for synchronous, asynchronous or RPC operations.

YARP is multi-platform and implements all its functionalities 
on Linux, Windows, and MacOS. With respect to other robotics 
middleware-like OROCOS (Bruyninckx, 2001), Player (Collett 
et  al., 2005), and ROS (Quigley et  al., 2009), the communica-
tion layer of YARP supports a richer set of protocols. A notable 
example is the multicast protocol, which reduces bandwidth and 
transmission overhead in case of one-to-many communication 
[which to the best of our knowledge is implemented only by 
LCM (Huang et al., 2010)]. More importantly, YARP implements 
a plug-in system that allows users to write custom protocols and 
interconnect it with other systems (like cameras providing images 
in mjpeg format or a web server). This mechanism was used to 
add ROS compatible protocols [i.e., tcpros, xmlrpc, see Fitzpatrick 
et  al. (2014) for more details], port monitor (Paikan et  al., 
2014a) and to add QoS and channel prioritization, as described 
in Section 3. The Thrift IDL provides a language for defining 
component interfaces that is more flexible than the one that can 
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TaBle 1 | YarP libraries footprint.

library Footprint (KB)

libACE 1673
libYARP_OS 2088
libYARP_sig 244
libYARP_dev 94
libYARP_math 1530

See text for details.
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be implemented using ROS’s services. Similarly to Player (Collett 
et  al., 2005), YARP provides interfaces for hardware devices, 
and, in particular, a sophisticated hardware abstraction layer for 
motor control, as described in Section 4. These interfaces simplify 
the control of robots hiding complexity due to the underlying 
 communication layer and vendor-specific APIs.

Communication performance of various middleware has been 
compared experimentally in Hammer and Bäuml (2014). In this 
study, YARP demonstrated comparable  –  and sometimes even 
faster  –  performance than ROS. Interestingly, round-trip time 
of both middleware was consistently better than OROCOS. It 
is worth noticing that YARP was not designed to support hard 
real time. The recent QoS and channel prioritization extensions 
partially cope with this, providing significantly performance 
improvement in terms of communication and scheduling jitter, 
especially when adopted together with the RT-PREEMPT Linux 
kernel. For applications that require lower latency and higher 
determinism OROCOS (Bruyninckx, 2001) and aRDx (Hammer 
and Bäuml, 2014) may be a preferable choice. It is worth noticing 
that OROCOS offers a YARP compatible transport that can be 
used for interoperability with YARP applications.

YARP is written in C++, but similarly to ROS, it can be used 
from other languages. Through SWIG,6 YARP provides language 
bindings for many languages, namely: Perl, Python, Ruby, Lua, 
TCL, C#, Java, Octave, Chicken, and Alegro. Java also provides 
seamless integration with the Matlab environment, although, to 
achieve better performance, we have recently started developing 
support for Matlab and Simulink via mex functions. YARP was 
interfaced with Android and iOS devices.

Compilation of YARP is simple. YARP can be compiled under 
various operating systems, including major distribution of Linux 
(Debian and Ubuntu), MacOS X, and Windows.7 Dependencies 
have been voluntarily kept at minimum. The main dependency is 
ACE8 which is – by design – a portable library that can be com-
piled on a plethora of systems. The build system automatically 
detects optional dependencies and disables features or plug-ins 
accordingly. To simplify compilation with Linux, we decided to 
support a set of distributions and to use features available only on 
the libraries provided therein. This greatly simplified compilation 
and distributions of binaries for the Linux system. Compilation 
on Windows was made more complicated by the lack of a proper 
packet management system. For this reason we decided to build 
and distribute precompiled binaries of the required dependencies 
for all the supported compilers. For compilation on MacOS X, 
we rely on homebrew9 and maintain appropriate recipes scripts 
for both YARP and the iCub main software. To ensure correct 
compilation of the software on all the supported platforms, a 
compile farm performs compilation tests, periodically and upon 
any commit to the YARP and iCub main repositories.

6 http://www.swig.org/
7 At the time of writing YARP (and the iCub main software) were supported on 
Debian 7-9 and Ubuntu 14.04-16.04. On Windows supported compilers were 
Visual Studio 10-12. Support for MacOS included the latest release 10.11, code-
name El Captain.
8 http://www.cs.wustl.edu/~schmidt/ACE.html
9 http://brew.sh/

To conclude this section, we report additional information 
about YARP. Table 1 reports the footprint of the YARP libraries. 
The table reports the value obtained running the Linux com-
mand size. These values corresponds to YARP 2.3.64 compiled in 
“Release” mode, gcc version 5.3.1, libc 2.21, CMake 3.4.1, libACE 
6.3.3, and libGSL 2.1 (the latter is optional and it provide signal 
processing and linear algebra routines to YARP). Notice that 
libACE in the Linux environment is optional and is required only 
for compilation on Windows. YARP is adopted by a large number 
of people. The iCub community consists in approximately 30 
teams. YARP is also adopted on the COMAN (Tsagarakis et al., 
2013) and in the projects Walkman,10 DREAM (Vernon et  al., 
2015), and Fireswarm,11 while OROCOS includes a YARP com-
patible transport protocol. YARP received contributions from 75 
developers in total and from 29 developers in the past 12 months 
(source: Open HUB12).

3.1 logging
YARP provides macros that allow users to log messages with 
increasing levels of importance and severity (i.e., trace, debug, 
info, warning, error, and fatal). These macro print on the standard 
output using the facilities provided by the host operating system. 
To implement the logging system we follow these guidelines: (i) 
in a distributed architecture messages should be collected from 
different machines, (ii) logging should be optional to avoid using 
unnecessary resources and finally, (iii) it should be possible to  
collect output from components that have been written without 
YARP. These features have been achieved by relying on the 
yarprun service. The latter is a software service that is used to 
execute components remotely using a GUI (the yarpmanager, 
as described in Section 8). yarprun spawns processes and can 
therefore manipulate and redirect their output. This offers a 
simple way to log the output of all components without modify-
ing their code or forcing adoption of YARP specific macros for 
logging. yarprun prefixes all messages from a component with 
the name of the machine on which it is running and the process 
identifier of the component itself. All messages are redirected to 
common recipient using YARP Ports; the recipient can either be 
a command line tool or a graphical interface that allow logging, 
filtering, and visualization of these messages. This solution allows 
capturing and logging the output of components even when they 
do not use YARP’s logging functions (although with limited 
functionalities).

10 https://www.walk-man.eu
11 http://fireswarm.nl/
12 https://www.openhub.net
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adder.thrift
service Adder {

/** Documentation for get_answer*/
i32  get_answer();
/** Documentation for get_answer*/ 
bool set_answer(1:i32 val)
/** Documentation for add*/      
i32  add (1:i32 x);

}

adder.h:
class Adder: public yarp::os::Wire {
public:

/** Documentation for get_answer */
virtual int32_t get_answer();
/** Documentation for get_answer */ 
virtual bool set_answer(const int32_t val);
/** Documentation for add */
virtual int32_t add(const int32_t x);

};

adder.thri�
yarpidl_thri�

adder.h

adder.cpp

client.cpp:
#include "adder.h"
int main() {

Port port;
Adder client;
port.open("/client");

client.yarp().attachAsClient(port);

client.set_answer(10);
client.add(1);
cout<<client.get_answer();

}

server.cpp:
#include "adderserver.h"
int main() {

Port port;
AdderServer server;
server_port.open("/server");

client.yarp().attachAsServer(port);

while(true)
{...}

}

adderserver.h:
#include "adder.h"
class AdderServer : public Adder {
public:

int32 _val
int32_t get_answer()

{ return _val; }
bool set_answer(const int32_t val)

{_val=val; }
int32_t add(const int32_t x)

{ _val+=x; return _val}
};

Server codeCient code

FigUre 1 | service implementation using Thrift. The definition of the service Adder is written using the Thrift IDL (adder.thrift); from this file, the yarpidl_thrift 
compiler generates the corresponding C++ interface (adder.h) and the full implementation of the client (adder.cpp). At the client side, function calls take care of 
marshaling the parameters and shipping them across the YARP network. At the server side, a Port object receives these messages, performs de-marshaling, and 
invokes the corresponding C++ function. Notice that comments in the Thrift file are preserved in the C++ class. Bottom: the client main function instantiates the 
YARP Port that will be used for the communication, it then instantiates the client object, attaches the Port to it and invokes the service functions as if they were local 
calls. At the server side, the developers provides implementations for the service functions in an new class (AdderServer) that overrides the virtual functions defined 
in Adder (adder.h); it then instantiates the Port that handles the communication and attaches it to an instance of AdderServer. At this point, all messages received by 
the Port at the server side are dispatched to AdderServer.
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3.2. The Thrift iDl
A Port object can transmit a data type only if proper serializa-
tion and deserialization functions are defined. YARP supports 
a few basic types that already include serialization functions: 
Vector, Matrix, Image, and Bottle. The first three types are self-
explaining, they define containers for double precision floating 
point vectors, matrices, and images with various pixel types. The 
Bottle object is a list of mixed type values: it can store arbitrarily 
integers, strings, doubles, lists, or binary blobs of memory. This 
type is quite flexible and can be used to send virtually anything, 
provided the sender and receiver agree on the data they exchange. 
The compiler in fact cannot determine if the data sent through a 
Bottle is correctly parsed by the receiver. This can be acceptable 
for small applications but become soon a limitation, especially 
when modules are developed asynchronously by different devel-
opers. Services are also a concept that is not natively supported 
by YARP. Services can indeed be implemented with YARP, but 
the programmer has to manually write all the code required 
to parse incoming messages and prepare replies. Writing this 
code is boring and error prone, its maintenance becomes soon 
complex and difficult.

All these problems have been solved in YARP with the adop-
tion of an Interface Definition Language (IDL) based on the Thrift 
language. The Thrift IDL can define services. From this definition, 
the yarpidl_thrift compiler generates all the code that implements 
the communication between the clients and the service across 
the YARP network. This process is exemplified in Figure  1. A 
new network type can be implemented in a similar way. In this 
case, the yarpidl_thrift compiler generates the .h and .cpp files for 
the C++ class that implements the type in YARP. The compiler 
automatically generates serialization and deserialization routines. 
See Figure 2 for details.

The Thrift IDL is currently adopted as best practice for defin-
ing new types and interfaces for components in the iCub software 
architecture. An important feature of the Thrift YARP compiler 
is that it copies verbatim all comments from the Thrift file to the 
C++ implementation class. This feature is used to document the 
interfaces using Doxygen. All Doxygen comments are added to 
the Thrift file(s) that defines the interface of components, when 
code is generated, these comments are copied in the resulting 
C++ header files and parsed to produce the documentation. In 
this way, the documentation of the interfaces is stored with the 
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point3d.thrift
struct Point3D {

1: i32 x;
2: i32 y;
3: i32 z;

}

yarpidl_thri�
point3d.h

point3d.cpp

sender.cpp:
#include "point3d.h"
int main() {

Port port;
Adder client;
port.open("/sender");
Point3D p;
p.x=1;p.y=2;p.z=3;

port.write(p);
}

receiver.cpp:
#include "point3d.h"
int main()
{

Port port;
port.open("/receiver");
Point3D p;
while(true) {

port.read(p);
cout<<p.x<<p.y<<p.z<<endln;

}
}

FigUre 2 | specification of a new type using Thrift. The yarpidl_thrift compiler generates the C++ object that implements the type Point3D starting from its 
specification in the Thrift IDL. Bottom: this object contains serialization and deserialization functions and can be used directly for read/write operations in a YARP 
Port or BufferedPort (not shown).
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code that generates them; this results in better documentation 
and easier maintenance.

A recurring pattern in the development of software on the 
robot is the following: A module defines a set of inner param-
eters that modify its behavior and exports them through a 
Port, together with a set of functions for manipulating them. 
Thrift allows defining a structure for grouping parameters so 
that YARP can provide support for reading and writing this 
structure through a Port. In addition to this, YARP generates 
an object called Editor, which provides methods for setting 
and getting individual values within the structure as well as 
callbacks that can be customized to execute code before and 
after the value is modified. This feature reduces the amount of 
code that is manually written and maintained when writing 
interfaces for modules, which, in robotics applications usually 
consists in several parameters. The Editor has been introduced 
only recently in YARP but is currently adopted as best practice 
when writing new modules. Figure 3 illustrates this concept in 
more details.

3.3. increasing Determinism  
in Distributed applications
Many robotic applications require real-time functionalities, espe-
cially when timing constraints on task execution, data processing, 
and synchronization are crucial. In distributed architectures, 
extra care must be taken to avoid mutual interference between 
components in the communication layer. The YARP middleware 
deals with this problem by providing functionalities at the level 
of the connections (in the Port and BufferedPort objects) that 
allow assigning different priorities to individual communication 
channels (we call this approach “channel prioritization”) (Paikan 
et  al., 2015b). This approach simply leverages the operating 
system functionalities to prioritize specific communication 

channels between publishers and subscribers.13 The properties of 
individual connection channels are extended to specify (i) the 
priority level and scheduling policy of the threads that handle the 
communication and (ii) the priority of the packets on the network 
(i.e,. the network Quality of Service parameters). This approach 
does not require specific components for message prioritization 
and it does not add any overhead to the communication. In addi-
tion, and, more importantly, it allows for remote configuration of 
Quality of Service (QoS) and for run time, dynamic prioritization 
of communication channels. Configuring real-time properties 
such as priority or scheduling policy of the user thread can be 
done either programmatically from the user code or automati-
cally using component middleware functionalities and dedicated 
tools (Mastrogiovanni et al., 2013).

When configured for asynchronous communication Port 
objects send and receive user data in separate threads. A concep-
tual example is depicted in Figure 4, where a publisher (Publisher 
1) pushes data to two subscribers. When a publisher writes data 
to a Port, it passes it to the corresponding thread. At this point, 
execution is determined by the operating system and the thread 
real-time properties decide with which priority the thread will 
manage to write data to the socket. Similarly at the receiver side, 
real-time properties of a thread affect the chances that it will 
deliver data to the user (i.e., high priority will reduce jitter). This is 
useful when a subscriber receives data from multiple senders, and 
the application requires to assign higher priority to one of them.

Each connection in YARP has a state that can be manipulated 
by external (administrative) commands, which in turn manage 

13 Notice that in this section we refer to “best-effort” or “soft” real-time, as opposed 
to “hard” real-time performance. Because the implementation of YARP has not 
been developed to support hard real-time constraint, we rely on the RT-PREEMPT 
Linux to reduce scheduling latency.
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receiver.cpp:
#include "MyPoint3d.h"
int main() {

Port port;
Point3D p;
Point3D::Editor editor(p);
port.setReader(editor);
port.open("/receiver");
while (true) {
printft("%d %d %d\n",p.x p.y p.z); 
/* wait some time */
}

}

MyPoint3d.h
#include "Point3d.h"
class MyPoint3d: public MyPoint3d  {
public:

bool will_set_x()
{ prinf "about to set x"; }

bool did_set_x()
{ printf "finished setting x"; }

};

$ ./receiver
yarp: Port /receiver ac�ve at tcp://127.0.0.1:10001
yarp: Receiving input from /writer to /receiver
0 0 0
about to set x
10 0 0
finished se�ng x

$ yarp write /writer /receiver
yarp:Port /writer ac�ve at tpc://127.0.0.1:10002
set x 10
...

FigUre 3 | The Editor. For each new type, the Thrift compiler generates an Editor object, which provides methods for manipulating only a subset of the type. The 
listing on the top-left shows how to use the Editor. An instance of the Editor is connected to Point3D (see Figure 2) and to the module’s Port object (i.e. port). 
Messages received by port are parsed by the Editor, which decodes and handles them appropriately. Top-right: optionally, the user can define call-back functions 
that are invoked before and after data is modified. Bottom: we show how the value of the field x in Point3D can be modified by sending text messages to a Port (left: 
output of receiver, right: text commands sent to the receiver’s Port using the standard tool yarp write).

FigUre 4 | an example of components asynchronous communication 
in YarP. A publisher is pushing messages to two different subscribers using 
separate dedicated threads.
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the connection and/or obtain state information from it. Using 
Port administrative commands, QoS and real-time properties of 
Port objects can be configured with the granularity of individual 
connections. In the current implementation, the Port admin-
istrator provides two set of commands that affect the priority 
of a communication channel: setting the scheduling policy/
priority of a communication thread and configuring network 
QoS parameters (i.e., the TOS/DSCP bits) for the data packets 
it delivers.

In the example from Figure 4, we can configure the real-time 
properties of the channel that links/publisher1 to/subscriber1:

$ yarp admin rpc/publisher1

> > prop set/subscriber1 (sched
((policy SCHED_FIFO)
(priority 30)))

$ yarp admin rpc/publisher1
> > prop set/subscriber1 (qos ((priority HIGH)))

The first line “yarp admin rpc” simply opens an administrative 
session with the Port object of /publisher1. The second line is the 
real command to the administrative Port. It adjusts the schedul-
ing policy and priority of the thread in/publisher1, which handles 
the connection to /subscriber1 respectively to SCHED_FIFO and 
30 on Linux machines.14

Ip networks define four classes of services  (Almesberger et al., 
1999). These classes are selected so that packets can be treated 
similarly by the OS queuing policy (if available) and in the network 
switch. For example, a packet with priority class Low will be in 
the lowest priority band (Band 2) of the Linux queuing policy and 
will have the lowest priority in the network switch. Analogously, 
data packet priority can be configured via administrative com-
mands by setting one of the predefined priority classes:

This simply sets the outbound packets priority to HIGH for the 
connection from /publisher1 to /subscriber1.

These parameters can be set for every channel in the same way 
and jointly define the actual priority of a communication channel 

14 The thread scheduling properties and policies are highly OS dependent and a 
proper combination of priority and policy should be used.
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On-board loops

FigUre 5 | interfaces to the robot. User-level drivers communicate to the hardware using device drivers. These objects (dark gray) implement a set of standard 
interfaces (light gray) for reading sensors and controlling the motors at the joint level. Other controllers can be connected (via an action called attach) to these drivers 
to implement control loops (like for example Cartesian control of the limbs). Special network stubs (black) export the functionalities of the drivers through the YARP 
network and allow users to execute control loops externally to the robot. To do so, the user instantiates clients network stubs that implement the same interfaces by 
dispatching requests through the network using YARP Ports. These messages are received by the remote servers, which translate messages via function call to the 
hardware device using the user drivers. If needed, the server also takes care of preparing the reply and sending it to the client, which, finally, returns control to the 
user code.
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in our publish/subscribe architecture. Alternatively, real-time 
properties of the communication channels can be configured 
from the user code using the YARP API:

We have experimentally demonstrated that channel prioritiza-
tion significantly reduces latency and increases communication 
determinism in presence of conflicting connections in robotic 
applications (Paikan et al., 2015a,b).

4. rOBOT inTerFace

The interface to the sensors and motors of the robot is imple-
mented by a set of user-level drivers that access the hardware 
using vendor-specific API. On the iCub, cameras use a IEEE1394 
Firewire bus whereas the majority of the other sensors use 

custom electronics connected via can bus or, in recent versions, 
Ethernet. These devices use custom protocols, whose details are 
not important for this paper. For such devices YARP defines a 
set of C++ interfaces that provide an abstraction layer that is 
independent of the specificities of the hardware components that 
implement them. Communication with the hardware is achieved 
by instantiating user-level devices, which directly send messages 
to the hardware. These devices implement a set of interfaces 
that allow reading sensor values and controlling the motors at 
the joint level. A second layer of devices can be instantiated and 
connected to these (via a function called attach) to implement 
functionalities like robot calibration, on-board control loops, and 
network remotization (see Figure 5 for more details).

The life-cycle of all objects is decoupled: all instances are 
created independently and references to drivers are passed to 
higher layers using the function attach. The opposite operation 
is performed by calling a function called detach, which removes 
all references held by a device before shutting down and releasing 
memory. In the development of the iCub interfaces have played an 
important role because they have preserved the user code in face 
of deep changes in the hardware. The code required to perform 
basic functionalities like reading images or controlling the motors 
in position or velocity modes has not changed significantly while 

Qosstyle style;
style.setThreadPolicy(SCHED_FIFO);
style.setThreadPriority(30);

style.setPacketPriorityByLevel 
(QosStyle:PacketPriorityHigh);

NetworkBase:setConnectionQos(“/publisher1”, “/subscriber1”, 
style);
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FigUre 6 | state machine of robotinterface. Left: We defined a set of phases that are executed upon activation of certain events, namely: startup, interrupt1, 
interrupt2, interrupt3, and shutdown. Each phase is further separated in a set of numbered levels each linked to a specific set of actions to be executed. When 
entering a given phase robotinterface executes all the actions that correspond to the levels that have been configured. Actions at the same levels are executed in 
parallel in different threads; execution waits for the termination of all threads before proceeding to the next level. In the configuration files, each object can specify 
one or more actions to be executed, when to execute them (i.e., the phase) and in which order (the level). The startup and shutdown phases are executed, 
respectively, at the beginning and before robotinterface terminates execution. The phases interrupt1, interrupt2, interrupt3 are entered upon subsequent reception of 
the termination signal (in Linux it is the SIGTERM signal) and are followed by the shutdown phase. During startup robotinterface configures the devices. All network 
stub objects and controllers register an action called attach specifying the device they will use to perform their tasks. This is usually done at level 1, i.e., just after all 
devices have been created. They also register the action detach in the phase shutdown (level 5, i.e., after the robot is parked). The calibrators objects register 
actions calibrate in the startup phase. This is done at level 10, after all attach are executed. Calibrators also register the action park corresponding to phase 
interrupt1 (level 1) so that the robot is brought to the homing position upon reception of the first termination signal. The calibrators also support an abort action that 
is executed to abruptly stop any on-going parking or calibration routines after the third termination signal is received. This action is registered for execution at level 1 
in the interrupt3 phase. The objects that perform Cartesian control are instantiated during the startup phase and execute attach to get an instance to the joint-level 
controllers. Proper operation of the Cartesian controllers requires that calibration is performed and that all network objects are instantiated; the attach action for 
these objects is therefore scheduled at level 15. Symmetrically, their disconnection (i.e., detach action) is scheduled early on during shutdown, i.e., at level 2. Right: 
Main steps of execution of a typical run of the iCub robot.
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the robot underwent subsequent revisions of the electronics and 
improved with the addition of new sensors and capabilities like 
impedance or force control. The set of robot interfaces are generic 
and have been implemented various simulators, thus allowing 
switching control of simulators and the real robot at no cost 
(Tikhanoff et al., 2008; Mingo et al., 2014; Habra et al., 2015).

The startup of the robot consists in running a single execut-
able called robotinterface. This executable reads a configuration 
file that specifies the list of drivers to be instantiated and their 
parameters. In addition, the configuration file may specify a 
list of special objects that perform specific operations using 
the drivers. The first example is the network stubs objects that 
provide remote communication. Other objects are calibrators 
and controllers. Calibrators are objects that implement routines 
for calibrating the joints and bringing them in a home posi-
tion (parking). Controllers are objects that implement control 
functionalities using low-level drivers; an example of this is the 
Cartesian Controller, which implements on top of joint-level 
controllers the functionalities required to control the arm (or 
the head) in Cartesian space. These controllers are time-critical 
and safety-critical and therefore must communicate with the 
low-level drivers with minimal latency using function calls (and 
avoiding network communication).

To allow robot configuration and shutdown robotinterface 
implements, a state machine that can be configured to execute 
custom activities with a predefined order. Figure  6 describes 
the finite state machines. Immediately after execution, robotint-
erface instantiates all objects passing the required parameters 
(usually specified in a XML file); it then enters the startup phase. 
The latter is further configured to execute custom actions with 
a specific order. These actions include calibrating the robot and 
invoking attach functions to configure high-level objects. These 
operations are executed in reverse order to park the robot and 
uninitialize the objects during shutdown. robotinterface also 
defines states that are triggered upon reception of termination 
signals to interrupt or abort on-going operations. The left side of 
Figure 6 illustrates the finite state machine and provides further 
details. An example of a typical execution of robotinterface in a 
typical run is reported on the right in Figure 6. robotinterface 
opens a YARP Port that can be queried to know the its state 
of execution of robotinterface. This functionality was added 
recently to allow modules to make sure that the robot is func-
tional and synchronize their execution with the termination of 
the startup phase.

As we discussed above, the robot interfaces are generic and 
can be implemented for robots other than iCub. All objects that 
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are instantiated by robotinterface have been implemented using 
the YARP plug-in system. This means that robotinterface is not 
statically linked against any of the libraries or device driver’s API 
that are required to operate the hardware devices. All the objects 
instantiated by robotinterface are contained in dynamic libraries 
that are loaded at runtime and can therefore be compiled, main-
tained, and distributed separately for each robot.

4.1. Motor control interfaces
During the development of the robot the motor interfaces 
underwent several revisions. To the original position and veloc-
ity control interfaces, we have added interfaces for open-loop, 
torque, and impedance control. In this paper, we revise the 
control modes implemented on the iCub and the corresponding 
interfaces. Full specifications can be found in the iCub control 
modes specifications document (Randazzo, 2004) and online in 
the YARP documentation of control board interfaces.15

An important concept in iCub is the fact that high-level 
 components need to be aware only whether the robot can receive 
position, velocity commands, or open-loop commands control-
ling the reference for the controller directly. However, they do 
not need to know how the low-level controllers implement these 
functionalities. This is achieved by separating control modalities 
in groups and by defining a special control mode called interac-
tion mode. The interaction control mode determines whether 
the low-level controls PWM with a PID (stiff interaction) or the 
torque in closed-loop (compliant interaction). Stiff interaction 
is the conventional control mode of industrial robots, which 
are required to execute accurate position/velocity trajectories 
in controlled environments. In compliant interaction mode, 
instead, it is possible to control the joint impedance (i.e., stiff-
ness and damping) during the execution of position or velocity 
commands. To simplify usage many of the interfaces provide 
functions for controlling individual, all or only a subset of the 
joints in a kinematic chain.

IPositionControl and IVelocityControl define the simplest form 
of control for the robot. With IPositionControl, the controller 
receives a new reference position, and it generates a trajectory 
that smoothly interpolates the current and desired state of the 
robot (position and velocity). On the iCub, the trajectory gen-
erator produces velocity profiles that follow the minimum jerk 
principle. In addition, the interface allows setting the acceleration 
and velocity values that will be used to generate the trajectory. 
IVelocityControl requires joints to move with a certain speed. The 
controller accelerates the joints (using a user-defined value) until 
it reaches the required speed. This control paradigm is suitable 
for visual servoing, typically for controlling the end-effector or 
the robot gaze using vision.

IPositionDirect has been introduced mode has been intro-
duced lately to accommodate specific research requirements. It 
allows skipping trajectory generation and immediately setting the 
reference value of the position controller. This modality allows 
generating custom trajectories in small incremental steps.

15 http://www.yarp.it/namespaceyarp_1_1dev.html

ITorqueControl sets  the torque exerted by a motor. This control 
mode requires that force feedback is available and that a proper 
torque loop is implemented. Finally, the IOpenLoopControl 
interface allows to by-pass all controllers and set the PWM refer-
ence of the motors directly. This interface is used mostly for fast 
prototyping control algorithms or for identification. An example 
is the implementation of control algorithms that use and estimate 
the parameters of the motors (i.e., back-emf, friction etc.).

The interfaces described above provide the first layer of control 
at the joint level. Higher level interfaces have been defined for 
controlling kinematic chains in Cartesian space either in position 
or orientation (Pattacini et  al., 2010). These interfaces separate 
the robot in different kinematic chains that are controlled inde-
pendently. Research is today progressing further and new work 
is currently being done to coordinate whole-body movement for 
balancing and locomotion (Nori et  al., 2015). To support this 
research, a specific interface for whole-body control is currently 
being developed.

The state of the robot is available through interfaces that 
expose joint encoder values (IEncoders), motor currents 
(IAmplifierControl), and allow setting and getting control modes 
(IControlMode). An important improvement in the latest revi-
sions of the iCub has been the introduction of additional high 
resolution encoders that measure the position of the motor shaft 
(rotor). To give the user access to this additional information, we 
introduced a new interface (IMotorEncoders). Other sensors like 
F/T, tactile sensors, and IMU are mapped into a generic interface 
for analog sensors (IAnalogSensor), which gives methods for 
reading the most recent sensor values and perform calibration 
by setting the zero.

Interfaces are a powerful abstraction. However, getting access 
to the hardware solely through generic interfaces may be restric-
tive because a developer often needs access to functionalities 
that are hardware specific. This usually happens for testing and 
debugging especially when new functionalities are added to a 
robot. In this case, there is a big pressure to extend interfaces 
to make them accessible to the higher levels, and this forces 
premature design choices and unnecessary code refactoring. For 
this purpose, we defined a new interface (IRemoteVariables) that 
gives access to generic variables identified with a string of text. 
This interface defines methods to get the list of available variables 
as well as methods for setting and getting them individually. This 
interface can be used to read and manipulate quantities inside 
the memory space of the control boards. It can be conveniently 
used for monitoring or changing the internal state of a board for 
testing, debugging, and code fast prototyping.

4.2. remotization
As explained in the previous section, YARP provides special objects 
that remotize interfaces across the network. This is achieved using 
network objects that come in client-server pairs (identified as 
network stub in Figure 5). The client is loaded locally in the user 
code; it converts function calls into messages that contain all the 
parameters and dispatches them across the network to the remote 
server. Communication is done using three Port objects: one for 
RPC and two for unidirectional communication to and from the 
server with reduced latency.
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The RPC Port dispatches all the function calls that require a 
reply and that are not time-critical. Examples of such functions 
are: getting or setting the PID and changing control modes. 
Notably RPC also handles commands for moving the joints in 
position mode with trajectory interpolation. This is because 
when sending requests to the server, the client always waits for 
an acknowledgment message. This prevents flooding the server or 
the network with requests and ensures that no commands are lost. 
This is not a problem because the additional delay is negligible 
with respect to the typical time requested by a joint to complete 
a trajectory.

The other interfaces for joint control (IVelocityControl, 
ITorqueControl, IOpenLoopControl, IPositionDirect) send data to 
the server using BufferedPort. In this case, buffering policy ODP 
avoids that latency is accumulated in the control loops. Finally, the 
state of the robot is collected by the server and broadcast periodi-
cally using another BufferedPort. The client stores this message as 
soon as it is received and propagates its most recent content upon 
request by the user (thus avoiding explicit requests). This strategy 
is convenient because it avoids the need for the client to perform 
remote requests, and it reduces latency; for this reason the state of 
the robot has been extended to include not only motor encoders 
(as it was initially) but other variables like motor currents, speed, 
acceleration, torque, and status flags. Using the functionalities 
described in Section 5, the BufferedPort that broadcasts the state 
of the robot can be configured as a ROS topic that publishes 
the “common” ROS joint state message (sensor_msgs/jointState.
msg16). This allows better interoperability with ROS, for example, 
using ROS visualization tools like the popular rviz GUI.17

5. Using The icUB sOFTWare  
WiTh OTher rOBOTs

Recent efforts have been devoted to provide functionalities at the 
level of the middleware to interoperate the iCub software with 
other robots. This was achieved in two ways: (1) by extending 
YARP so that it provides compatibility with the ROS middleware 
and (2) by extending YARP Ports so that they can be dynamically 
configured to execute code that manipulates input and output 
data. The second mechanism was adopted to interoperate iCub 
with the ARMARX software system. As the latter approach 
has been already described elsewhere (Paikan et al., 2015c), we 
provide here more details on the extensions that allow YARP to 
interoperate with the ROS middleware.

ROS is today the most popular middleware for robotics. 
Similarly to YARP, it supports developing software architectures 
based on the publish-subscribe paradigm. A distinguishing 
feature of ROS is that it requires the user to define all types that 
are transferred on the network with an IDL. Thanks to this ROS 
can statically and dynamically check that all the parties involved 
in a communication expect the same type. Like YARP, ROS uses 
a central name server which, optionally, can store parameters. 
To  communicate with ROS, YARP had to be extended with 

16 http://wiki.ros.org/common_msgs
17 http://wiki.ros.org/rviz

protocols that allow communication between the name servers 
and with the ROS topics. More importantly, the type system of 
YARP had to be extended to support translating ROS data types 
in YARP compatible structures.

YARP can be configured to use the ROS name server (roscore). 
This is the simplest solution for ROS users, although it implies 
that some functionalities are not available in YARP (for example 
the multicast protocol). Alternatively, the YARP name server 
(yarpserver) can be configured to talk to roscore and to propagate 
queries and topic registrations from/to the ROS. We decided to 
implement both solutions because each addresses the needs of the 
YARP and ROS communities.

YARP can register nodes. This can be done in code using 
dedicated functions in the API or dynamically by using a special 
syntax when registering a YARP Port (for example, the Port name 
/reader@/chatter creates and associates a topic called /reader to a 
node called /chatter).

YARP Ports can understand messages coming from ROS 
topics or generate valid ROS messages. To do so, YARP needs to 
be aware of ROS types. We identified two application scenarios. 
In one case, the user has both YARP and ROS installed. This is 
the easier case because YARP can read types directly from the 
ROS installation, and using a compiler (i.e., yarpidl_ros), it can 
generate appropriate data structures. In the second scenario, ROS 
is not installed on all machines that are running YARP. For this 
situation YARP provides a type server that can answer queries at 
run time and provide to YARP programs the information they 
need to interpret ROS messages.

As an example, Figure 7 shows the code required to control 
ROS’s turtlesim from YARP. Similarly, Figure  8 shows how 
to dynamically connect an existing YARP Port to a ROS topic 
without recompiling the code.

6. cOMPOnenT reUsaBiliTY 
anD cOOrDinaTiOn

Developing high-quality reusable software components requires 
careful design that strikes a good balance between potential 
reuse, functionalities, and ease of implementation (Sametinger, 
1997). Coordination of software components in a distributed 
architecture usually adds considerable overhead to the robotic 
application design process and, often, pulls the development 
of software components in a specific direction. This can have 
a negative impact on the development process and can reduce 
reusability of software components.

Software should be extensible enough to be adapted to possibly 
unanticipated changes (Zenger, 2004). One direction to extend a 
module is via its interfaces. In YARP, interfaces are implemented 
by exchanging messages through the middleware connection 
points (Ports). To enhance the reusability of the iCub software, 
we extended the Port’s functionality so that it can dynamically 
load and execute a run-time script. In our framework, this port 
extension is called Port Monitor: in brief, it allows accessing data 
passing though a connection from/to the Port for monitoring, 
filtering, and transforming it. Multiple instances of Port Monitor 
can interact to allow an input Port to select data from multiple 
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yarpidl_rosmsg –name  /typ@yarpidl

C:\yarp read /turtle1/pose@/reader
yarp: Receiving input from /turtlesim to 
/turtle1/pose-@/reader
5.544445 5.544445 0.0 0.0 0.0
5.544445 5.544445 0.0 0.0 0.0
...

[type] BEGIN turtlesim/Pose
[type]   float32 x
[type]   float32 y
[type]   float32 theta
[type]   float32 linear_velocity
[type]   float32 angular_velocity
[type] END turtlesim/Pose

turtlesim/Pose?

ROS types

$ rosrun turtlesim turtlesim_node 
[ INFO] [1444722896.501281004]: Star�ng turtlesim 
with node name /turtlesim

turtlesim/Pose
[Data]

YARP machine ROS machine

ROS+YARP machine

FigUre 8 | reading a rOs topic from an existing YarP Port. This figure shows how to read the output of the topic /turtle1/pose from an existing YARP Port. 
On the left, we run the yarp read tool, which opens a Port and prints to console the data it receives. To make ROS aware of this Port, we decorate its name using a 
special syntax that instructs YARP to create a ROS node called /reader and subscribes it to the topic /turtle1/pose. To properly interpret the type turtlesim/Pose 
YARP queries the typeserver. Notice that all processes are running on different machines and that, in this case, the machine that runs yarp read knows nothing 
about ROS. To simplify the figure, we omit all the handshakes required for naming look up and establishing the connections. The opposite operation (writing from a 
YARP Port to a ROS topic) can be done in a similar fashion.

#include "Pose.h"
#include "Twist.h" 
/* create ROS Node /controller */
yarp::os::Node node("/controller"); 
/* create a subsriber for Pose.msg */
yarp::os::Subscriber<Pose> pose; 
/* subscribe to /turtle1/pose  */
pose.topic("/turtle1/pose");    
/* create a publisher for Twist.msg */
yarp::os::Publisher<Twist> cmd; 
/* publish to /turtle1/cmd_vel */
cmd.topic("/turtle1/cmd_vel");  
while(true) {

Pose p;
/* read a new value from the topic */
pose.read(p); 
cout<<p.x<<" "<<p.y<<" "<<p.theta<<"\n";

/* prepare a command for the turtle_sim */
Twist t;
t.linear.x=1.0;
t.angular.z=1.0;

/* publish the command */
cmd.write(t);

}

yarpidl_rosmsg

Pose.msg

Twist.msg
Pose.h

Twist.h

FigUre 7 | interfacing YarP with rOs’s topics. The figure illustrates the code required to interface YARP with the turtlesim. Starting from the ROS messages 
definition in Pose.mgs and Twist.msg the yarpidl_rosmsg tool produces compatible YARP types, Pose.h and Twist.h. The code creates a ROS compatible node, a 
subscriber and a publisher, reads data that contains the state of the turtlesim from the topic /turtle1/pose, and sends velocity commands to the topic /turtle1/cmd_
vel to control it and sends velocity commands to control it.
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sources in an exclusive way. We call this mechanism Port arbitra-
tion: it allows coordinating components by specifying arbitration 
rules in the input port of a component (Paikan et al., 2014b).

6.1. Port Monitoring and arbitration
Figure 9 (left) represents represents the situation in which the 
Port Monitor (shown as a box with M) is attached to the output 

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


FigUre 9 | conceptual representation of Port Monitor (left) and its use for arbitration (right). Left: the output Port of Face-Detector is extended with a 
plug-in, which provides access to the outgoing data through scripting language (e.g., Lua). Right: at the input Port, the Port Monitor can arbitrate data from multiple 
connections.
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of the Face-Detector module and the input Port of the Head-
Control module. The Port Monitor can load a script file [written 
using a standard scripting language such as, in our case, Lua 
(Ierusalimschy et al., 1996)] and can access and modify the data 
traveling through the Port using a simple API. This idea allows 
adding extra functionalities to a component like data filtering, 
transformation, and monitoring without modifying or rebuilding 
it (Paikan et al., 2014a).

As an example, the code below illustrates the pseudo-script in 
Lua that filters messages from Face-Detector when its confidence 
level drops below a defined threshold (in this case 0.8):

7. cOnFigUraTiOn OF cOMPOnenTs

Components support re-use by exposing a set of parameters that 
affect their behavior. Parameters that are specified at the com-
mand line configure the component when it is executed.

Components choose the name of the Ports that they use. 
Because different Ports cannot have the same name, component 
reuse can be achieved only if components provide a way to 
change the name of the Ports. This is so fundamental that YARP 
enforces it via the environment variable YARP_PORT_PREFIX: if 
specified this variable defines a prefix that is added to all the Ports 
within a component (similarly ROS provides a way to remap topic 
names at the command line: in YARP, this solution was not viable 
because YARP does not monitor command line parameters).

All other configuration parameters should be specified at the 
command line, either explicitly or using configuration files. YARP 
uses a directory hierarchy to organize these files. One problem 
we had to solve was how to allow users to add configuration 
files to the ones already existing and how to package them in 
binary distributions. To support packaging, YARP defines a set 
of OS-dependent default locations for files and a set of rules that 
define the search priorities. To provide users with the freedom to 
install the software on custom directories, these default locations 
can be overridden or extended by modifying certain environment 
variables. YARP provides an helper class that allows organizing 
and locating configuration files, this class is called ResourceFinder 
because it allows managing all types of configuration files (called 
resources in YARP terminology) for a component.

The design of the ResourceFinder follows the rationale adopted 
in the Linux OS, i.e.,

•	 The software installation should be able to provide reasonable 
defaults for configuration files so that applications can run 
out-of-the-box;

•	 Installation directories are generally non-writable, users 
without root privileges cannot edit installed configuration files 
unless they first copy them inside their own private directories, 
the latter must take precedence and hide the others;

•	 Therefore it is normal that configuration files can be in mul-
tiple places, inside user-specific, private or shared installation 
directories;

•	 External packages can install files so that YARP can find them;
•	 Files are organized in families that are placed in specific 

sub-directories.

PortMonitor.accept = function(data)
 -- read face_pos from ‘data’
 if face_pos.certainty <0.8 then
   return false
 end
 return true
end

Using the Port Monitor, an input Port can be configured to 
arbitrate data from multiple sources, based on user-defined con-
straints. Figure 9 (right) represents a simple application where 
a humanoid robot looks around in search of a person’s face and 
then tracks it. This is a common coordination problem, which 
can be solved in different ways (e.g., using a separate coordina-
tor or by extending modules to interact with each other). One 
way to achieve this is to use a selector in the input Port of the 
Head-Control module and constrain it to receive data from 
each module under specific conditions. The concept is shown in 
Figure 9 (right) where the Port Arbitrator is used in the input Port 
of the Head-Control (shown as box labeled with two “M”). The 
arbitration logic can be written using the Lua scripting language 
and is loaded by the Port Arbitrator.

In our approach, a Port Monitor is attached to each con-
nection that delivers data to a Port. The Port Monitor analyzes 
the data it receives and produces (or removes) events from a 
container. A set of constraints in boolean logic determines from 
the events and for each connection if data is allowed to be deliv-
ered to the component (otherwise it is discarded). Arbitration 
is achieved because only one connection at the time is granted 
the permission to deliver data to the component. This type of 
arbitration mechanism can be effectively used to implement 
complex tasks without resorting to centralized coordinators 
(Paikan et al., 2013).
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Resource files belong to the following families: modules, appli-
cations, and plugins. Modules and plugins are text files describing 
modules and plugins (i.e., manifest files). Applications are files 
required to instantiate, configure, and connect components usu-
ally to achieve a certain task (called application). Configuration 
parameters for components are organized as key-value pairs 
and stored in one ore more  configuration files. Different files, 
therefore, configure a component depending on the application. 
To easily switch configuration, YARP components support the 
parameter --from which allows reading configuration files from 
a well-defined directory (the context of execution). For example, 
the following commands:

execute myModule in two different ways, using files in the contexts 
experiment1 and experiment2, respectively.

The directories modules, applications, plugins, and contexts 
are installed in the system directory <prefix>/share/yarp.18 Users 
have read-only access to system directories, and they need to copy 
the files they want to edit in private directories in which they 
have write access.19 To install and remove resource files, YARP 
provides the yarp-config tool.20

The ResourceFinder searches for configuration files in the fol-
lowing order of precedence:

•	 First, it looks in the current working directory;
•	 Then, it searches within contexts in the user private directory;
•	 Finally, it searches within contexts in the shared, installation 

directory(ies).

When searching for files and directories, the ResourceFinder 
follows the above order, so that files in the working directory or 
those modified by the user take precedence over installed ones. 
Search of files proceeds from the user private directories to shared 
installation directories. The same context directory can appear in 
multiple places and is likely to contain files with the same name. 
In this case, files that found first take precedence and hide those in 
other locations. This shadowing or masking mechanism is useful 
when the user needs to customize only a subset of the files for a 
specific context.

To allow users to modify where files are stored or to add other 
contexts to the existing ones, the ResourceFinder search path 
can be extended in two ways. Through the YARP_DATA_DIRS 
environment variables, a user can specify a list of locations, each 
used by the ResourceFinder when looking for shared installation 
directories. Third party package developers can add a text file that 
contains additional search directories in the directory <prefix>/
yarp/path.d. This solution allows an installation package to extend 
YARP search path without requiring changes to the environment 

18 The actual value of <prefix> is system dependent, on Linux it is usually equal to 
/usr/share, while on Windows it maps to %PROGRAMFILES%/YARP, i.e. usually 
C:/Program Files/YARP.
19 On Linux systems this is $HOME/.local/share/yarp while on Windows it is 
%APPDATA%/yarp.
20 Online documentation is available at: http://www.yarp.it/yarp_yarp-config.html

myModule --from experiment1

myModule --from experiment2

(to simplify this task YARP offers a set of CMake functions). For 
example, a user can install the YARP middleware and the iCub 
additional software without changing the environment. This is a 
useful feature for packaging and because we have found that modi-
fying the environment is confusing and error prone for most users.

It is worth mentioning that the ResourceFinder follows the 
XDG Base Directory Specification for Linux systems.21

8. aPPlicaTiOn ManageMenT

To facilitate the application development and execution for the 
iCub robot, we developed a few graphical tools. The yarpbuilder 
(see Figure 10) enables users to easily develop an application by 
configuring and interconnecting the available modules. It makes 
use of a YARP module description in XML format and represents 
them as graphical entities. To build a new application, a developer 
can drag and drop modules, configure, and interconnect them. 
This tool also performs some simple model checking to ensure 
that some of the constraints, such as required input connections or 
parameters for a module, are satisfied for that specific application.

Using a resource description of the available machines in a 
cluster, the deployment information can be manually set for the 
execution of the modules or they can be configured to be deployed 
using the automated load balancer. Eventually, the application 
can be created and launched using the yarpmanager22 deployment 
tool (see Figure 11). It has been developed using a multilayered 
software architecture, which abstracts the representation of 
modules, resources, and applications from their execution. The 
latter can employ different deployment methods (e.g., yarprun 
or SSH), which potentially allows executing components from 
different robotic middleware. The yarpmanager provides a rich 
set of functionalities such as module configuration, execution 
and monitoring, cluster resource discovery, load balancing, as 
well as establishing and checking connections. We are currently 
working toward integrating the yarpbuilder and yarpmanager in 
a single tool in which applications are developed, executed, and 
monitored using the same graphical representation.

9. sOFTWare TesTing On The icUB

Testing is an important topic in software engineering that has, 
however, received little attention in robotic research. Because 
robots in the future are expected to work in close interaction with 
humans, safety of robotic systems is going to become a funda-
mental issue. In this context, it is likely that software testing will 
play an important role. To test the iCub software we have adopted 
strategies for static as well as dynamic testing.

Static testing consists in checking the code without executing 
it. This approach includes code inspection, peer-to-peer reviews, 
and code verification using formal techniques. Code reviews 
allows increasing software quality by removing common prob-
lems and enforcing coding styles to improve readability, especially 
when development happen in a in distributed, open-source 

21 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
22 http://www.yarp.it/yarpmanager.html
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FigUre 10 | a screenshot of yarpbuilder. The GUI allows to build applications by dragging and dropping components and by wiring the connections. 
The applications designed in the yarpbuilder can be executed by the yarpmanager.
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community. On the iCub code reviews have been adopted only 
recently and so far mostly in the context of the development of 
the YARP middleware. At this aim, we rely on the functionalities 
offered by github,23 the web service that hosts the majority of the 
repositories we manage. Non-trivial modifications to YARP are 
developed on a separate branch and are integrated in the master 
(the main development branch) only after other developers have 
revised and approved it. Common problems that have been iden-
tified through code reviews are: race conditions, memory leaks, 
and buffer overflows to mention a few. An important feature 
provided by github is the possibility to test software patches before 
they are integrated in the main branch (using Travis24 ). However, 
Travis supports only a specific distribution of Linux (at the time 
of writing Linux Ubuntu 12.04 LTS). Therefore, compilation tests 
are also executed for all the supported platforms on our com-
pile farm. This happens periodically (nightly builds) and upon 

23 https://github.com
24 https://travis-ci.org/

any commit (continuous builds) to the YARP and iCub main 
repositories.

Static code analysis can also be performed automatically 
using model checking techniques [see Baier and Katoen (2008) 
for a review]. These techniques allow ensuring that a piece of 
code satisfies given requirements (usually expressed in tem-
poral logic). Model checking is preferable to other techniques 
because it explores systematically the behavior of a program 
and is completely automated. However, it requires that a 
model of the software is available –  for example in the form 
of a finite state automata – and hardly scales to large systems. 
It has had practical applications in the verification of circuits 
and protocols (Kaufmann et al., 2000). In recent work, we have 
investigated the use of automatic techniques to derive a model 
of some of the components of the YARP middleware (namely 
Ports and BufferedPorts) and successfully applied model check-
ing to verify properties of code that uses YARP (Khalili et al., 
2014). Although promising, these techniques still require 
a certain degree of manual intervention from an expert and 
do not scale well to large programs. Further research is still 
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FigUre 11 | a screenshot of yarpmanager. On the left, the GUI shows the list of applications that are available and can be loaded. Each tab in the center 
window contains one of the four applications that have been loaded. For each application, the GUI shows the status of the components, the host in which it should 
be ran and the parameters. The bottom windows show the status of the Port and connections that are used by the current application. The bottom-right window 
shows the status of the nodes in the network.
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required before they can be integrated in the software develop-
ment workflow.

Dynamic testing on the other hand consists of running and 
testing the dynamic behavior of the code. This involves writ-
ing specific pieces of code, specifically devised to exercise the 
functionalities of the software and verify that it complies with 
the specifications. Test-driven development has gained increasing 
attention in software engineering (Beck, 2003). Proper applica-
tion of this technique requires (i) alternating writing tests and 
developing functional code in small and rapid iterations and 
(ii) executing tests automatically to ensure that modifications to 
existing code (new components, bug fixes, or new features) do not 
break existing functionalities. In the remainder of this section, 
we describe how unit-testing has been adopted for testing the 
software on the iCub robot.

9.1. The robot Testing Framework
Unit-testing was adopted for the development of YARP since 
the beginning, whereas systematic testing of the software that 

controls the iCub was started only recently. This is because robot 
software cannot be tested in isolation, and it requires running 
other components, device drivers, or just the robot simulator 
(these resources are called fixture). Automating testing requires 
therefore that the testing framework is able to setup the required 
resources and monitor them to ensure that they remain functional 
during the execution of the tests, offering hooks to handle failure 
appropriately (i.e., restarting the robot, performing parking rou-
tines, etc.). To comply with these requirements, we developed the 
Robot Testing Framework (RTF) (Paikan et al., 2015d).

The RTF25 is a generic testing framework for test-driven 
development of robotic systems. Its architecture is detailed in 
Figure  12. It is based on the well-known xUnit test patterns, 
which includes a test runner, test result formatters, and a test 
fixtures manager. In addition, it provides functionalities for 

25 The source code and documentation of the RTF can be accessed on-line at http://
robotology.github.io/robot-testing/index.html.
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FigUre 12 | The architecture of the Robot Testing Framework. Test cases can be developed as independent plug-ins using scripting languages or can be 
built as dynamically loadable libraries. The plug-ins are loaded by the Test Case Loader and are executed by the Test Runner. Test cases can also be grouped in 
different test suites, which are represented using XML. In the latter case, the Test Suite Loader parses the XML file and, using the Test Case Loaders, it loads the 
corresponding test plug-ins. Each test suit can optionally have a fixture manager, which is implemented as a separate plug-in (which is loaded by the Fixture 
Loader). This fixture plug-in is responsible for setting up the fixture and informing the Test Suite Loader when the fixture fails (e.g., crashes). In this case, the Test 
Suite Loader restarts the fixture and resumes execution of the remaining test cases. The result of the tests can be monitored from the console (through the Console 
Reporter) or remotely from a Web browser (through the Web Reporter). The Test Result Collector allows storing data in different formats. For example, this figure 
shows two components for storing output in text format or XML, (Text result Outputter and XML Result Outputter, respectively).

Natale et al. The iCub Software Architecture

17Frontiers in Robotics and AI | www.frontiersin.org April 2016 | Volume 3 | Article 24

defining test cases (i.e., unit tests), suits, and assertions. RTF sup-
ports multiple middleware, languages, and operating systems. 
This is achieved by providing abstraction layers for the platform 
(i.e., operating system), the middleware, and the programing 
language. Moreover, RTF provides functionalities for managing 
complex fixtures, which support stress testing at the level of 
individual components (robot hardware like sensors or actua-
tors) as well as integrated (sub) systems. It is worth pointing out 
that the RTF is not a tool for static analysis of code. As such it 
does not perform an exhaustive analysis of the code to ensure 
given properties of absence of deadlocks. The code is evaluated 
by running tests that call individual functions and verify the 
value of the return parameters or observe the internal status of 
the system under test by calling specific functions. Deadlocks 
can be detected indirectly by setting a timeout on the execution 
of individual tests.

A test suite is a set of test cases, which share the same test 
fixture (Meszaros, 2007). In RTF, a set of test cases (plug-ins) can 
be grouped as a test suite using an XML file and executed using 
the test runner. This allows the unit tests to be easily organized in 
different test suites, which are easy to maintain and extend.

The fixture manager is implemented as a separate plug-in 
so that it can be implemented using the deployment tools and 
policy of the middleware of choice. (for example OROCOS 
uses the component deployer, deployer-corba, ROS components 
use roslaunch toolset). For YARP, it is implemented using the 
yarpmanager.

Notably, RTF provides test results in different formats includ-
ing Junit XML file. This allows the test results to be published and 

monitored using standard integration tools such as Jenkins. The 
next section describes the tests that are currently implemented for 
the iCub. The test cases can be run directly on the iCub robot or 
using a simulator. Some of the tests are executed automatically on 
the simulator using Jenkins upon any change in YARP middleware 
or the iCub software. These tests check that any new update in the 
software is compatible with the robot interfaces. There are also 
some tests that check the robot hardware; these tests are executed 
directly on the robot and under human supervision.

9.2. Testing on the icub
We conclude this section with a description of the tests that have 
been implemented so far on the iCub robot. We can distinguish 
four categories of tests: (i) tests on the correctness of the robot 
configuration files, (ii) tests for specific hardware devices, (iii) 
tests for the compliance of low-level software and firmware with 
system specifications, and finally (iv), tests that are specifically 
written after a specific bug is identified and fixed.

The first category of tests may seem unusual. There exists 
about 30 iCub units, and, over the years, many of them under-
went hardware customizations, revisions, or upgrades. Therefore, 
each unit has a specific set of configuration XML files, typically 
manually written and therefore subject to errors. Automatic tests 
attempt to minimize such errors by verifying the correct behavior 
of the robot.

JointLimits, for example, is a test which belongs to the first 
category. This test checks that range of motion written in the 
configuration files is achievable by the system by moving each 
joint to the maximum and minimum position. If a hardware 
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TaBle 2 | some of the test cases which has been developed for the icub 
robot.

Test Description

CameraTest Checks the robot camera’s frame rate and 
size

ControlModes Checks control mode specifications, 
validates allowed, and forbidden transitions

FtSensorTest Checks the robot force sensors against a 
predefined, known value

JointLimits Checks the software joint limits configuration
MotorTest Checks the IPositionControl and IEncoders 

interfaces, moves the motors individually 
or in groups, and verifies that the required 
position is actually obtained within a 
predefined amount of time

MotorEncodersSignChecks Check that motor encoder readings increase 
when positive PWM is applied to a motor

OpticalEncodersConst Checks the consistency between encoders 
at the motors and at the joints

OpticalEncodersDrift Performs repetitive movements to verify that 
encoders do not drift

PortFrequencyTest Checks the rate at which state information is 
published by the robot interfaces

PositionDirect Checks the IPositionDirect control mode
SensorsDuplicateRd Checks that a YARP Port publishes unique 

values at each update
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limit is unexpectedly encountered, the test fails, informing of a 
possible mistake in the robot configuration files. This kind of tests 
can be considered rather static over time: additional tests may be 
added if new configuration parameters are introduced, however, 
individual tests do not typically require maintenance.

The second category includes all the tests which validate 
the correct operation of a hardware device. For example, the 
OpticalEncodersDrift test moves a joint generating a sinusoidal 
trajectory. The test checks that, after a repeated number of cycles, 
the measurements of the optical encoder do not drift. A drift 
suggests a hardware defect such as the presence of dust on the 
encoder disk (for optical encoders) or electrical interference. This 
category of tests is dynamic: new devices are continuously intro-
duced and new tests have to be designed for the new hardware, 
while existing tests have to be periodically reviewed as a result of 
a hardware revision of an existing device.

The third category includes all the tests which verify that the 
robot behavior complies with the specifications and requirements. 
The simplest test of this category is MotorEncodersSignChecks, 
which tests that individual encoders increase their value when 
the corresponding motor rotates with positive input. This is 
an important convention that determines the sign of the PID 
controllers but may be affected by incorrect mounting of the 
encoders, motor wiring, or firmware configuration. As previ-
ously mentioned, iCub control boards implements the concept 
of control mode. If a joint is controlled in position mode, for 
example, only position commands sent through the IPosition 
interface are accepted, while other commands (e.g., velocity, 
torque) must be rejected. ControlModes extensively verifies that 
all the possible states described in the specifications of control 
mode state machine are reachable and that the corresponding 
transitions are correct. Also prohibited transitions are tested. For 
example, if a hardware fault occurs (the test intentionally causes 
a hardware fault by sending an invalid command) the user has to 
set the joint in idle mode before switching to any other control 
mode. MotorTest exercises the interfaces for reading encoders and 
moving the joints in position mode. This category of tests typi-
cally evolves over time: for example, when a new control mode 
or interface is implemented, these tests may be extended in order 
to check the compatibility of the new features with existing ones.

The fourth category of tests is written when individual soft-
ware defects are discovered. In this case, it is good practice to 
first write a test that triggers the specific defects and then ensure 
that a candidate software patch effectively passes the test. These 
tests remain in the system to ensure that future changes will 
not cause the same defect to reappear. An example of this test 
is SensorsDuplicateRd, which verifies that sensors values are not 
broadcast multiple times on a Port.

Table 2 lists all the tests that are currently implemented on 
the robot. These tests are executed periodically on the simulator 
and manually on the real robot. As the development is currently 
in progress, the list covers only partially the functionalities that 
could and should be tested.26

26 The source code and description of the available tests for iCub can be accessed 
on-line at https://github.com/robotology/icub-tests.

10. lessOns learneD

We report here a list of lessons we learned during the development 
of the YARP middleware and the iCub software architecture.

10.1. Freedom of choice versus Freedom 
from choice
The iCub is a research platform developed by and for researchers. 
We tried to accommodate as much as possible the need for the 
users of the robot giving maximum freedom in terms of develop-
ment environment and tools. We support MacOS X, different 
flavors of Linux, and Windows. In several occasions, this turned 
out to be a good choice that allowed us to run the code on legacy 
hardware and to reach a wider group of users. It, however, required 
to keep support for various versions of compilers and libraries 
and resulted in considerable maintenance cost, sometimes slow-
ing down the introduction of new features made available in new 
compilers or libraries. On the software development side, we also 
gave users freedom to code their components in the way the liked; 
for this reason, we did not introduce a rigid component model 
but only provided helper classes and best practices through 
documentation and on-line tutorials. This choice in the short 
term was beneficial because it reduced the learning curve, but 
in the long term may hinder standardization and actually slow 
down development. A somewhat opposite approach would be to 
rely on design tools and code generation to leverage the user from 
the task of implementing infrastructure code [this approach is 
followed for example by Smartsoft (Schlegel and Worz, 1999)]. 
Striking a good balance between the two approaches is a difficult 
design decision, which depends on background and expectations 
of the target users.
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10.2. in-house Middleware
When we started the development of iCub back in 2004, only 
a few middleware existed in the robotics community and their 
use was quite fragmented. The first version of YARP was already 
mature and the consortium that designed the iCub included 
YARP’s core developers in the team. This was one of the main 
reasons that has motivated the adoption and consequent devel-
opment of YARP. Having in-house control of the middleware 
code-base has given us great flexibility to address the needs of 
the iCub community. Such examples have been described in this 
paper and include: the definition of the motor control interfaces 
and corresponding communication paradigm for remotiza-
tion, the functionalities for remote execution and logging, and 
organization of parameters. Not less importantly it allowed us to 
come up with novel extensions like the Port Monitor and chan-
nel prioritization. YARP can be easily compiled on many Linux 
distributions, MacOS, and Windows. All these reasons still 
prevent us today from adopting ROS altogether and motivated 
us to add support for ROS interoperability, instead. Developing, 
debugging and maintaining the communication back-bone of 
the robot, however, has quite a high cost and should not be 
underestimated when developing a new robot. Our experience 
has shown that user code become quite entangled with the mid-
dleware data structures and build system (middleware lock-in). 
Considered that middleware technology is in constant evolution 
it may be a good idea to design the software architecture of the 
robot to reduce such dependency, so that changing middleware 
is possible and inexpensive.

10.3. Packet Management system
The build system of the iCub software is based on CMake. CMake 
offered a great degree of flexibility, allowing to customize and to 
automate the compilation process, including finding and config-
uring dependencies. However, the software ecosystem suffered 
from the lack of a sophisticated packet management system. The 
main stumbling block in this respect was the decision to sup-
port Windows, for which there are no mature systems for packet 
management and distribution. To partly cope with this problem, 
we developed custom scripts for packaging dependencies in 
binary distributions for Windows, Linux, and, hombrew recipes 
for MacOS X. Yet, the development of an iCub software ecosystem 
was slowed down from the lack of a powerful packet management 
system like the one that is available in many Linux distributions.

10.4. lack of iDl
YARP was not born with an IDL language supporting the 
definition of data type and services. The reason for this choice 
was to facilitate adoption by reducing complexity and learning 
curve. Interfaces were developed using self-describing data types 
(i.e., the YARP Bottle), which allowed code to parse messages 
dynamically by inspecting their content. With the growth of the 
community, this became a limitation because it made it difficult 
to document modules interfaces, perform versioning, and verify 
compatibility between modules. In retrospect it would have been 
preferable to introduce the IDL much earlier in the development, 
enforcing its use like, for example, ROS. Finally, another advan-
tage of the IDL is that it allows documenting service interfaces 

using Doxygen keeping services documentation and their code 
in the same files. 

10.5. external configuration of Ports
YARP provides different communication policies through the 
Port API (like buffering, streaming versus RPC). However, 
understanding how components communicate requires looking 
at the code; this increases the probability of introducing subtle 
bugs. It would be beneficial if the available polices were visible 
and configurable at run time. In Section 3, we showed initial steps 
in the direction for providing policies for channel prioritization; 
however, further development is required to give users access to 
the other configuration parameters.

10.6. robot interface abstraction layer
The robot interface abstraction layer had a positive impact during 
the development. It allowed to introduce new functionalities via 
new interfaces without affecting existing code and to execute code 
on-board, remotely on the real robot or simulators. These features 
gave a useful level of flexibility that facilitated debugging, code 
re-use, and fast-prototyping. Robot interfaces have evolved with 
time to accommodate the research requirements and to support 
new hardware as it became available; we tried to limit as much 
as possible the impact of these changes on the user code and 
introducing new functionalities in optional interfaces. The robot 
interface abstraction layer hides the user code from the details of 
the communication and the specific communication middleware. 
This allowed to extend the representation of the data structure that 
broadcasts the robot state without changes outside library code. 
In the future, it may even allow us to change the transport layer 
(i.e., the communication middleware) altogether with minimal 
impacts. Another improvement in the robot interface followed 
the refactoring of the plugin system, which was modified to load 
plug-ins at runtime using dynamic libraries (it was initially based 
on static linking). This decoupled all dependencies and allowed 
us to separate device drivers contributed by users in separate 
repositories, resulting in simpler packaging and maintenance.

10.7. Test-Driven Development
The development cycle of the YARP middleware adopted unit 
testing since the beginning. For practical reasons, this approach 
was extended only recently to the other layers of the iCub 
software architecture. The Robot Testing Framework is being 
used to test the low-level code that is developed for the new 
version of the iCub and although tests still cover a relatively 
small portion of the code, we already see its benefits: besides 
detection of bugs due to programmers errors, it allowed us to 
detect problems that were due to lacking or imprecise specifica-
tions. The latter is a problem that is particularly frequent in 
research environments.

11. cOnclUsiOn

In this paper, we described the software architecture of the iCub 
humanoid robot, including some of its recent development. We 
illustrated the design choices that have guided and constrained 
its development, including the lessons that we learned during 
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this endeavor. We do not claim these choices to be optimal and 
equally good in all cases. However, we hope that in the future, 
this paper may provide a useful guide for the design of other 
humanoid robots.
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