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STABILITY OF FUNCTIONAL EQUATIONS
AND PROPERTIES OF GROUPS

Gian Luigi Forti

Abstract. Investigating Hyers–Ulam stability of the additive Cauchy equa-
tion with domain in a group G, in order to obtain an additive function approx-
imating the given almost additive one we need some properties of G, starting
from commutativity to others more sophisticated. The aim of this survey is to
present these properties and compare, as far as possible, the classes of groups
involved.

1. Introduction

We begin by considering the equation of homomorphisms (Cauchy additive
equation) from a group G to R:

g(xy) = g(x) + g(y);

note that assuming that the range of g is in R instead of a general Banach
space is not a restriction, as proved in [5]. It is well known the following
theorem which originates from the very first result of Hyers (see [5] and [10]):
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Theorem 1.1. Let G be a group and let f : G→ R be a function such that
for some K ≥ 0

(1.1) |f(xy)− f(x)− f(y)| ≤ K for all x, y ∈ G.

Then, for every x ∈ G, the limit

g(x) = lim
n→∞

f(x2
n

)

2n

exists, the function g is a solution of the functional equation

(1.2) g(x2) = 2g(x) for all x ∈ G

and satisfies the inequality

(1.3) |f(x)− g(x)| ≤ K.

Moreover g is the unique function satisfying equation (1.2) and inequality (1.3).

In order to get Hyers–Ulam stability of the equation of homomorphisms,
we should prove that g is additive, i.e.,

g(xy) = g(x) + g(y)

for all x, y ∈ G.
The additivity of g depends on properties of the group G. In the follow-

ing we intend to deal with this problem, presenting various results and open
problems.

A complete characterization of the groups where the Cauchy equation is
stable has been obtained by Roman Badora ([1]).

Definition 1.2. We say that a group G belongs to the class G if for every
subadditive functional p : G→ R, i.e.,

p(xy) ≤ p(x) + p(y), x, y ∈ G,

there exists an additive function a : G→ R such that

a(x) ≤ p(x), x ∈ G.

Badora’s result reads as follows:

Theorem 1.3. The function g is additive if and only if G ∈ G.
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Stability of functional equations and properties of groups 79

We immediately meet a problem: the definition of the class G is not directly
related to “algebraic” properties of their groups hence it is not immediately
understandable which known classes of groups belong to it.

Another simple condition yielding the additivity of the function g is given
by the following:

Theorem 1.4. The function g given in (1.2) is additive if and only if for
every x, y ∈ G we have that the related function f satisfies the condition

(1.4) lim
n→∞

2−n
[
f(x2

n

y2
n

)− f([xy]2
n

)
]
= 0.

Proof. Assume g is additive. We have

|f(x2
n

y2
n

)− f([xy]2
n

)| ≤ |f(x2
n

y2
n

)− f(x2
n

)− f(y2
n

)|
+ |f([xy]2

n

)− f(x2
n

)− f(y2
n

)|
≤ K + |f([xy]2

n

)− f(x2
n

)− f(y2
n

)|.

If we divide by 2n and take the limit, the right–hand side goes to
|g(xy)− g(x)− g(y)| = 0, thus the property is proved.

Assume now that (1.4) holds. Setting in (1.1) x2
n

and y2
n

instead of x and
y, dividing by 2n and taking the limit, we obtain

lim
n→∞

2−nf(x2
n

y2
n

) = g(x) + g(y).

By the hypothesis (1.4)

lim
n→∞

2−nf(x2
n

y2
n

) = lim
n→∞

2−nf([xy]2
n

) = g(xy). �

Also this condition is not completely satisfactory since it refers to the
function f and not directly to the group G, however we will see that from
it we can deduce some useful properties of the group G. First, we note the
obvious fact that in Abelian groups condition (1.4) is satisfied.

Note that condition (1.4) is equivalent to the following one: there exists a
subsequence {m(n)} of N such that

(1.5) lim
n→∞

2−m(n)
[
f(x2

m(n)

y2
m(n)

)− f([xy]2
m(n)

)
]
= 0.

This depends on the fact that both limits

lim
n→∞

2−nf(x2
n

y2
n

) and lim
n→∞

2−nf([xy]2
n

)

exist and are finite.
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Another important and long studied functional equation is the quadratic
one:

(1.6) q(xy) + q(xy−1) = 2q(x) + 2q(y),

where q : G→ R and G is a group.
As for the additive equation, we start from a function f : G→ R satisfying

the inequality

(1.7) |f(xy) + f(xy−1)− 2f(x)− 2f(y)| ≤ H

for all x, y ∈ G and for some H ≥ 0,

and we obtain the following (see, for instance, [20]):

Theorem 1.5. Let G be a group and let f : G→ R be a function satisfying
inequality (1.7). Then, for every x ∈ G, the limit

q(x) = lim
n→∞

f(x2
n

)

22n

exists, the function q satisfies the conditions

(1.8) q(x2) = 4q(x), |f(x)− q(x)| ≤ H/2 for all x ∈ G.

Moreover q is the unique function satisfying the functional equation and the
inequality in (1.8).

Again, we are requested to find conditions on the group G in order that
the function q be a quadratic function, i.e., satisfy (1.6). We have the following
simple analogous result as in the case of the Cauchy equation.

Theorem 1.6. The function q is quadratic if and only if for every x, y ∈ G
we have

(1.9) lim
n→∞

2−2n
[
f(x2

n

y2
n

) + f(x2
n

y−2
n

)− f([xy]2
n

)− f([xy−1]2
n

)
]
= 0.

Again condition (1.9) is obviously satisfied if G is Abelian; moreover, it is
equivalent to the following: there exists a subsequence {m(n)} of N such that

lim
n→∞

f(x2
m(n)

y2
m(n)

) + f(x2
m(n)

y−2
m(n)

)− f([xy]2m(n)

)− f([xy−1]2m(n)

)

2−2m(n)
= 0.
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Stability of functional equations and properties of groups 81

2. Amenability and invariant mean method

László Székelyhidi in a Remark given during the 22sd International Sym-
posium on Functional Equations ([22]) replaced Hyers’ proof on the stability
of the additive Cauchy equation with a more general one using the notion of
invariant mean.

Let G be a group and B(G) be the space of all bounded complex–valued
functions on G, equipped with the supremum norm ‖f‖∞.

Definition 2.1. A linear functional m on B(G) is a left (right) invariant
mean if:
(α) m(f) = m(f), for each f ∈ B(G);
(β) infx{f(x)} ≤ m(f) ≤ supx{f(x)}, for all real valued f ∈ B(G);
(γ) m(xf) = m(f) (m(fx) = m(f)), for all x ∈ G and f ∈ B(G), where

xf(t) = f(xt) (fx(t) = f(tx)).
The mean is two sided invariant if it is both left and right invariant.
Condition (β) is equivalent to m(f) ≥ 0 if f ≥ 0, and m(1) = 1, hence

‖m‖ = 1.

Definition 2.2. A group G is amenable if it has a (two sided) invariant
mean.

How to ascertain if a group G is amenable? The most important and used
condition is due to Jaques Dixmier ([4]):

Theorem 2.3. The existence of an invariant mean on B(G) is equiva-
lent to the following: if {f1, · · · , fn} are real valued functions in B(G) and if
{x1, · · · , xn} are elements of G, then

sup
y

n∑
i=1

{fi(xiy)− fi(y)} ≥ 0.

As for Badora’s class G we have a condition which is not directly algebraic.
In any case it is relatively easy to prove that Abelian groups and finite groups
are amenable (see [9]).

If G is amenable and m is a left–invariant mean on B(G), we may define
a left–invariant finitely additive measure µ on the family P(G) of all subsets
of G as follows: µ(E) = m(χE), where χE is the characteristic function of
E ∈ P(G).

We now prove that such a measure does not exist on the free group on
two generators F (a, b). Divide F (a, b) into disjoint sets {Hi : i ∈ Z}, where
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x ∈ Hi if and only if x expressed as a reduced word has the form

x = aibi1ai2 · · · , i1 6= 0 if x 6= ai.

Then, λa : x 7→ ax maps Hi to Hi+1, for all i ∈ Z, whereas λb : x 7→ bx
maps every set Hi, i 6= 0, into H0. If a left–invariant measure µ existed, then
µ(Hi) = 0 for all i ∈ Z, and

µ(H0) ≥ µ
( ⋃

i6=0

Hi

)
, while µ(H0) + µ

( ⋃
i6=0

Hi

)
= µ(G) = 1,

hence µ(H0) ≥ 1/2, a contradiction.
Thus, the free group F (a, b) is not amenable.
Since every subgroup of an amenable group is amenable, then if a group

contains F (a, b), it is not amenable.
A famous problem, the so–called Von Neumann–Day problem, asks if any

non amenable group contains F (a, b): the answer is negative and this have
been proved in 1980 by Ol’shanskii ([14]).

Going back to stability, we prove here Székelyhidi’s theorem (see [5]
and [22]).

Theorem 2.4. Let f : G→ R(C), G amenable group, and

|f(xy)− f(x)− f(y)| ≤ K for all x, y ∈ G.

Then there exists a unique homomorphism g such that

|f(x)− g(x)| ≤ K for all x ∈ G.

Proof. From |f(xy)− f(x)− f(y)| ≤ K, we have that the function y 7→
f(xy) − f(y) is in B(G) for each x ∈ G. Let my the left–invariant mean (on
a function of y) and define

g(x) = my{xf − f}, x ∈ G.

Then

g(xz) = my{xzf − f} = my{xzf −x f +x f − f}

= my{xzf −x f}+my{xf − f}

= my{zf − f}+my{xf − f} = g(z) + g(x),
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Stability of functional equations and properties of groups 83

so g ∈ Hom(G,R). Moreover,

|g(x)− f(x)| = |my{xf − f} − f(x)| = |my{xf − f − f(x)}

≤ sup
y∈G
|f(xy)− f(x)− f(y)| ≤ K. �

Following the ideas of Székelyhidi for the Cauchy equation, Dilian Yang
in 2004 ([26]) was able to prove the following

Theorem 2.5. Let G be an amenable group. Then the quadratic equation
from G to R is stable.

A question immediately arises: does there exist any group where the Cauchy
equation is not stable?

Since this group must be non amenable, the obvious idea is to look to
F (a, b). Indeed, consider the function f : F (a, b)→ R defined as follows:

f(x) = r(x)− s(x),

where r(x) is the number of pairs ab, and s(x) is the number of pairs b−1a−1
respectively in the reduced form of x. Anna Bahyrycz in [3] (see also [5])
proved in full details that

|f(xy − f(x)− f(y)| ≤ 1,

while for every homomorphism φ of G in R, the difference f−φ is unbounded.
Also Yang considered this problem for the quadratic equation and proved

that the function f : F (a, b) → R given by f(x) = r(x) + s(x) produces the
searched example.

At this point we know that on F (a, b) the additive equation is not stable
and that there are non amenable groups which do not contain F (a, b). So,
we can ask whether for all groups containing F (a, b) the additive equation is
not stable; another weaker question may be the following: let G ⊃ F (a, b),
is it possible to extend the function f defined above on F (a, b) to a function
f̃ : G→ R such that |f̃(xy)− f̃(x)− f̃(y)| is bounded?

Frank Zorzitto and John Lawrence, in a private communication, proved
that for both questions the answer is negative.

Theorem 2.6. There exists a group G ⊃ F (a, b) such that any extension
of the function f defined above on F (a, b) has unbounded Cauchy difference.
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Proof. Let G be the group whose presentation is

G =< a, b, c : c−1(ab)2c = (ab)3 > .

By the Freiheitssatz theorem (see [12, p. 252, Theorem 4.10]), the subgroup
generated by a and b is free: let it be F (a, b).

The function f on F (a, b) defined above gives

f((ab)n) = n, f((ab)−n) = −n, n = 1, 2, . . . .

Suppose there exists an extension f̃ : G→ R of f such that

|f̃(xy)− f̃(x)− f̃(y)| ≤ δ,

for all x, y ∈ G and some positive δ. Then, for x, y, w, z ∈ G we have

|f̃(xywz)− f̃(x)− f̃(y)− f̃(w)− f̃(z)| ≤ |f̃(xywz)− f̃(xy)− f̃(wz)|
+ |f̃(xy) + f̃(wz)− f̃(x)− f̃(y)− f̃(w)− f̃(z)|
≤ |f̃(xywz)− f̃(xy)− f̃(wz)|+ |f̃(xy)− f̃(x)− f̃(y)|
+ |f̃(wz)− f̃(w)− f̃(z)| ≤ 3δ.

In G for every positive integer n we have the following identities:

c−1(ab)2nc = (ab)3n, or c−1(ab)2nc(ab)−3n = e.

By combining this identity with the previous inequality we get:

|f̃(e)− f̃(c−1)− f̃((ab)2n)− f̃(c)− f̃((ab)−3n)| ≤ δ.

However, f̃((ab)2n) = f((ab)2n) = 2n and f̃((ab)−3n) = f((ab)−3n) = −3n,
hence

|f̃(e)− f̃(c−1)− 2n− f̃(c) + 3n| = |f̃(e)− f̃(c−1)− f̃(c) + n| ≤ 3δ

for every positive integer n: a contradiction. �

Theorem 2.7. Any torsion free group H can be embedded into a group G
such that the Cauchy equation is stable on G.

Unauthentifiziert   | Heruntergeladen  07.02.20 19:55   UTC



Stability of functional equations and properties of groups 85

Proof. By using HNN-extensions ([12]) the group H can be embedded
into a group G such that

∀x ∈ G ∃y ∈ G : y−1xy = x2.

Let f : G→ R be such that

|f(xy)− f(x)− f(y)| ≤ δ

for all x, y ∈ G and some nonnegative δ. If δ = 0 we are done. Assume δ > 0,
we will prove that f has to be bounded, more precisely |f(x)| < 2δ. Assume,
on the contrary, that, for some x ∈ G, |f(x)| ≥ 2δ. From

|f(x2)− 2f(x)| ≤ δ

it follows that

|2f(x)| − δ ≤ |f(x2)|

so |f(x2)| ≥ 3δ. From

|f(x) + f(x2)− f(x3)| ≤ δ

we get

|f(x)|+ |f(x2)| − δ ≤ |f(x3)|,

hence |f(x3)| ≥ 4δ. Repeating this procedure we obtain that

|f(xn)| ≥ (n+ 1)δ, n = 1, 2, . . . ,

thus f(xn) is not bounded as n varies.
Now, take y ∈ G such that y−1xy = x2, then for all positive integers n we

have y−1xny = x2n. For each n,

|f(x2n)− 2f(xn)| = |f(y−1xny)− 2f(xn)| ≤ δ.

But

|f(y−1xny)− f(y−1)− f(xn)− f(y)| ≤ 2δ,

hence

|f(y−1xny)− f(xn)| ≤ 2δ + |f(y−1)|+ |f(y)|.
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Using the last two inequalities we obtain

|f(xn)| ≤ 3δ + |f(y−1)|+ |f(y)|, n = 1, 2, . . . ,

a contradiction. �

We have seen that amenability is an effective tool for proving stability for
additive and quadratic equation. Clearly the possibility of using amenability
is strictly connected with the structure of the functional equation involved.
Other results using amenability are about polynomial equation ([21]), Drygas
equation (see [7] and [25]) and, in a more sophisticated form, about Levi–
Civita equation ([18, 19]).

As we have seen the amenability of the domain group implies the stability
of the additive equation, while there are non amenable groups where the same
equation is not stable and others where it is stable, thus stability is a property
weaker than amenability.

Can we recover amenability by using stability in a certain stronger form?
An answer is given by the following theorem ([5]), where by Cf(x, y) we denote
the Cauchy difference f(xy)− f(x)− f(y):

Theorem 2.8. A group G is amenable if and only if for every n–tuple
f1, f2, · · · , fn : G→ R, with

|fi(xy)− fi(x)− fi(y)| ≤ Ki, i = 1, · · · , n,

there exist n homomorphisms φi : G→ R such that fi − φi, i = 1, · · · , n, are
bounded and for all x1, x2, · · · , xn ∈ G the inequality

inf
y∈G

n∑
i=1

Cfi(xi, y) ≤
n∑

i=1

{φi(xi)− fi(xi)} ≤ sup
y∈G

n∑
i=1

Cfi(xi, y).

Proof. Suppose G amenable and let m be an invariant mean on B(G).
If |fi(xy)− fi(x)− fi(y)| ≤ Ki, then we set φi(x) = m{xfi− fi} and we know
that φi ∈ Hom(G,R) and φi − fi is bounded. Fix now x1, x2, · · · , xn ∈ G, by
the properties of m we have:

inf
y∈G

n∑
i=1

{fi(xiy)− fi(y)} ≤ m{
n∑

i=1

{xi
fi − fi} ≤ sup

y∈G

n∑
i=1

{fi(xiy)− fi(y)},
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hence, by subtracting all fi(xi), we obtain

inf
y∈G

n∑
i=1

Cfi(xi, y) ≤
n∑

i=1

{φi(xi)− fi(xi)} ≤ sup
y∈G

n∑
i=1

Cfi(xi, y).

Conversely, let f1, f2, · · · , fn ∈ B(G), then obviously |fi(xy) − fi(x) −
fi(y)| ≤ Ki for each i = 1, · · · , n and some nonnegative Ki’s, and the corre-
sponding homomorphisms (existing by hypothesis) φi are equal to zero. Now,
we show that the Dixmier inequality holds, i.e., that

sup
y∈G

n∑
i=1

{fi(xiy)− fi(y)} ≥ 0.

If not, let

sup
y∈G

n∑
i=1

{fi(xiy)− fi(y)} = −σ < 0,

then

sup
y∈G

n∑
i=1

{fi(xiy)− fi(xi)− fi(y)} = −σ −
n∑

i=1

fi(xi)

and

−
n∑

i=1

fi(xi) ≤ −σ −
n∑

i=1

fi(xi),

a contradiction. �

It is not at all immediate to use this last theorem for proving amenability,
so an open problem of certain interest could be to elaborate some effective
procedure to get the desired results.
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3. Weak commutativity and stability

We come back to condition (1.4), i.e.,

lim
n→∞

2−n
[
f(x2

n

y2
n

)− f([xy]2
n

)
]
= 0.

This condition is necessary and sufficient for stability of the Cauchy equation.
This leads to the notion of the so–called Tabor weak commutativity:

Definition 3.1. A group G is Tabor weakly commutative if

∀x, y ∈ G ∃n = n(x, y) ≥ 2 : x2
n

y2
n

= (xy)2
n

.

(Note that for n = 1 this is simply commutativity.)

Józef Tabor in 1984 ([23]) proved the following:

Theorem 3.2. Assume that the group G is Tabor weakly commutative,
then the function g is additive.

Proof. By Theorem 1.4 and following remark, it is enough to construct a
sequence {m(n)} for which condition (1.5) is satisfied. To do this fix x, y ∈ G
and let m1 = n(x, y). Consider now the pair (x2

m1
, y2

m1
); by our hypothesis

there exists n(x2
m1
, y2

m1
) such that

(x2
m1
y2

m1
)2

n(x2m1
,y2m1

)

= (x2
m1

)2
n(x2m1

,y2m1
)

(y2
m1

)2
n(x2m1

,y2m1
)

.

Since (xy)2
m1

= x2
m1
y2

m1 , we obtain

(xy)2
m1+n(x2m1

,y2m1
)

= x2
m1+n(x2m1

,y2m1
)

y2
m1+n(x2m1

,y2m1
)

.

Setting m2 = m1 + n(x2
m1
, y2

m1
), we have

(xy)2
m2

= x2
m2
y2

m2
.

By induction we construct the wanted sequence {mn}. �
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Which are the relations between amenability and Tabor weak commutativ-
ity? Z. Gajda and Z. Kominek in [8] proved that the group S of nonconstant
affine maps of the plane, identified with (R \ {0})× R with the operation

(a, b) · (c, d) = (ac, ad+ b)

is not weakly commutative. Indeed, let a > 1 and consider the product (1, a) ·
(a, 0), we have(

(1, a) · (a, 0)
)n

= (a, a)n = (an, a+ a2 + · · ·+ an),

whereas

(1, a)n · (a, 0)n = (1, na) · (an, 0) = (an, na).

On the other hand, this group is amenable; to prove this it is enough to
show that the subgroup of S given by {(1, b) : b ∈ R} is amenable and
S/{(1, b) : b ∈ R} is amenable (see [9, Theorem 1.2.6]). Since {(1, b) : b ∈
R} is isomorphic to R the first condition is satisfied. Let (a, b) ∈ S, then
(a, b)−1 = (a−1,−ba−1);

(a, b)−1 · (1, r) · (a, b) = (a−1,−ba−1) · (1, r) · (a, b)

= (a−1, a−1r − a−1b) · (a, b)

= (1, a−1r + a−1b− a−1b) = (1, a−1r),

hence the subgroup {(1, b) : b ∈ R} is normal. By

(a, b) · (1, r) = (a, ar + b), (c, d) · (1, r) = (c, cr + d),

we have

(a, ar + b) · (c, cr + d) = (ac, acr + ad+ ar + b)

and

(c, cr + d) · (a, ar + b) = (ac, acr + cb+ cr + d),

so these products belong to the same coset, i.e., S/{(1, b) : b ∈ R} is Abelian
hence amenable.
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Thus, we have shown that there exist amenable groups which are not
weakly commutative. Conversely, let Br(n) be the so–called free Burnside
group presented as follows:

Br(n) =< a1, · · · , ar|∀x : xn = e >,

(Another definition is Br(n) = Fr/F
n
r , where Fr is the free group on r gener-

ators). It has been proved that for r ≥ 2 and n ≥ 248, n odd, the group Br(n)
is infinite and non amenable (see [11, 13, 15, 16]). By a theorem proved in [24]
by Toborg (see also [2]), since Br(n) is a torsion group and every element has
odd order, then it is weakly commutative.

In order to introduce a different notion of weak commutativity we need
some preliminary results.

Let f : G→ R be a function satisfying inequality (1.1). For q ∈ N we have
the following

(3.1)
∣∣∣f(xq)

q
− f(x)

∣∣∣ ≤ q − 1

q
K < K.

Indeed, it is true for q = 1 and assume valid for q − 1, then

|f(xq)− qf(x)| = |f(xq)− f(xq−1)− f(x) + f(x) + f(xq−1)− qf(x)|

≤ |f(xq)− f(xq−1)− f(x)|+ |f(xq−1)− (q − 1)f(x)|

≤ K + (q − 2)K = (q − 1)K.

Theorem 3.3. Let {kn} be a sequence of integers greater than or equal to
2 and define sn := k1 · k2 · · · kn and let f satisfy inequality (1.1). Then for
each x ∈ G the sequence {s−1n f(xsn)} is convergent.

Proof. We prove that {s−1n f(xsn)} is a Cauchy sequence. Fix ε > 0,
n > m and consider the difference

f(xsn)

sn
− f(xsm)

sm
.

By inequality (3.1), we have,∣∣∣f(xsn)
sn

− f(xsm)

sm

∣∣∣ = s−1m

∣∣∣sm
sn
f(xsn)− f(xsm)

∣∣∣ ≤ s−1m K < ε

for m > K
ε . �
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Thanks to the previous theorem we can define

g(x) = lim
n→∞

f(xsn)

sn
,

moreover, by (3.1) we have

|g(x)− f(x)| ≤ K.

In order to prove that g is additive, we assume the following property on
the group G:

for each pair x, y ∈ G, x 6= y, there exists an integer k = k(x, y) ≥ 2, such
that

(3.2) xkyk = (xy)k,

we give to this property the name Rätz weak commutativity since it generalizes
the condition presented by Jürg Rätz in [17].

Fix x, y ∈ G and let k1 be such that xk1yk1 = (xy)k1 , by (3.2) there
exists k2 = k2(x

k1 , yk1) such that (xk1yk1)k2 = xk1k2yk1k2 ; by iterating this
procedure we obtain a sequence {kn} such that

xk1k2···knyk1k2···kn = (xy)k1k2···kn , n ∈ N.

Thus, for sn = k1k2 · · · kn, we have

= s−1n |f([xy]sn)− f(xsn)− f(ysn)|

s−1n |f(xsnysn)− f(xsn)− f(ysn)| ≤ s−1n K

and taking the limit as n→∞, we have

g(xy)− g(x)− g(y) = 0

and, by uniqueness,

g(x) = lim
n→∞

f(xsn)

sn
= lim

n→∞

f(x2
n

)

2n
.

Note that Tabor weak commutativity is a special case of Rätz’s one. The
following obvious problem arises: does there exist any Rätz weakly commuta-
tive group which is not Tabor weakly commutative?
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4. Commutator groups condition

We present another condition on the relevant group G which ensure that
condition (1.4) is satisfied, so we have stability of the Cauchy equation.

Theorem 4.1. Condition (1.4) is satisfied if and only if for each pair
x, y ∈ G, x 6= y, the function f satisfying (1.1) is bounded on the commutator
group G1(x, y) of the subgroup G(x, y) of G generated by x and y.

Proof. If condition (1.4) holds then the function g is additive. Take
u−1v−1uv, u, v ∈ G, then

g(u−1v−1uv) = g(u−1) + g(v−1) + g(u) + g(v)

= −g(u)− g(v) + g(u) + g(v) = 0,

so g is zero on G1(x, y) for each pair x, y, thus f is bounded on G1(x, y).
Fix now x, y ∈ G and assume that f satisfies (1.1) and is bounded on

G1(x, y), say |f(γ)| ≤ H for γ ∈ G1(x, y). For every n ∈ Z we have

u := y−nx−n(xy)n = y−1γy, γ ∈ G1(x, y)

and xnynu = (xy)n. So we have

|f(xnyn)− f([xy]n)| ≤ |f(xnyn) + f(u)− f([xy]n)|+ |f(u)|

≤ K + |f(u)− f(y−1)− f(γy)|+ |f(γy)− f(γ)− f(y)|

+ |f(y−1) + f(y)− f(e)|+ |f(e)|+ |f(γ)| ≤ 5K + |f(γ)| ≤ 5K +H,

thus, dividing by 2n and taking the limit condition (1.4) follows. �

The next theorem relates stability with properties of G1(x, y) (see [6]).

Theorem 4.2. Assume that for each pair x, y ∈ G, x 6= y, there exists
and integer N = N(x, y) such that each element of G1(x, y) is the product of
at most N(x, y) commutators. Then the equation of homomorphisms is stable.

Proof. We assume (1.1) and the theorem will be proved if we show that
condition (1.4) holds. By the previous theorem it is enough to prove that f

Unauthentifiziert   | Heruntergeladen  07.02.20 19:55   UTC



Stability of functional equations and properties of groups 93

is bounded on G1(x, y). Let γ ∈ G1(x, y), then γ = c1c2 · · · cN , where the ci’s
are commutators of G(x, y). Then

|f(γ)| =|f(c1c2 · · · cN )| ≤ |f(c1c2 · · · cN )− f(c1)− f(c2 · · · cN )|

+ |f(c2 · · · cN )− f(c2)− f(c3 · · · cN )|+ · · ·

+ |f(cN−1cN )− f(cN−1)− f(cN )|+ |f(c1)|+ · · ·+ |f(cn)|,

and, if ci = u−1v−1uv,

|f(ci)| = |f(u−1v−1uv) + f(vu)− f(uv)|+ |f(uv)− f(u)− f(v)|

+ |f(u) + f(v)− f(vu)| ≤ 3K;

thus |f(γ)| ≤ 4NK. �

Do we have in this way a new class of groups? The answer is positive.
Consider the group GL2(R), it is well known that it is not amenable; now we
show that it is not (Rätz and Tabor) weakly commutative. Indeed, take the
matrices

x =

(
1 1
0 1

)
, y =

(
−1 2
−1 1

)
,

then it is easy to prove that

xn =

(
1 1
0 1

)n

=

(
1 n
0 1

)
and y2 = −I, y3 = −y and y4 = I. Hence we have for n = 4k, xnyn = xn; for
n = 4k + 2, xnyn = −xn, for n = 4k + 1, xnyn = xny and for n = 4k + 3,
xnyn = −xny, and

xny =

(
−1− n 2 + n
−1 1

)
, −xny =

(
1 + n −2− n
1 −1

)
,

whereas

xy =

(
−2 3
−1 1

)
, (xy)2 =

(
1 −3
1 −2

)
, (xy)3 = I.

Thus, for every n ≥ 2 it is xnyn 6= (xy)n and GL2(R) is not weakly commu-
tative.

Unauthentifiziert   | Heruntergeladen  07.02.20 19:55   UTC



94 Gian Luigi Forti

On the other hand its commutator group is SL2(R) and each element of
it is the product of at most 3 commutators. To see this, we start with two
identities. If a 6= 0 and ad− bc = 1, then(

a b
c d

)
=

(
1 0
c/a 1

)(
1 ab
0 1

)(
a 0
0 1/a

)
,

while, if a = 0,(
0 b
c d

)
=

(
0 1
−1 0

)(
1 −d/b
0 1

)(
1/b 0
0 b

)
.

Now, we have the following three identities:(
1 x
0 1

)
=

(
2 0
0 1

)(
1 x
0 1

)(
2 0
0 1

)−1(
1 x
0 1

)−1
,

(
x 0
0 1/x

)
=

(
x 0
0 1

)(
0 1
1 0

)(
x 0
0 1

)−1(
0 1
1 0

)−1
,

(
0 1
−1 0

)
=

(
1 2
0 1

)(
−1 0
1 2

)(
1 2
0 1

)−1( −1 0
1 2

)−1
.

5. Conclusions and open problems

To finish, we can summarize the various relations among the classes of
groups previously considered. We have Badora’s class G which is the set of
groups where the Cauchy equation is stable; G contains amenable groups
and Rätz weakly commutative groups and these last two classes contain all
Abelian groups. Finite groups are all amenable and some of them are weakly
commutative (for instance the dihedral group D4). The Burnside Br(n), for
r ≥ 2 and n ≥ 248, is Tabor weakly commutative, but it is not amenable;
finally the group GL2(R) belongs to G but it is neither weak commutative nor
amenable.

Thus, obvious open problems are the ’algebraic’ characterization of the
groups in G which are neither amenable nor weekly commutative.

This paper is focused on groups and their properties, however the natural
setting for the additive Cauchy equation are semigroups. Many of the results
and considerations concerning groups can easily be translated to semigroups,
like amenability and weak commutativity, while others are not (commutator
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G
GL2(R)

Amenable groups

Finite groupsAbelian groups

Weakly commutative groups

Br(n)

group etc.). It would be interesting to treat in more details the semigroup
case.

As already noted, the theorem relating amenability to a sort of multi–
stability is not very useful if we do not produce a way to apply it.

Last, it would be very interesting to produce a family of functional equa-
tions for which stability can be proved by using amenability and possibly some
additional condition, like centrality used for Drygas equation.

References

[1] R. Badora, On the Hahn–Banach theorem for groups, Arch. Math. (Basel) 86 (2006),
no. 6, 517–528.

[2] R. Badora, B. Przebieracz, P. Volkmann, On Tabor groupoids and stability of some
functional equations, Aequationes Math. 87 (2014), no. 1–2, 165–171.

[3] A. Bahyrycz, Forti’s example of an unstable homomorphism equation, Aequationes
Math. 74 (2007), no. 3, 310–313.

[4] J. Dixmier, Les moyennes invariantes dans les semi-groups et leurs applications, Acta.
Sci. Math. Szeged 12 (1950), 213–227.

[5] G.-L. Forti, The stability of homomorphisms and amenability, with applications to
functional equations, Abh. Math. Sem. Univ. Hamburg 57 (1987), 215–226.

[6] G.-L. Forti, Hyers–Ulam stability of functional equations in several variables, Aequa-
tiones Math. 50 (1995), no. 1–2, 143–190.

[7] G.-L. Forti, J. Sikorska, Variations on the Drygas equation and its stability, Nonlinear
Anal. 74 (2011), no. 2, 343–350.

[8] Z. Gajda, Z. Kominek, On separation theorems for subadditive and superadditive func-
tionals, Studia Math. 100 (1991), no. 1, 25–38.

Unauthentifiziert   | Heruntergeladen  07.02.20 19:55   UTC



96 Gian Luigi Forti

[9] F.P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Mathematical
Studies 16, Van Nostrand Reinhold Co., New York–Toronto–London–Melbourne, 1969.

[10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.
U.S.A. 27 (1941), 222–224.

[11] S.V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Al-
gebra Comput. 4 (1994), no. 1–2, 1–308.

[12] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, Dover Publications,
Inc., New York, 1976.

[13] P.S. Novikov, S.I. Adian, Infinite periodic groups. I–III. (Russian), Izv. Akad. Nauk
SSSR Ser. Mat. 32 (1968), 212–244, 251–254, 709–731.

[14] A.Yu. Ol’shanskii, On the question of the existence of an invariant mean on a group.
(Russian), Uspekhi Mat. Nauk 35 (1980), no. 4(214), 199–200.

[15] A.Yu. Ol’shanskii, The Novikov–Adian theorem. (Russian), Mat. Sb. (N.S.) 118(160)
(1982), no. 2, 203–235.

[16] D.V. Osin, Uniform non-amenability of free Burnside groups, Arch. Math. (Basel) 88
(2007), no. 5, 403–412.

[17] J. Rätz, On approximately additive mappings, in: E.F. Beckenbach (ed.), General In-
equalities. 2, Proc. Second Internat. Conf., Oberwolfach 1978, Birkhäuser, Basel, 1980,
pp. 233–251.

[18] E. Shulman, Group representations and stability of functional equations, J. London
Math. Soc. (2) 54 (1996), no. 1, 111–120.

[19] E. Shulman, Addition theorems and related geometric problems of group representation
theory, in: J. Brzdęk et al. (eds.), Recent Developments in Functional Equations and
Inequalities, Banach Center Publ., vol. 99, Polish Acad. Sci. Inst. Math., Warsaw, 2013,
pp. 155–172.

[20] F. Skof, Proprietà locali e approssimazione di operatori. Geometry of Banach spaces
and related topics (Milan, 1983), Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129
(1986).

[21] L. Székelyhidi, Note on a stability theorem, Canad. Math. Bull. 25 (1982), no. 4, 500–
501.

[22] L. Székelyhidi, Remark 17, 22sd International Symposium on Functional Equations,
Oberwolfach 1984, Aequationes Math. 29 (1985), no. 1, 95.

[23] J. Tabor, Remark 18, 22sd International Symposium on Functional Equations, Ober-
wolfach 1984, Aequationes Math. 29 (1985), no. 1, 96.

[24] I. Toborg, Tabor groups with finiteness conditions, Aequationes Math. 90 (2016), no. 4,
699–704.

[25] D. Yang, Remarks on the stability of Drygas’ equation and the Pexider–quadratic
equation, Aequationes Math. 68 (2004), no. 1–2, 108–116.

[26] D. Yang, The stability of the quadratic functional equation on amenable groups,
J. Math. Anal. Appl. 291 (2004), no. 2, 666–672.

Università degli Studi di Milano
Dipartimento di Matematica
via C. Saldini 50
I-20133 Milano
Italy
e-mail: gianluigi.forti@unimi.it; gianluigi.forti@gmail.com

Unauthentifiziert   | Heruntergeladen  07.02.20 19:55   UTC


	1. Introduction
	2. Amenability and invariant mean method
	3. Weak commutativity and stability
	4. Commutator groups condition
	5. Conclusions and open problems
	References

