
DOI 10.1515/ama-2015-0039                acta mechanica et automatica, vol.9 no.4 (2015) 

245 

KOITER ASYMPTOTIC ANALYSIS OF THIN-WALLED COLD-FORMED STEEL MEMBERS 

Viorel UNGUREANU*,**, Dan DUBINA*,**, Andrei CRISAN*, Antonio MADEO***,  
Giuseppe ZAGARI***, Giovanni ZUCCO***, Raffaele ZINNO*** 

*Faculty of Civil Engineering, Department of Steel Structures and Structural Mechanics, Politehnica University of Timisoara, Timisoara, Romania 
**Laboratory of Steel Structures, Romanian Academy – Timisoara Branch, Timisoara, Romania 

***MODELING Department, University of Calabria, Cosenza, Italy 

viorel.ungureanu@upt.ro, dan.dubina@upt.ro, andrei crisan@upt.ro, antonio.madeo81@unical.it 
giuseppe.zagari@unical.it, giovannizucco@gmail.com, raffaele.zinno@unical.it 

received 6 September 2015, revised 11 December 2015, accepted 14 December 2015 

Abstract: An imperfection sensitivity analysis of cold-formed steel members in compression is presented. The analysis is based  
on Koiter’s approach and Monte Carlo simulation. If the modes interaction is correctly accounted, than the limit load and the erosion  
of critical buckling load can be easily evaluated. Thousands of imperfection can be analysed with very low computational cost and an effec-
tive statistical evaluation of limit performance can be carried out. The analysis is done on pallet rack uprights in compression, based  
on an intensive experimental study carried out at the Politehnica University of Timisoara. 
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1. INTRODUCTION 

The finite element implementation of Koiter’s asymptotic ap-
proach allows to evaluate the pre-critical and initial post-critical 
behaviour of slender elastic structures, also in the presence 
of strong non-linear for pre-critical and in the case of interactive 
buckling (Casciaro, 2005). The method is considered very attrac-
tive for its advantages in respect to path-following approach (Riks, 
1979). These consist in an accurate post-buckling analysis and in 
an efficient imperfection sensitivity analysis with low computation-
al cost (Casciaro, 2005). The main difficulties arise in the availabil-
ity of geometrically coherent structural model and in an accurate 
evaluation of their high order energy variations (Garcea et al., 
2012a, 2012b). The use of co-rotational formulation, within 
a mixed formulation, allows to have a general finite element im-
plementation of Koiter analysis (Zagari et al., 2013). 

Our recent technology (Barbero et al., 2014, 2015), in terms 
of numerical implementation is applied for the evaluation of per-
formance of slender cold-formed steel members especially for the 
case of modal interaction. In particular, an efficient and robust 
imperfection sensitivity analysis is performed. Using a Monte 
Carlo simulation, for a random sequence of imperfections as-
sumed with the shape as linear combination of buckling modes, 
the equilibrium paths for the imperfect structures are recovered. 
The load carrying capacity is evaluated statistically. The worst 
imperfections are detected and the limit load is obtained, allowing 
the evaluation of erosion of critical bifurcation load (Dubina and 
Ungureanu, 2014). 

2. THEORETICAL BACKGROUND 

A summary of the FE asymptotic analysis proposed by Casci-
aro et al. is presented (Casciaro, 2005; Garcea et al., 2014a, 

2014b). The described implementation is called quadratic algo-
rithm. The method is based on the expansion of the potential 
energy, in terms of load factor λ and buckling mode amplitudes 𝜉𝑖, 
which is characterized by fourth-order accuracy. It provides an 
approximation of the equilibrium path by performing the following 
steps: 
1. The fundamental path is obtained as a linear extrapolation, 

from a known equilibrium configuration: 

𝑢𝑓[𝜆] =  𝜆�̂� (1) 

where u is the field of configuration variables in terms of stress 
and displacement and û is the tangent obtained as a solution 
of the linear equation 

𝛷0
′′�̂�𝛿𝑢 = �̂�𝛿𝑢, ∀𝛿𝑢 ∈  𝒥 (2) 

where 𝛷′′ is the strain energy while an index denotes the 

point along 𝑢𝑓 which the quantities are evaluated, that is 

𝛷0
′′ ≡  𝛷′′ [𝑢𝑓[𝜆0]]. 

2. A cluster of buckling loads {𝜆0 … 𝜆𝑚} and associated buck-

ling modes (�̇�1 … �̇�𝑚) are defined along 𝑢𝑓[𝜆] by the critical 
condition 

𝛷′′[𝑢𝑓[𝜆𝑖]]�̇�𝑖𝛿𝑢 = 0, ∀𝛿𝑢 ∈  𝒥. (3) 

Buckling loads are considered to be sufficiently close to each 
other to allow the following linearization 

𝛷𝑏
′′�̇�𝑖𝛿𝑢 +  (𝜆𝑖 − 𝜆𝑏)𝛷𝑏

′′′�̂��̇�𝑖𝛿𝑢 = 0, ∀𝛿𝑢 ∈  𝒥. (4) 

𝜆𝑏 being an appropriate reference value of λ (e.g. the first of 
λ𝑖 or their mean value). Normalizing we obtain 𝛷𝑏

′′′�̂��̇�𝑖�̇�𝑗 =

𝛿𝑖𝑗, where 𝛿𝑖𝑗 is Kroneker’s symbol.  

3. The tangent space 𝒥 is decomposed into the tangent 
𝒱 ≡ {ν̇ =  ∑ �̇�𝑖𝑖 } and orthogonal 𝒲 ≡ {w ∶  Φb

′′′ûν̇iw =
0} subspaces so that 𝒥 =  𝒱⨁𝒲. Denoting 𝜉0 =  𝜆 and 
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�̇�0 =  �̂�, the asymptotic approximation for the required path is 
defined by the expansion 

𝑢[𝜆, 𝜉𝑘]  ≡  ∑ 𝜉𝑚
𝑖=0 �̇�𝑖 +

1

2
∑ 𝜉𝑖𝜉𝑗𝑤𝑖𝑗

𝑚
𝑖=0  (5) 

where 𝑤𝑖𝑗 are the quadratic corrections introduced to satisfy 

the projection of eqn. (1) onto 𝒲 and obtained by the linear 
orthogonal equations 

𝛷𝑏
′′𝑤𝑖𝑗𝛿𝑤 = − 𝛷𝑏

′′′�̇�𝑖�̇�𝑗𝛿𝑤, 𝑤𝑖𝑗   𝛿𝑤 ∈  𝒲 (6) 

where, because of the orthogonality condition, 𝑤0𝑖 = 0. 
4. The following energy terms are computed for 𝑖, 𝑗, 𝑘 = 1 … 𝑚: 

𝜇𝑘[𝜆] =
1

2
𝜆2𝛷𝑏

′′′�̂�2�̇�𝑘 +
1

6
𝜆2(𝜆 − 3𝜆𝑏)𝛷𝑏

′′′�̂�3�̇�𝑘 

𝐴𝑖𝑗𝑘 =  𝛷𝑏
′′′�̇�𝑖�̇�𝑗 �̇�𝑘          (7) 

𝐵𝑖𝑗ℎ𝑘 =  𝛷𝑏
′′′′�̇�𝑖�̇�𝑗 �̇�ℎ�̇�𝑘 −  𝛷𝑏

′′(𝑤𝑖𝑗𝑤ℎ𝑘 + 𝑤𝑖ℎ𝑤𝑗𝑘+𝑤𝑖𝑘𝑤𝑗ℎ)  

𝐵00𝑗𝑘 =  𝛷𝑏
′′′′�̂�2�̇�𝑖�̇�𝑘 − 𝛷𝑏

′′𝑤00𝑤𝑖𝑘 

𝐵0𝑖𝑗𝑘 =  𝛷𝑏
′′′′�̂��̇�𝑖�̇�𝑗 �̇�𝑘 

𝐶𝑖𝑘 = 𝛷𝑏
′′𝑤00𝑤𝑖𝑘   

where the implicit imperfection factors 𝜇𝑘 are defined by the 
4th order expansion of the unbalanced work on the fundamen-
tal (i.e. 𝜇𝑘[𝜆] = (𝜆�̂� − 𝛷′[𝜆�̂�])�̇�𝑘). 

5. The equilibrium path is obtained by satisfying the projection 
of the equilibrium eqn. (1) onto 𝒱. According to eqns. (7) and 
(8), we have 

(𝜆𝑘 − 𝜆)𝜉𝑘 − 𝜆𝑏 (𝜆 −
𝜆𝑏

2
) ∑ 𝜉𝑖𝐶𝑖𝑘 +

1

2

𝑚

𝑖=1

  

∑ 𝜉𝑖𝜉𝑗𝐴𝑖𝑗𝑘 +
1

2

𝑚

𝑖,𝑗=1

(𝜆 − 𝜆𝑏)2 ∑ 𝜉𝑖𝐵00𝑖𝑘

𝑚

𝑖=1

 

+
1

2
(𝜆 − 𝜆𝑏) ∑ 𝜉𝑖𝜉𝑗𝐵0𝑖𝑗𝑘 +

1

6

𝑚

𝑖,𝑗=1

∑ 𝜉𝑖𝜉𝑗𝜉ℎ𝐵𝑖𝑗ℎ𝑘

𝑚

𝑖,𝑗,𝑘=1

+ 𝜇𝑘[𝜆] = 0, 𝑘 = 1 … 𝑚 

(8) 

Equation (8) corresponds to a highly nonlinear system in the 
m+1 unknowns, −ξi, and can be solved using a standard path-
following strategy. It provides the initial post-buckling behaviour 
of the structure including modal interactions and jumping-after-
bifurcation phenomena (see Fig. 1). 

 
Fig. 1. Interactive buckling for coincident/nearly coincident buckling loads 

In the analysis of thin-walled members the characterization 
of imperfection is often difficult. The presence of imperfections 

changes some aspects of structural response and often causes 
an erosion of the load carrying capacity, especially in the interac-
tive buckling range. In the asymptotic algorithm the presences 
of imperfections expressed by a load p̃[λ] and/or an initial dis-
placement ũ, affect eqn. (9) only with the imperfection term μk[λ] 
that becomes (Casciaro, 2005). 

𝜇𝑘[𝜆] =
1

2
𝜆2𝛷𝑏

′′′�̂�2�̇�𝑘 +
1

6
𝜆2(𝜆 − 3𝜆𝑏)𝛷𝑏

′′′�̂�3�̇�𝑘

+  𝜆𝜙′′′�̃��̂�𝑣�̇� − �̃��̇�𝑘 
(9) 

The aim of the imperfection sensitivity analysis is to link the 
presence of geometrical and load imperfections to the reduction 
in the limit load. For structures presenting coupled buckling even 
a small imperfection in loading or geometry can represent a signif-
icant reduction in ultimate load with respect to the bifurcation load 
(Garcea et al., 2014a, 2014b). So an effective safety analysis 
should include an investigation of all possible imperfection shapes 
and sizes to identify the worst imperfection cases. 

3. NUMERICAL RESULTS 

On the following, an imperfection sensitivity analysis for up-
right pallet racks in compression, with and without perforations, 
is presented. The geometry of the cross-section is shown in Fig. 
2, while details related to cross-section, perforations, lengths, 
material, experimental tests and numerical simulations can be 
found in (Crisan et al., 2012a, 2012b). The member will be denot-

ed on the following as RS1253.2, as in (Crisan et al., 2012a, 

2012b). The RS1253.2 specimen has a perforated-to-brut cross-
section ratios, AN/AB, of 0.806. 
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Fig. 2. (a) Geometry of RS1253.2 section with and without perforations  
           (dimensions are expressed in mm); (b) Perforations details 

In this study, different lengths have been analysed and for 
each length imperfection sensitivity analyses have been per-
formed. The minimum length considered was 𝐿 = 1400 mm and 
the maximum one 𝐿 = 2500 mm. Increments of 100 mm have 
been considered. The lengths range has been establish in order 
to include the interactive buckling range, computed based on 
ECBL approach (Dubina, 2001), considering the interaction of 
distortional and flexural buckling modes. The procedure was 
detailed in (Crisan et al., 2012a, 2012b). 

In the imperfection sensitivity analysis only geometrical imper-
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fections have been considered. In particular, the total imperfection 
ũ, as shown in eqn. (10), is assumed to be: 

�̃� = �̃�𝑔 +  �̃�𝑑 (10) 

where ũg and ũd are the global and distortional/local imperfec-

tions, that are assumed as linear combinations of global v̇i
g
 and 

distortional/local v̇i
d buckling modes, that is: 

�̃�𝑔 = ∑ 𝑟𝑖

𝑖

�̇�𝑖
𝑔

  𝑖 = 1. . 𝑚𝑔 

�̃�𝑑 = ∑ 𝑟𝑖

𝑖

�̇�𝑖
𝑑   𝑖 = 1. . 𝑚𝑑 

(11) 

In eqn. (11) 𝑟𝑖 are random number, while 𝑚𝑔 and 𝑚𝑑 are the 
number of global and distortional/local buckling modes. The max-

imum values of �̃�𝑚𝑎𝑥
𝑔

 and �̃�𝑚𝑎𝑥
𝑑  are assumed to be smaller than 

the assumed tolerances (see Fig. 3), i.e. �̃�𝑚𝑎𝑥
𝑔

< 𝐿/1000 for 

global imperfection and �̃�𝑚𝑎𝑥
𝑑 < 1.5 𝑡 for distortional one, where 

L and t are the length of the upright pallet rack and the thickness 
of the cross-section. 

 

 
Fig. 3. Distortional and global imperfections for numerical analysis 

For each length, the first four buckling modes are considered. 
For the simulation the rack was considered pinned at one end and 
simply supported at the other one. For the pinned end, all three 
translations together with rotation along the longitudinal axis were 
restrained. For the simply supported end, the translation along the 
section axis together and the torsional rotations were restrained. 
The details of the mesh are reported in Fig. 4. 

 
Fig. 4. Details of the mesh for RS1253.2 brut and net section 

For the range of lengths under evaluation, eight distortional 
buckling modes and two global buckling modes have been de-
tected as shown in Tabs. 1 and 2 and Figs. 5 and 6. 

It is easy to observe from Tables 1 and 2 that the interactive 
buckling range is between (2000 … 2500) mm, confirming the 
values obtained in (Crisan et al., 2012a). 

Tab. 1. The first four buckling loads corresponding  

             to the investigated lengths for RS1253.2 brut section 

L 
(mm) 

λ1 
[kN] 

Mode 
λ2 

[kN] 
Mode 

λ3 
[kN] 

Mode 
λ4 

[kN] 
Mode 

1400 507.2 d1 532.6 d2 713.0 d3 748.0 d4 

1500 505.6 d1 509.7 d2 696.8 d4 698.6 d3 

1600 492.7 d2 504.9 d1 663.1 d4 686.3 d3 

1700 481.1 d2 501.6 d1 643.1 d4 677.5 d3 

1800 473.8 d2 494.4 d6 635.6 d4 652.4 d5 

1900 470.0 d2 484.8 d6 611.6 d4 632.3 d5 

2000 468.5 d2 475.2 d6 563.7 e1 593.0 d5 

2100 467.0 d6 468.2 d7 516.2 e1 550.0 e2 

2200 460.7 d6 467.6 d7 473.4 e1 509.3 e2 

2300 435.1 e1 456.4 d6 465.9 d7 471.9 e2 

2400 401.2 e1 437.9 e2 453.8 d6 462.4 d8 

2500 370.9 e1 407.1 e2 452.6 d6 458.0 d8 

Tab. 2. The first four buckling loads corresponding  

             to the investigated lengths for RS1253.2 net section 

L 
(mm) 

λ1  
[kN] 

Mode 
λ2  

[kN] 
Mode 

λ3  
[kN] 

Mode 
λ4  

[kN] 
Mode 

1400 441.8 d1 474.3 d2 627.9 d3 652.4 d4 

1500 438.6 d1 452.9 d2 610.1 d3 626.3 d5 

1600 436.1 d2 438.0 d1 589.3 d5 597.5 d3 

1700 423.8 d2 437.0 d1 564.7 d5 586.9 d3 

1800 415.4 d2 433.4 d1 551.7 d5 573.2 d3 

1900 410.2 d2 426.9 d7 546.5 d6 547.4 d3 

2000 407.6 d2 419.0 d7 504.7 e1 516.3 d3 

2100 406.6 d2 411.3 d7 463.2 e1 480.5 e2 

2200 404.8 d7 406.4 d2 425.3 e1 446.0 e2 

2300 391.3 e1 399.8 d2 406.0 d2 413.9 e2 

2400 360.9 e1 384.5 e2 396.3 d7 404.4 d2 

2500 333.8 e1 357.7 e2 394.2 d7 401.6 d8 

 
Fig. 5. Distortional d1, d2 ... d8 and global e1, e2 buckling modes  

           for RSB1253.2 brut section in the range L = 1400 ... 2500 mm 
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Fig. 6. Distortional d1, d2 ... d8 and global e1, e2 buckling modes  

           for RSN1253.2 net section in the range L = 1400 ... 2500 mm 

Fig. 7 presents the buckling loads versus the lengths of the 
upright members with and without perforations. The range corre-
sponding to global/distortional interactive buckling can be clearly 
seen, as stated above. 

 
Fig. 7. Bucking load vs. corresponding length for the R1253.2 brut (B)  
           and net (N) sections 

Fig. 8 presents the first four buckling modes for the 2200 mm 
length, while Fig. 9 the quadratic corrections for the same length, 
as was defined by eqn. (5). Note that, the aim of the paper is to 
find the worst imperfection case. Then, the real shape of the 
imperfection is not required and only the linear combinations 
of buckling modes are considered. Anyway, the validation 
of numerical model has been done according to the measured 
data in (Crisan et al., 2012a). 

On the second step, the post-buckling analysis has been per-
formed considering the four buckling modes presented in Tabs. 1 
and 2, for the members with lengths 𝐿 = 1400 ... 2500 mm. The 
changing of the buckling load and shape at varying lengths 
is shown in Fig. 5 for brut cross-sections and Fig. 6 for the section 
with perforations. 

 
Fig. 8a. Buckling modes for the brut section with length of 2200 mm 

 
Fig. 8b. Buckling modes for the net section with length of 2200 mm 

 
Fig. 9a. Quadratic corrections for the brut section with length of 2200 mm 

 
Fig. 9b. Quadratic corrections for the brut section with length of 2200 mm 

The multimodal analysis has been performed considering the 
four buckling modes presented above. Five hundred random 
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geometric imperfections have been generated with a very low 
computational cost. The results, in terms of limit load/ displace-
ments, for both brut and net cross-section, are shown in Fig. 10, 
while the worst imperfections and limit load shapes, for the length 
𝐿 = 2200 mm, are shown in Fig. 11. 

 
Fig. 10a. Brut section RS1253.2 with length of 2200 mm: equilibrium 

paths 𝜆 versus 𝑢. The displacement components 𝑢1, 𝑢2  
and 𝑢3 are measured in the point of the middle of the upright 
pallet rack section 

 

Fig. 10b. Net section RS1253.2 with length of 2200 mm: equilibrium 
paths 𝜆 versus 𝑢. The displacement components 𝑢1, 𝑢2  
and 𝑢3 are measured in the point of the middle of the upright 
pallet rack section 

The frequency for the limit loads and its probability distribution 
are reported in Fig. 12 (a and b). For the specimens with strong 
buckling interaction, the values are very close to the peak of the 
distribution. The length with strong interaction are also clearly 
highlighted, i.e. 𝐿 = 2200 mm. 

The average time required for the steps 1 to 4 have been 
studied (Barbero et al, 2015), and they remain of the order of 
seconds. This could allow users to run Monte Carlo simulations to 
account for other types of imperfections, i.e. load imperfection, 
residual stress, a.s.o., in order to obtain even more realistic eval-
uations of structural performance. 

 

(a)  (b)  

Fig. 11. Section RS1253.2, brut and net, with the length of 2200 mm: 
(a) initial shapes for worst imperfection amplified by factor 5.0, 
(b) deformed shapes at limit load for worst imperfection amplified 
factor 2.5 

 
Fig. 12a. Frequency distribution of the limit load found 𝜆𝑙𝑖𝑚  

               for the RS1253.2 brut section 

 
Fig. 12b. Frequency distribution of the limit load found 𝜆𝑙𝑖𝑚  

                for the RS1253.2 net section 
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4. EVALUATION OF 𝛙 EROSION FACTORS 

It is very well known that in the case of an ideal structure, the 
theoretical equilibrium bifurcation point and corresponding load, 
𝑁𝑐𝑟, are observed at the intersection of the pre-critical (primary) 
force-displacement curve with the post-critical (secondary) curve 
(see Fig. 13). For a real structure, affected by a generic imperfec-
tion, 𝛿0, the bifurcation point does not appear anymore and, 
instead, the equilibrium limit point is the one characterizing the 
ultimate capacity, 𝑁𝑢, of the structure. The difference between 
𝑁𝑐𝑟 and 𝑁𝑢 represents the Erosion of the Critical Bifurcation 
Load, due to the coupling and imperfections (Dubina, 2001). 

In almost all practical cases, the mode interaction, obtained by 
coupling of a local instability with an overall one, is a result of 
design (e.g. calibration by design of mechanical and geometrical 
properties of member), and has a nonlinear nature. 

 
Fig. 13. Critical and post-critical behaviour 

Due to the imperfections, an interaction erosion of critical bi-
furcation load occurs. This erosion is maximum in the coupling 
point vicinity. For members, an interactive slenderness range, in 
which sensitivity to imperfections is increased, may be identified. 
Depending on imperfection sensitivity, classes of interaction 
types, characterized by specific levels of erosion intensity, may be 
defined (Gioncu, 1994). 

Being given a member in compression let assume two simul-
taneous buckling modes which might couple (see Fig. 14). 

 
Fig. 14. Critical and post-critical behaviour 

The perfect member is prone to interactive buckling, with the 
critical buckling load, 𝑁𝑐𝑟, while the actual member with the ulti-
mate load, 𝑁𝑢. The erosion coefficient, 𝜓, can be expressed as 
follows: 

ψ = 1 − 𝑁𝑢/�̅�𝑐𝑟  (12) 

and 

𝑁𝑢 = (1 − 𝜓)𝑁𝑐𝑟  (13) 

The Monte Carlo simulation also allows to found the worst im-
perfection case, as shown in Fig. 10, and to evaluate the erosion 
as shown in Fig. 15 (Dubina, 2001). The load carrying capacity 
is evaluated statistically. The worst imperfections are detected 
and the limit load is obtained so allowing the evaluation of erosion 
of critical bifurcation load according to eqn. (10). The evaluation 
of erosion is shown in Fig. 15. The maximum erosion has been 
detected for the specimens corresponding to the length 𝐿 = 2200 
mm. 

 
Fig. 15. The minimum limit load normalized to the cross-section capacity  
              for brut (B) and net (N) section 

The buckling modes that provide the maximum erosion and 
their participation are presented in Tab. 3. In Figs. 5 and 6 are 
defined these buckling modes. 

Tab. 3. Buckling modes defining the maximum erosion  

            and their participation, both for RS1253.2 brut (B)  
            and net (N) cross-section 

 

RS1253.2 brut RS1253.2 net 

Mode 
% mode 

brut 
Mode 

% mode  
net 

distortional d6 99.23 d7 98.62 

d7 0.77 d2 1.38 

global e1 93.97 e1 89.08 

e2 6.03 e2 10.92 

Once, evaluated the worst imperfections the sensitivity curves 
have been recovered (see Fig. 15). The figure shows that brut 
sections have a higher limit load than the net sections, however 
the slope of sensitivity curves is the same. 

Finally, it can be observed that based on the above parametric 
study, the obtained maximum erosion are of 0.45 for the brut 
section (B) and 0.42 for the net section (N). In a direct comparison 
with the results obtained via ECBL approach (Dubina, 2001), it 
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can be observed they are in a good agreement with the ones 
obtained by Ungureanu and Dubina (2013), i.e. of 0.44 for the net 

section, but for a combination of imperfections (�̃�𝑚𝑎𝑥
𝑔

= L/750  

and �̃�𝑚𝑎𝑥
𝑑 = 1.5 t). The erosions obtained by Crisan et al. 

(2012b) via ECBL approach, i.e. 0.387 for the brut section and 
0.395 for the net section, are also close to the ones presented 
above but have been obtained for different combination of imper-

fections, i.e. (�̃�𝑚𝑎𝑥
𝑔

= L/1000  and �̃�𝑚𝑎𝑥
𝑑 = 1 t). 

5. CONCLUSIONS 

An imperfection sensitivity analysis using Koiter’s approach 
and the Monte Carlo method has been applied for the evaluation 
of imperfection sensitivity of cold-formed upright members 
for pallet racks in compression, with and without perforations. 
The analysis allows to evaluate the limit loads, the erosion of the 
theoretical buckling due to both imperfections and the mode inter-
action. The main strengths of the proposed methodology are the 
ability to analyse thousands of random imperfections in a short 
time, with very low computational cost, to find the worst imperfec-
tions and to provide an accurate evaluation of the limit load and 
of the erosion of buckling load, with respect to theoretical case, 
due to buckling mode interaction. 

Once again is shown and validated that the ECBL approach 
is an excellent and practical method that allows for the evaluation 
of 𝜓 erosion coefficients and α imperfection factors, as result 
of interactive buckling. 
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