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We present a robust algorithm for complex human activity recognition for natural human-robot interaction. The algorithm is
based on tracking the position of selected joints in human skeleton. For any given activity, only a few skeleton joints are involved
in performing the activity, so a subset of joints contributing the most towards the activity is selected. Our approach of tracking
a subset of skeleton joints (instead of tracking the whole skeleton) is computationally efficient and provides better recognition
accuracy. We have developed both manual and automatic approaches for the selection of these joints. The position of the selected
joints is tracked for the duration of the activity and is used to construct feature vectors for each activity. Once the feature vectors
have been constructed, we use a Support Vector Machines (SVM) multiclass classifier for training and testing the algorithm. The
algorithm has been tested on a purposely built dataset of depth videos recorded using Kinect camera. The dataset consists of 250
videos of 10 different activities being performed by different users. Experimental results show classification accuracy of 83% when
tracking all skeleton joints, 95% when using manual selection of subset joints, and 89% when using automatic selection of subset
joints.

1. Introduction

After a successful revolution in industrial robotics, the
focus of the robotics community has now been shifted to
humanoids and social robotics. For robots to invade social
sphere of humans, the most important task for them is
to understand what is going on around them or more
specifically to understand what activities the humans around
them are performing. A successful recognition of the activ-
ities being performed by humans will enable the robots
to respond appropriately and is, therefore, an important
step towards natural human robot interaction. This paper
makes an attempt to contribute to the field and presents an
algorithm to help robots classify activities being performed
in front of them. The key advantage of our approach to
activity recognition based on skeleton tracking is the selec-
tion of joints most relevant to the activity being performed.
This not only reduces the computational complexity of the

algorithm but also enhances the recognition accuracy as
shown in experimental results. In the previous work ([1, 2]),
we presented a method for skeleton tracking based activity
classification based on the manual selection of subset joints
depending upon the activity. With this paper, we extend that
approach to automatic selection of subset jointsmost relevant
to the activity. We also improve our dataset to include more
activities and tested our algorithm on an activity involving
two individuals. Our set of activities includewaving, checking
wrist watch, doing a sit-stand exercise, sitting in a chair and
drinking water, picking something from ground, pointing in a
direction, and handshake between two individuals. Addition-
ally, we test our algorithm on three signals from umpire in a
Cricket match.

We use the Robot Operating System (ROS) (http://www.
ros.org/) to develop our algorithm.We use amodified version
of the OpenNI skeleton tracker (http://wiki.ros.org/openni
tracker) to track the position of selected joints. As opposed to
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other approaches [3], we are not using the position of all joints
to construct feature vectors. Since only a few joints are under-
going a change in position for any given activity (considered
as the joints contributing towards the activity), we select
only those joints contributing the most towards an activity to
construct feature vectors, thereby increasing computational
efficiency and recognition performance of the algorithm.
We present manual as well as automatic approaches for the
selection of these joints and the experimental results for both
approaches have been separately presented.The experimental
results have been obtained on a purposely built dataset of
activities. The dataset has been made public and constructed
specifically to suit the requirements of skeleton tracking
using ROS based OpenNI skeleton tracker.The contributions
of this paper are (1) presenting a computationally efficient
activity recognition algorithm based on tracking the position
of a subset of skeleton joints, (2) provision of ROS based
OpenNI skeleton tracker friendly RGB-D dataset of human
activities, and (3) classification of activities involvingmultiple
individuals.

The dataset along with all the ROS packages have been
made public and can be accessed through the website of our
research group, LabRob (http://www.polito.it/Labrob). The
dataset contains video files of all activities in OpenNI file
format (.oni).

2. Related Work

The research in activity recognition took a great step forward
after the advent of cameras that can capture depth images and
videos [4].MicrosoftKinect is a low cost and readily available
sensor and is being used extensively inmany computer vision
and robotics applications [5]. Zhu and Fujimura demon-
strated the advantage of using depth images for human body
pose tracking [6]. Their approach used key-point method
where they detected and tracked anatomical landmarks (key-
points) of human body to reconstruct the human pose.
Activity recognition using depth videos has also been pre-
sented by Koppula et al. [7]. They have combined skeleton
tracking and object affordances to construct feature vectors
and have then used structural support vector machines
(SSVM) for training and testing. Their results were obtained
after testing the algorithm on a purposely built dataset of
their own which included only the activities involving one
individual. Droeschel et al. presented a person awareness and
gesture recognition approach for joint attention in a domestic
environment [8].They used time-of-flight cameras to classify
between showing and pointing gestures and presented their
results with high accuracy.

The fact that all skeleton joints do not contribute equally
towards an activity was used by Jiang et al. [9].They analyzed
mean contribution of each skeleton joint for various action
classes and utilized the contribution ratio of the joints to
classify the actions.Their approach is efficient as shownby the
experimental results but they are still tracking the positions
of all skeleton joints. The idea of using selected joints for
activity recognition has recently been utilized by Wu et al.
[10]. They only focus on informative body parts such as head
and hands to constructHistograms of LocatedDisplacements

Figure 1: A user makes a surrender pose in front of a camera.

(HOLD) and Local Depth Motion Maps (L-DMM) based
Gabor representation. The discriminative nature of Gabor
representations help classify human activities. Our approach
is an extension of the idea of using selected skeleton joints for
activity recognition.

The remainder of this paper is organized as follows.
Section 3 describes method for tracking the skeleton joints,
followed by Section 4, where the construction scheme for
feature vectors is discussed. Both manual and automatic
approaches to the selection of subset joints are discussed in
this section. Section 5 describes the dataset we created to
experimentally test our algorithm along with other available
RGB-D datasets. The SVM training and testing procedure
is described in Section 6, followed by the description of
experimental results in Section 7. Section 8 concludes the
paper.

3. Tracking Joints’ Positions

OpenNI ROS package for skeleton tracking is available to
all ROS users. The package works with a Kinect camera
connected to a PC and can track fifteen joints and body parts
in human skeleton. These joints include both hands, both
elbows, head, neck, both shoulders, torso, left and right hips,
both knees, and both feet. The 3D positions and rotation
quaternions of all these joints in space are published with
reference to the center of camera frame, /openni depth frame,
as a set of ROS transforms (/tf ). These joints are shown in
Figure 1 where an individual makes a surrender pose in front
of the camera.

We have modified the OpenNI skeleton tracker package
to work with off-line recorded videos in our dataset. The
videos have been recorded in OpenNI file format with
the extension (.oni) and contain both the RGB and depth
information needed for OpenNI skeleton tracker.

4. Construction of Feature Vectors for SVM

In order to use SVM, we need to extract certain features from
activity videos and construct feature vectors corresponding
to every activity video in our dataset. We use the position of
selected joints in every activity as features. Using position of
all joints to construct feature vectors is inefficient because,

http://www.polito.it/Labrob
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Figure 2: Methods developed for selecting feature vectors.
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Figure 3: Position of two joints across three frames.

for any given activity, there is only a subset of joints con-
tributing towards the activity. For example, for waving hello
activity, only the position of right hand and right elbow is
changing while the position of all other joints remains the
same. Using the position of all joints to construct feature
vectors will increase the similarity index of feature vectors
that will decrease recognition efficiency. We have, however,
experimented with both approaches and tabulated results
for both. Figure 2 shows possible methods to select feature
vectors. For the selection of subset joints, we have developed
bothmanual and automatic approaches explained in Sections
3 and 4.

4.1. Tracking All Skeleton Joints. This approach is the simplest
where we use the position of all fifteen (15) joints with
reference to torso to construct feature vectors for each activity.
Let these joints be 𝐽1, 𝐽2, 𝐽3, . . . , 𝐽15.We have the 3D position
of each joint in successive frames during the whole activity
(shown in Figure 3 with three successive frames). If we
represent the 𝑥 component of the position of joint 𝐽1 in frame
number 0 as 𝐽1𝑥,0, 𝑦 and 𝑧 components as 𝐽1𝑦,0 and 𝐽1𝑧,0,
respectively, we can formulate feature vectors (FV) as in (1).
The subscripts {0, 1, . . . , 𝑛} are the frame number

FV = {𝐴1, {(𝐽1𝑥,0, 𝐽2𝑥,0, . . . , 𝐽15𝑥,0) ,
(𝐽1𝑦,0, 𝐽2𝑦,0, . . . , 𝐽15𝑦,0) , (𝐽1𝑧,0, 𝐽2𝑧,0, . . . , 𝐽15𝑧,0)} ,
{(𝐽1𝑥,1, 𝐽2𝑥,1, . . . , 𝐽15𝑥,1) , (𝐽1𝑦,1, 𝐽2𝑦,1, . . . , 𝐽15𝑦,1) ,
(𝐽1𝑧,1, 𝐽2𝑧,1, . . . , 𝐽15𝑧,1)} , . . . ,
{(𝐽1𝑥,𝑛, 𝐽2𝑥,𝑛, . . . , 𝐽15𝑥,𝑛) , (𝐽1𝑦,𝑛, 𝐽2𝑦,𝑛, . . . , 𝐽15𝑦,𝑛) ,
(𝐽1𝑧,𝑛, 𝐽2𝑧,𝑛, . . . , 𝐽15𝑧,𝑛)}} ,

(1)

where 𝑛 is the number of frames in a given activity and its
value depends on the length of each activity.The first element,

Figure 4: Screenshot images at four different positions during the
dead ball, sit and drink, pick something from ground, handshake,
and check watch activities,respectively.

𝐴1, of each feature vector is the label of the activity required
for SVM based training program. Each feature vector FV is,
therefore, a row vector and has (45×𝑛)+ 1 elements if we use
all skeleton joints as given in (1).

A word is in order regarding the selection of torso as
the reference point. If we consider camera position as the
reference, joints’ position will depend on the position of user
in front of the camera.This will result in different recognition
results for the same activity being performed at different
positions in front of the camera. To avoid this, reference point
is selected on the user’s body to ensure that the position of
joints is not dependent on position of the user in front of
the camera; that is, the user can stand near the camera, far
from it, or walk in front of the camera and the algorithm
works in all the cases as long as the whole skeleton remains
visible to the camera. Torso provides a good reference point
because it is located in the middle of human skeleton and
remains stationary duringmost of common human activities.
It does change its position during our sit-stand activity but
experimental results show it works well even for activities
involving motion of torso.

4.2. Tracking a Subset of Skeleton Joints. As has been dis-
cussed in Section 4.1, using all skeleton joints to construct
feature vectors adds to the similarity index of feature vectors
resulting in poor efficiency. Our approach is to select only
those joints contributing significantly towards the activity
to construct feature vectors. We have to decide how many
joints are required to constitute the subset for feature vector
construction. Repeated experiments with all activities have
shown that three joints are sufficient for the construction
of feature vectors for the activities in our dataset. Selecting
the number of joints could be tricky: tracking fewer joints
involves the risk of losing important information while
tracking more joints (specifically the ones not undergoing
any motion) involves the risk of increasing similarity index
between activities. Three joints in each activity have been
selected to form the subset of joints for feature vector
construction.Once the joints in the subset have been selected,
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a modified version of (1) is used to construct feature vectors
as shown in

FV = {𝐴1, {(𝐽1𝑥,0, 𝐽2𝑥,0, 𝐽3𝑥,0) , (𝐽1𝑦,0, 𝐽2𝑦,0, 𝐽3𝑦,0) ,
(𝐽1𝑧,0, 𝐽2𝑧,0, 𝐽3𝑧,0)} , {(𝐽1𝑥,1, 𝐽2𝑥,1, 𝐽3𝑥,1) ,
(𝐽1𝑦,1, 𝐽2𝑦,1, 𝐽3𝑦,1) , (𝐽1𝑧,1, 𝐽2𝑧,1, 𝐽3𝑧,1)} , . . . ,
{(𝐽1𝑥,𝑛, 𝐽2𝑥,𝑛, 𝐽3𝑥,𝑛) , (𝐽1𝑦,𝑛, 𝐽2𝑦,𝑛, 𝐽3𝑦,𝑛) ,
(𝐽1𝑧,𝑛, 𝐽2𝑧,𝑛, 𝐽3𝑧,𝑛)}} .

(2)

Since we have reduced the number of joints to only three,
each feature vector FV here will be a row vector with (9×𝑛)+
1 elements as given in (2). The number of elements in each
feature vector has been reduced five times with our approach
of tracking a subset of skeleton joints, thereby reducing the
computational cost. For the selection of subset joints, we have
developed both manual and automatic selection approaches
described below.

4.2.1. Manual Selection of Subset Joints. A manual approach
for selecting a subset of skeleton joints has been developed
to test the accuracy of our algorithm. Only those joints that
are contributing the most towards the activity are selected
and the selection is made based on human intuition and the
knowledge of the activity. For example, waving and checking
wrist watch activities include a distinct motion of right arm,
so the position of right hand and right elbow can be tracked
for these two activities. Similarly, the position of right hand
and right knees can be tracked for a leg bye signal activity.
Since we have an activity that involves two users (handshake),
we have tracked the position of right hand and right elbow
of the second user in addition to the right hand of first user
for a handshake activity. Some complex and long activities
like sitting on a chair and drinking and sit-stand involve the
motion of many joints while other activities like waving hello
and checking wrist watch involve motion of only two joints.
Table 1 lists the joints tracked during manual selection for
each activity along with the point of reference.

4.2.2. Automatic Selection of Subset Joints. Robots do not have
intuition andprior knowledge of the activity and therefore the
manual joint selection strategy cannot be used in practice.We
need a system to automatically select joints from the skeleton
contributing the most towards any given activity. For this
purpose, we track the position of all joints with respect to a
single reference, (/torso) and constitute position vectors, ]𝑖, of
each joint as given in

]𝑖 = {(𝐽𝑖𝑥,0, 𝐽𝑖𝑦,0, 𝐽𝑖𝑧,0) , (𝐽𝑖𝑥,1, 𝐽𝑖𝑦,1, 𝐽𝑖𝑧,1) , . . . ,
(𝐽𝑖𝑥,𝑛, 𝐽𝑖𝑦,𝑛, 𝐽𝑖𝑧,𝑛)} ,

(3)

where ]𝑖 is the position vector of 𝑖th joint.
Once the position vectors of all joints have been obtained

with respect to one single reference, we compute the variance
of all position vectors in the activity. The joints with highest

Table 1: The summary of the joints and their reference points used
during manual selection of subset joints where the /right hand 2
shows the right hand of second user during handshake activity.

Activity Joints tracked Reference

Pointing in a
direction

/left hand /torso
/left elbow /torso
/left hand /torso

Sitting on a chair
and drinking from
bottle

/right elbow /torso
/right hand /torso
/left hand /torso

Picking an object
from ground

/right hand /torso
/head /torso

/right shoulder /torso

Sit-stand exercise
/right foot /torso
/left foot /torso
/left knee /torso

Checking wrist
watch

/left hand /torso
/left elbow /torso
/left hand /torso

Waving hello
/right hand /torso
/right elbow /torso
/right elbow /torso

Handshake
between two
individuals

/right hand /torso
/right hand 2 /torso 2
/right elbow /torso

Dead ball signal
/right hand /torso
/left hand /torso
/head /torso

Four signal
/right hand /torso
/right elbow /torso
/right elbow /torso

Leg bye signal
/right hand /torso
/right knee /torso
/right knee /torso

variance of position vectors are the ones undergoing highest
motion (change in position) and are therefore contributing
the most towards the activity. Three joints with highest
variances are considered for the construction of feature
vectors. Once joints are selected, (2) (only for three selected
joints) is used to construct feature vectors.

Some activities such as sit-stand activity may involve
motion of some joints that do not define that activity. For
example one person performing sit-stand activity might be
moving his/her hands along the way, while another might
not. The movement of hands therefore does not define the
sit-stand activity. Our automatic joint selection procedure,
however, selects three joints undergoing highest motion
irrespective of the nature of joints. Therefore, joints selected
could be different for the same activity being performed by
different individuals.
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Figure 5: Screenshot images at four different positions during the
four signal, leg bye signal, sit stand, wave, and point in a direction
activities, respectively.

5. Creating the Dataset

Since most of the work in gesture and activity recognition
has been previously done using RGB videos and images,
there are only a few activity datasets available involving RGB-
D videos. An RGB-D dataset, CAD-120, was presented by
Koppula et al. [7].Their dataset is provided in two formats: as
correlated RGB and depth images and as RGB-D text format.
Both of these formats require further processing to convert
the correlated RGB and depth images into an OpenNI video
format to run ROS OpenNI skeleton tracker. Another such
dataset, presented by [11], is not suitable for OpenNI skeleton
tracker because their videos do not start with the surrender
pose (Figure 1). The surrender pose is necessary for ROS
basedOpenNI tracker to calibrate the user and start tracking.

We have therefore constructed a dataset of our own
and made it public through the website of our group,
http://www.polito.it/Labrob. Our dataset is purposely built
to be used with ROS based OpenNI skeleton tracker and
should serve as a reference for future research in Kinect
based activity recognition.The dataset was initially presented
in [1] and we have now added few more activities to the
dataset. The dataset now consists of a total of 10 activities
being performed by different users. The activities include 6
daily life activities: waving hello, checking wrist watch, picking
something from ground and placing it over a cupboard, sit-
stand, sitting on a chair and drinking from bottle, and pointing
in a direction. We have additionally included a handshake
between the two individuals activity to test our algorithm for
activities involving multiple individuals. Finally our dataset
includes three distinct signals from the umpire in a Cricket
match. These signals include four signal, leg bye signal, and
dead ball signal. Screenshot images from these activities are
shown in Figures 4 and 5. We have recorded 25 videos of
each activity in the dataset so the dataset contains a total of
250 videos. The videos are available in OpenNI depth video
format (.oni) with the resolution of 640 × 480.

Selection of a particular activity to be included in our
dataset required a bit of discussion. There are countless daily

life human activities which can be included in our dataset.
Since our approach to activity classification is based on
tracking position of skeleton joints, our first guiding principle
was to select activities that involve movement of skeleton
joints. The selection of signals from umpire in a Cricket
match was influenced by the fact that those signals involved
extensive movement of joints (both hands and legs). There
is no end of the possible human daily life activities, but 10
activities were considered sufficient enough to verify our
approach. Other activities can be added to the dataset in
future.

6. Activity Classification Using SVM

Once we have constructed the feature vectors of each activity
using (1) or (2) (whichever is applicable), we use Support
VectorMachines (SVM) to classify the activities.The features
data set needs to be split into training and testing data for
SVM. Out of 25 videos of each activity, we use 15 videos
of each activity (a total of 150 videos) for training the SVM
and the algorithm is tested on 10 remaining videos of each
activity (a total of 100 videos). The SVM training data matrix
is constructed using

trainData

=
[[[[[[[[
[

(FV11, FV12, FV13, . . . , FV115)𝑇
(FV21, FV22, FV23, . . . , FV215)𝑇

...
(FV101, FV102, FV103, . . . , FV1015)𝑇

]]]]]]]]
]

, (4)

where FV1, FV2, . . . , FV10 represent the feature vectors of
corresponding activities constructed individually using (1) or
(2), while the subscript represents the number of video of
each activity. Since we have used first 15 videos in our dataset
for training, the subscript goes from 1 to 15. As a result, the
training data matrix will have an order of 150 × ((9 × 𝑛) + 1),
if (2) is used, or an order of 150 × ((45 × 𝑛) + 1), if (1) is
used. Since 𝑛 is the number of frames in a given activity and
its value depends upon the length of each activity, it will be
different for each activity resulting in various rows of training
data matrix (4) having different number of elements. To
counter this, the number of columns in training data matrix
is based onmaximum value of 𝑛 (for the longest activity) and
remaining matrices are padded with zeros. The testing data
matrix for SVM is similarly constituted using

testData

=
[[[[[[[[
[

(FV116, FV117, FV118, . . . , FV125)𝑇
(FV216, FV217, FV218, . . . , FV225)𝑇

...
(FV1016, FV1017, FV1018, . . . , FV1025)𝑇

]]]]]]]]
]

, (5)

where the testing data matrix is of the order of 100×((9×𝑛)+
1), if (2) is used, or of the order of 100 × ((45 × 𝑛) + 1) if (1)

http://www.polito.it/Labrob
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is used. This matrix will classify all 100 test videos in one go.
The number of rows of test data matrix can be changed based
on the number of videos to be classified. Clearly, none of the
video used in training is used for testing the algorithm.

Support vector machines are machine learning tools that
are used to classify data consisting of high dimensional
feature space. The theory is based on selecting optimal
hyperplanes that separate various classes of data. In general,
the hyperplanes can be represented by equation 𝑓(𝑥) =
𝛽0 + 𝛽𝑇𝑥, where 𝛽 and 𝛽0 are weight vectors and bias,
respectively, and 𝑥 consists of training data points closest
to the hyperplane. The SVM algorithm selects 𝛽0 and 𝛽 to
maximize the distance between hyperplanes and 𝑥, called the
margin. The margin can be expressed as𝑀 = 2/‖𝛽‖ where
‖𝛽‖ is the norm of 𝛽. Hence the problem of maximizing
𝑀 is essentially equivalent to problem of minimizing a 𝛽
dependent function 𝐹(𝛽) subject to some constraints. This
can be expressed by optimization equation:

minimize
𝛽,𝛽0

𝐹 (𝛽) = 2󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩2

subject to 𝐴 𝑖 (𝛽0 + 𝛽𝑇𝑥𝑖) ≥ 1 ∀𝑖,
(6)

where 𝐴 𝑖 are the labels introduced in the training set. This
optimization problem is solved using Lagrange multipliers to
find the optimal values of 𝛽 and 𝛽0. For further readings on
SVM, [12] can be consulted.

Since we have multiple categories for classification, we
have used SVM multiclass classifier available in OpenCV
library, LibSVM. Gaussian kernel has been used for training
the algorithm. The algorithm has been implemented using
ROS environment and a final ROS package for SVM based
training and testing has been made available. The steps
required to classify any incoming activity are summarized in
flow diagram shown in Figure 6.

7. Experimental Results

Experimental results were obtained on a subset of activity
videos that were not used for SVM based training. Exper-
imental results are separately presented for three cases: (a)
when tracking all skeleton joints, (b) whenmanually selecting
a subset of skeleton joints to be tracked, and (c) when
automatically selecting a subset of joints to be tracked.

7.1. Recognition Results When Using All Skeleton Joints. We
selected 10 videos for each activity for testing the algorithm
thatwere not previously used for training and therefore a total
of 100 videos of 10 activities.The SVMbased testing algorithm
successfully classified 83 videos out of 100, resulting in an
accuracy of 83%. As has been emphasized earlier, using all
skeleton joints for feature vectors construction only adds to
the similarity index of the feature vectors resulting in lower
accuracy. Table 2 shows the confusion matrix for this case.

The experimental results indicate the problemwith track-
ing all skeleton joints. The activities are being confused with
each other, especially the activities which are similar or
involve motion of same joints. This is because most of the

Incoming activity

Data preprocessing

Select three most relevant joints

Track positions of selected joints

Construct feature vectors FV

Label prediction

Test the incoming FV on pretrained SVM

Activity label

Figure 6: Flow diagram detailing the steps required to classify an
incoming activity.

Table 2: Confusion matrix for activity recognition when using all
skeleton joints.

No. Activity 1 2 3 4 5 6 7 8 9 10
1 Point in a direction 8 2
2 Pick from ground 7 2 1
3 Check watch 9 1
4 Sit-stand 9 1
5 Sit and drink 2 8
6 Wave 1 8 1
7 Handshake 9 1
8 Dead ball signal 1 9
9 Four signal 2 8
10 Leg bye signal 1 1 8

joints being tracked are stationary in all activities and are
adding to the similarity index of the activities resulting in
poor recognition accuracy.

7.2. Recognition Results When Using a Subset of Skeleton
Joints. We have two strategies for selecting subset joints.
Experimental results are presented separately for both of
them.

7.2.1. Recognition Results for Manual Selection of Subset Joints.
The same videos were used to test the algorithm for manual
selection of subset joints. The SVM based testing algorithm
successfully classified 95 videos out of 100, resulting in an
accuracy of 95%. Table 3 shows the confusion matrix for this
case. As has been explained in Section 4, themanual selection
of joints is made based on the intuition and the knowledge
of the activity, so only those joints having distinct motion
pattern in any activity were selected resulting in a higher
accuracy.

The activities that are remarkably different based on the
motion of joints have been classified with 100% accuracy.
These activities include pointing in a direction, picking from
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Table 3: Confusion matrix for activity recognition when using
manual selection of joints.

No. Activity 1 2 3 4 5 6 7 8 9 10
1 Point in a direction 10
2 Pick from ground 10
3 Check watch 10
4 Sit-stand 10
5 Sit and drink 1 9
6 Wave 9 1
7 Handshake 10
8 Dead ball signal 1 9
9 Four signal 2 8
10 Leg bye signal 10

Table 4: Confusion matrix for activity recognition when using
automatic selection of joints.

No. Activity 1 2 3 4 5 6 7 8 9 10
1 Point in a direction 10
2 Pick from ground 10
3 Check watch 8 2
4 Sit-stand 10
5 Sit and drink 1 9
6 Wave 8 1 1
7 Handshake 1 9
8 Dead ball signal 2 8
9 Four signal 1 1 8
10 Leg bye signal 1 9

ground, checking watch, sit stand, leg bye signal, and hand-
shake. Notable confusions are waving hello and four signal
because both of these activities include the motion of right
hand in a not so distinct trajectory.

7.2.2. Recognition Results for Automatic Selection of Subset
Joints. Automatic selection of joints is required for the robots
to use the system in real time. As has been explained in
Section 4, all joints are tracked with respect to a single
reference and three joints with highest variances in position
vectors are selected. Experimental results show that our
algorithm successfully classifies 89 out of 100 test videos
resulting in an accuracy of 89%. Table 4 shows the confusion
matrix when using automatic joint selection.

7.3. Results Discussion. The experimental results show that
tracking a subset of skeleton joints easily outperforms the
approach of tracking whole skeleton. The selection of these
subset joints is however tricky and we have presented both
manual and automatic approaches to this. The experimental
results show that the algorithm is more accurate when using
manual selection of joints as compared to automatic selection
of joints. This is understandable given the fact that joints
are manually selected to make their motion trajectories
distinct as possible for each activity.The results obtained with
automatic selection of joints are also very encouraging andwe

are confusing onlywith activities that are similar to each other
based on the motion of the joints involved. The algorithm
has not only been tested on simple and small gestures but
also on fairly long and complex activities. For example, the
sit and drink activity involves a person sitting down on a
chair, picking up a bottle of water, and then drinking from
it. The experimental results are very encouraging and show
the potential of the use of skeleton tracking for activity
recognition. The skeleton tracking using depth images and
videos is strikingly simple that eliminates many conven-
tional headaches one encounters while using RGB images
and videos such as background scene, colors, and lighting
conditions. The approach is very useful in restricted social
environments where robots have to identify a fixed number of
activities and gestures and respond accordingly. For example,
a coffee serving robot in a coffee bar can be trained with a
specific set of activities and gestures the customers usually
perform.

The question of what will happen if an unknown activity
(an activity on which the algorithm has not been previously
trained) is given as input to the classifier needs a bit of dis-
cussion. The SVM, as any other machine learning algorithm,
requires training on all possible outcomes. If an activity from
outside the training set comes in, the classifierwill still classify
it to one of the activities it was trained with. The unknown
activity will be labeled as the one it resembles the most from
the training set. Our approach, as has been written already,
is useful in a restricted environment where robots have to
classify a fixed number of activities. One possible way out is
to train the algorithm for the negative world that includes all
activities not included in the training set. That will require
an extensive dataset of negative world activities and extensive
research.

8. Conclusion

All human gestures and activities somewhat involve the
motion of some of their joints and body parts. Any approach
to activity recognition based on skeleton tracking, therefore,
has the potential to classify any human gesture or activity.
We have presented our approach to activity recognition for
natural human-robot interaction where we use a subset of
human skeleton joints to differentiate between the activities
being performed.This subset is constituted using the skeleton
joints contributing themost towards an activity.The selection
of these joints can be intuitively made by humans while
training the robot. We have also presented an automatic
approach to the selection of these subset joints during the
training phase. Experimental results for both approaches
have been presented. Once the subset of joints is constituted,
we use the 3D position of these joints for the period of
the activity to construct feature vectors which are then used
for SVM based training and testing of the approach. We
have been able to obtain an accuracy of 95% when using
manual selection of joints and an accuracy of 89%when using
automatic selection of joints. The recognition accuracy when
tracking all skeleton joints is also evaluated for comparison
and is found to be lower than our algorithm.
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