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We present a fast and robust iterative method for obtaining self-consistent solutions to the
coupled system of Schr6dinger’s and Poisson’s equations in quantum structures. A simple
expression describing the dependence of the quantum electron density on the electrostatic
potential is used to implement a predictor- corrector type iteration scheme for the solution
of the coupled system of differential equations. This approach simplifies the software
implementation of the nonlinear problem, and provides excellent convergence speed and
stability. We demonstrate the algorithm by presenting an example for the calculation ofthe
two-dimensional bound electron states within the cross-section of a GaAs-A1GaAs based
quantum wire. For this example, six times fewer iterations are needed when our predictor-
corrector approach is applied, compared to a corresponding underrelaxation algorithm.
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1 INTRODUCTION

As electronic device dimensions approach nano-
meter scale, quantum effects are expected to
dominate their electronic properties. Consequently
there is considerable interest in the efficient
numerical simulation of such structures, not only
for exploring novel device architectures but also
for maintaining reliability for reduced present-day
devices. In this paper we present a fast and robust
iterative method for solving the two-dimensional

Schr6dinger.-Poisson equations and obtaining the
electron states in the cross-section of a quantum
wire, and we compare the efficiency of our method
with the standard underrelaxation algorithm.
The physical model used to describe the

quantum wire consists, in the effective mass

approximation, of Schr6dinger’s equation

--V -Vbt + [Vh eq5 + Vxc(n) Et]b 0

(1)
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coupled with a nonlinear Poisson equation

V(eVdp) -e(-n + p +N N,), (2)

where the unknowns are the wavefunctions bz
belonging to energy levels E, and the electrostatic
potential b. Here, m* is the electron effective mass,
e the dielectric constant, n and p are the electron
and hole concentrations, N and N, the ionized
donor and acceptor concentrations, Vh the hetero-
junction step potential, and finally Vxc the
exchange correlation potential in the local density
approximation.
The quantum electron density n is obtained

from the eigenpairs (E, bl) of Schr6dinger’s
equation as

where

NI- \ -h j ,T_/2 kBT
(4)

denotes the occupancy of the/-th eigenstate, and T
is the Temperature, kB Boltzmann’s constant, EF
the Fermi level, and U-l/2 the complete Fermi-
Dirac integral of order 1/2.
We avoid the expense of solving Schr6dinger’s

equation in a very large grid by using the quantum
formulation for n (3) only within the region of the
quantum wire itself, while in the rest of the
simulation domain, where the electron density is
small, we replace it by its classical expression. The
hole concentration p is very small throughout the
quantum wire, but needs to be included into
Poisson’s equation to ensure a correct description
of the band bending in the substrate [1].

2 SOLUTION BY UNDERRELAXATION

This system of coupled nonlinear differential
equations is usually solved by an iteration between
Poisson’s and Schr6dinger’s equation [2, 3]. Since
a plain iteration by itself does not converge, it is

necessary to underrelax in the electron density n
using an adaptively determined relaxation para-
meter co(k. This underrelaxation approach can be
briefly outlined as follows:

1. Solve nonlinear Poisson equation using the old
electron density n(k-) to obtain electrostatic
potential 4(k).

2. Solve Schr/Sdinger’s equation using q(k) and
Vxc(n(k-) to obtain a new set of eigenpairs

3 Calculate an intermediate electron density ttin
4. Choose an appropriate relaxation parameter

co(k) to obtain new density n(k, and repeat outer
iteration until n becomes stationary.

The weakness of this method is the inherent
instability of the outer iteration which is controlled
by the underrelaxation procedure only. The
relaxation parameter co(k is not known in advance
and needs to be dynamically readjusted during the
course of the iteration. If co( is too large, the total
quantized charge fndx oscillates from one itera-
tion step to the other without reaching conver-

gence, while if co() is too small, too many iteration
steps are necessary to achieve convergence.

SOLUTION BY A PREDICTOR-
CORRECTOR TYPE APPROACH

To address this problem we have to modify the
underrelaxation algorithm in a way that partially
decouples both partial differential equations and
damps the oscillations in the total electric charge.
We can achieve this goal by incorporating a
modified expression for the quantum electron
density fi(4) into Poisson’s equation, which
approximates the implicit dependency of the
quantum electron density n on the electrostatic
potential q due to Schr6dinger’s equation.
A suitable expression of this type is provided by

quantum mechanical perturbation theory. Using
its formalism one can show [4, 5], that for a small
perturbation of the electrostatic potential 4 the
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occupancies Ni within the electron density (3)
become C-dependent as

(5)

71"2h 2 T’- 1/2 kBT
(6)

In our predictor-corrector approach we utilize
this result by applying it to arbitrary large changes
in :
We start the k-th iteration step by solving a

modified Poisson equation

convergence. The use of fi(k) also follows the rule
that the latest predictor value should enter the
corrector.
The numerical experiment also shows, that,

unlike in the standard algorithm, convergence is
achieved without underrelaxation, so the outer
iteration can be reduced to a simple alternation
between Poisson’s and Schr6dinger’s equation
until the quantum electron density n becomes
stationary:

Residual(n) I]n(k) n(k-’)ll 2 _< e. (11)

V(eV(k)) e[fi((k)) -p- N; + N], (7) 4 NUMERICAL RESULTS

where the potential-independent quantum electron
density n is replaced by the potential dependent
predictor ,

(8)

(k-l) defined as in (6) and thewith occupancies
(k-l) Thesuperscript k-1 indicating the use of El

electrostatic potential (k) obtained from solving
Poisson’s equation (7) together with the predicted
value for the electron density ((k)) is then used
within Schr6dinger’s equation (corrector)

h2 re}k)) + Vh e(k)--v

+ el ))I o
(9)

to calculate a corrected update n(k) to the exact
electron density

12, (10)

It is essential to insert the latest predictor value fi(k)
into the exchange correlation in Schr6dinger’s
equation (9), since the numerical experiment shows
that the use of n(k-l) within Vxc is detrimental to

We compared the efficiency of both iteration
schemes by computing the bound states for the
model device shown in Figure [2]. The quantum
wire-is based on a GaAs-A1GaAs modulation
doped structure, and delimited by two metal gates
with a distance of 400 nm. The gate voltages were
chosen as VG 1.3 V with respect to the substrate
for both contacts; additionally we assumed a

Schottky barrier of approximately eV between
metal and semiconductor material. The A1 con-
centration was set equal to 26% throughout the
A1GaAs layer, and we also included a fixed surface
charge density of 1.6x 1012 cm-2 at the GaAs-air
interface. All calculations were done at a tempera-
ture of T= 4.2 K.
Both Schr6dinger’s equation as well as Poisson’s

equation are discretized by a box integration finite
difference method to take material discontinuities
into account. Since the quantum wire covers only a
small part of the entire simulation domain, we
employ a non-uniform rectangular mesh concen-
trated around the wire region to minimize
computational cost while retaining high accuracy
within the region of interest. For the model device
discussed above a 99 x 88 grid was found to yield
satisfactory spatial resolution and short program
run-times on HP100 workstations.

After discretization, Schr6dinger’s equation
becomes a sparse eigenvalue problem, which is
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FIGURE The model device structure used in the calculations.
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solved by Chebyshev-Arnoldi iteration [6]. This
method allows us to compute only the physically
relevant lowest-energy states. The nonlinear Pois-
son equation is solved by Newton-Raphson
iteration with inexact line search. The necessary
solution of a sparse linear system at each iteration
step is accomplished by a version of the precondi-
tioned conjugate gradient method involving red-
black reordering. The Fermi-Dirac integrals,
which need to be evaluated repeatedly at each
grid point, are computed using rational function
approximations, which combine speed of execu-
tion with high accuracy [4, 7].
We compare the convergence speed of the

predictor-corrector method with a fast adaptive
underrelaxation scheme (an adaptive nonlinear
version of the standard Gauss-Seidel algorithm)
developed by one of the authors [6], which uses a
heuristic method to adjust the relaxation para-
meter co(k) Using the residual in the quantum
electron density (11) as measure to quantify
convergence we find that our predictor-corrector
approach makes the outer iteration stable. In fact,
the residual decreases by close to one order of
magnitude each step (Fig. 2), which is a 6-fold
increase in convergence speed compared to under-
relaxation. Additionally we find that the residual
decreases uniformly from one step to the next,
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FIGURE 2 Residual of the quantum electron density using a
9988 grid.

while for the heuristic underrelaxation algorithm
occasional increases are possible.
The inclusion of exchange correlation Vxc results

in an additional slowdown of convergence for the
underrelaxation scheme and also decreases its
stability. However, our predictor-corrector meth-
od remains stable and efficient, if the last available
predictor value (k+l) is inserted into Vxc as

outlined above.
We verified the rapid uniform convergence of

our predictor-corrector method for a wide range
of temperatures, gate voltages and geometries, and
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found it in all cases clearly superior to adaptive
underrelaxation. This result indicates a fairly wide
range of applicability, and considering the ease of
implementation of our method we strongly re-
commend its use even for existing codes.

Thesis, University of Illinois at Urbana-Champaign,
United States.
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