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Abstract. This research has been devoted to the selection of the most favourable plant solutions 
for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the 
framework of the energy saving and the environmental protection. The identified plant solutions 
include shading of glazing surfaces, natural ventilation by means of controlled opening windows, 
forced convection of external air and forced convection of air treated by the HVAC system for 
both heating and cooling. The selected solution combines HVAC system to a Ground Coupled 
Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse 
buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal 
design conditions have been evaluated through an hourly numerical simulation, using the Energy 
Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat 
exchange due to crop evapotranspiration, accounted through an original iterative calculation 
procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith 
method. The obtained hourly thermal loads have been used to size the borehole field for the 
geothermal heat pump by using a dedicated GCHP hourly simulation tool. 

 
 
 
1. Introduction 
One of the main tasks in greenhouse construction is to optimize the conditions for plant growth, 
generally during the off-season from normal outside field production. Total energy consumption of 
greenhouse agriculture is steadily increasing because most of the agriculture companies and growers 
made a shift from unacclimatized to acclimatized greenhouses in order to satisfy the increasing demand 
of product quality and vegetable production availability all-year-round, which now characterize the 
European agro-food industry. 

During the last 20 years, countries in the Mediterranean climate area have become increasingly 
competitive producers of greenhouse vegetables and fruit. The covered area in greenhouses in Italy 
exceeds 42000 hectares, of which 5000 hectares are devoted to crops of vegetables and more than 37000 
hectares to floriculture. The greenhouse cultivation represents for the national agricultural system a 
productive sector of considerable economic importance. 

Greenhouse technologies allow cultivating all horticultural species in any region of the world, 
provided that the greenhouse is properly designed and equipped to control the indoor climate. Over the 
past few years, researchers have investigated a large number of energy saving techniques for air 
conditioning of greenhouses and cropping systems by means of studies, simulations and 
experimentations. Most of the analysed solutions were developed to reduce inside air temperature 
without compromising the plant crop production, to improve greenhouse insulation, to optimize shape 
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and orientation of the greenhouse (Gupta and Chandra [1], Sethi [2]) or to increase the energy efficiency 
of the heating and cooling. 

Moreover, interest in renewable energies for both heating and cooling has become more intense for 
greenhouse operators to reduce their energy costs and CO2 emissions. In fact, despite the large presence 
of renewable energy sources in several European regions with a significant greenhouse production, the 
renewable technologies have still a limited application for greenhouse air conditioning. Among these 
renewable technologies one can mention the solar energy exploitation (Abdel-Ghany and Al-Helal [3], 
Ozgener and Hepbasli [4]), the photovoltaic applications, the use of solid/residues biomass for heating, 
the latent heat storage for low temperature heating applications (Tuncbilek et al. [5]) and the geothermal 
contribution to greenhouse conditioning (Adaro et al. [6], Bakos et al., 1999 [7], Santamouris et al. [8]). 

Greenhouse heating is important even in countries with temperate climate, like the Mediterranean 
region, in order to maximize crop production in terms of quantity and quality and thus to increase the 
overall productivity of greenhouse. Heating costs not only have a critical influence on the profitability, 
but in the long-term may also determine the survival of the greenhouse industry. In Italy, the cost of 
heating currently accounts for approximately 30% on the cost of production in the greenhouse. Apart 
from the costs problems associated with high-energy consumption, heating is associated with 
environmental problems through the emission of noxious gases. 

An extended review about innovative and renewable heating technologies for greenhouse application 
has been proposed by Sethi and Sharma [9]. They diffusely illustrate several energy saving solutions as 
thermal storage, ground-to-air heat exchanger systems, movable insulation/thermal screens, optimal use 
of the north wall, ground air collectors and aquifer coupled cavity flow heat exchanger systems. 

Moreover, Jamal [10] and more recently Sethi and Sharma [11] have proposed a comprehensive 
description of cooling techniques for greenhouses, including renewable technologies as the roof 
evaporative cooling, the ground-to-air heat exchanger system and the aquifer coupled cavity flow heat 
exchanger system. 

This paper is related to the Liguria Region research program “Smart Agro-Manufacturing Laboratory 
(SAM-LAB)”. The final goal of the Project was to realize an innovative greenhouse equipped with new 
materials for the glazed shell and with suitable advanced controls, able to enhance the facility 
management in the direction of reducing the overall energy needs. The innovative greenhouse has been 
finally realized at the Regional Agricultural Research Center (Cersaa) located in Albenga (SV). The 
primary objective of the research was to define solutions for energy efficiency improvement in 
agriculture and to contribute to the dissemination of methodologies and best practices for the greenhouse 
sector, even on a large scale and in different territorial and technological contexts. 

The present paper illustrates the results of the study with particular attention to the description of the 
hourly energy demand simulations model built in E-Plus environment and of the sizing method of the 
BHE (Borehole Heat Exchangers) field coupled to the geothermal heat pump. 

 
2. Numerical dynamic analysis and energy demand hourly simulations: the E-plus model 
E-Plus (Energy Plus, U.S. Department of Energy) is a worldwide known open-source software for 
building hourly energy simulations. The basic input of the model are the meteorological epw file 
containing the hourly data of the site of interest and the model data idf file with the details about the 
geometry, the shell, the selected plant solutions and their control systems. 

The analysed greenhouse is located in Albenga, Italy (latitude: 44.3 DD, longitude: 8.47 DD, altitude: 
3 m, time fuse: +1 CET) and the meteorological data have been obtained from Meteonorm code. 

The greenhouse structure consists in a rectangular aluminum frame with pitched roof. The plan 
dimensions are 15.3 and 9.9 meters, the eave height is 3.50 m while the roof top height is 5.60 m. The 
material selected for the greenhouse glazed walls is the low emissivity K-glass type N with a thickness 
of 4 mm, overall heat transfer coefficient 3.3 W/m2K, normal emissivity equal to 0.05 and a solar gain 
(g-value) of 71%. 

The air conditioning system of the greenhouse provides shadings applied to the glazing surfaces, 
natural ventilation by controlled opening windows, forced convection of external air and forced 
convection of air treated by HVAC unit (reversible heat pumps) for both heating and cooling purposes. 
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In the model the control of each element of the air conditioning system is realized by means of 
different Objects available in E-Plus (i.e. Schedules) with suitable temporal profiles (monthly, daily, 
hourly or sub-hourly) or on/off specific set points. 

The shading is implemented in the model by means of the object Window Property: Shading Control 
that specifies the type, location and controls. The temperature setpoint that triggers the shading is 24°C 
for the internal air temperature in the greenhouse, for both winter and summer operating mode. 

The controlled natural ventilation operates during both winter and summer and it is modeled by 
means of two different object: the Zone Infiltration: Design Flow Rate and the Zone Ventilation: Wind 
and Stack Open Area. Zone infiltration is specified as a design incoming air rate that is modified by 
temperature difference and wind speed values. This flow rate also fulfils the minimal air change per 
hour according to a defined time schedule (0.25 during working period, 0.15 during night and holidays). 
Zone ventilation represents the natural ventilation of external air driven again by wind and stack effects, 
only when related window openings are activated by their control. The apertures are located near the 
ground and at the roof top of the greenhouse. The windows opening is triggered by the internal air 
temperature of the greenhouse and they allow air circulation when this temperature is higher than 24°C 
during summer or 26°C during winter. An additional control is related to the minimum external 
temperature at which the natural ventilation starts: external air temperature has to be higher than 16°C 
and the wind speed lower than 10 m/s. 

The forced convection of external air and the forced convection of air treated by HVAC system 
(heating and cooling) are all modeled by means of the combination of the objects 
HVAC Template/Thermostat, HVAC Template/Zone/Ideal Loads Air System, 
Design Specification/Outdoor Air. In particular, the use of external air is driven by particular settings 
chosen in the field Outdoor Air Economized Type that increases the outdoor air flow rate when a cooling 
load is requested and the outdoor air temperature is lower than the zone (indoor) exhaust air temperature. 
To cope with heating or cooling loads, the greenhouse inlet air is pre-treated by the HVAC ideal air 
system object in order to fulfil the following set-points: the temperature of internal greenhouse air must 
be not higher than 30°C during summer (cooling mode) and not lower than 16°C during winter (heating 
mode). 

Finally the HVAC system is coupled to a Ground Coupled Heat Pump (GCHP) with vertical ground 
heat exchangers (BHE field). The ground side of the air conditioning system is simulated and designed 
according to models developed at the University of Genova. 

A very significant contribution in greenhouse energy balance is given by the crop evapotranspiration 
process. To Authors’ knowledge no study related to energy consumption in greenhouses considered this 
particular contribution for evaluating the greenhouse hourly thermal loads (Fabrizio [12]). 
 
3. Evapotranspiration: the model FAO Penman-Monteith 
The evapotranspiration consists in the process of transpiration of liquid water thought the leaves and 
underleaf soil. This water contribution to the greenhouse volume is associated with evaporation and 
hence with a significant latent heat contribution in the energy balance of the greenhouse control volume. 

In this study, the FAO Penman-Monteith model is considered in order to evaluate the hourly 
reference standard evapotranspiration ET0 from the greenhouse surface occupied by plants. The real 
evapotranspiration can be estimated by introducing the effect of the crop by the crop coefficient Kc. 

The FAO main correlation is the following one: 
 

,

0

37
0.408 ( ) ( )

273

(1 0.34 )

hrn g sat T v
sat

sat

dp
G G w p p

dT T
ET

dp
w

dT





       
    
 

   (1) 

  

ET0  standard evapotranspiration [mm/h] 

sat

dp

dT
 
 
 

  slope of the saturation curve of vapor [kPa/K] 

3

34th UIT Heat Transfer Conference 2016                                                                                            IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 796 (2017) 012027          doi:10.1088/1742-6596/796/1/012027



 
 
 
 
 
 

Gn  net irradiation on the vegetation [MJ/(m2h)] 
Gg   net irradiation on the ground [MJ/(m2h)] 
  psychrometric constant [kPa/K] 
w  hourly mean wind speed [m/s] 
psat,Thr  saturation pressure at hourly mean air temperature Thr [kPa] 
pv  hourly mean vapor partial pressure [kPa] 

The above model has been conceived for estimating the watering needs of outdoor cultivations and 
it has been here adapted to the greenhouse conditions by referring to the indoor conditions in terms of 
temperature, humidity and radiation conditions. In particular, the correlation is employed according to 
the assumptions here below: 
• solar irradiation: reduced value (with respect to outdoor conditions) of about 30% to take into account 

the transmissivity of the glazed surfaces of the greenhouse; 
• air temperature: is iteratively adjusted from E-plus simulations, starting from an initial condition 

when no evapotranspiration is present; 
• air humidity: the first guess value is obtained by the starting simulation in E-Plus with no water gain 

due to evapotranspiration and then the value is adjusted according to the next iterative simulations of 
combined Penman-Monteith and E-plus models; 

• wind speed: a minimum value is assigned (0.6 m/s); 
• rain: no rain; 
• overcast index: conversion of the meteorological data (clear sky 0, cloudy sky 10) into the Penman-

Monteith scale (clear sky 1, cloudy sky 10). 
The Penman-Monteith model is implemented in the E-plus model using the object Water Use 

Equipment, which is a generic object for simulating all water end uses and their evaporation fractions 
into the zone. The mass flow rate of water into the greenhouse is not constant but it follows the variable 
evapotranspiration activity of the vegetation as described by the Penman-Monteith model. In particular, 
the evapotranspiration is greatly influenced by the irradiation and it presents a periodical trend during 
the cycle day-night and according to the seasonal variation of irradiation during the year (figure 1a). 

The hourly values of evapotranspiration have been converted into a three-step daily profile (one 
profile for each month of the year) in order to be easily managed in a suitable Schedule of the E-plus 
model (figure 1b). For each daily profile, the first step represents the minimal value of 
evapotranspiration over the night periods and it is calculated as the monthly average of the minimum 
daily evapotranspiration value among all days of the month under consideration. The higher step 
represents the maximum value of evapotranspiration corresponding to the hours with the maximum of 
solar irradiation and it is estimated as the monthly average value of the maximum daily 
evapotranspiration among all days of that month. The intermediate step characterizes the remaining 
daily hours and it is calculated as an average between the two previous values. 
 
 

     
                              (a)                                                                               (b) 

  

Figure 1. Hourly evapotranspiration values for a representative day of the analysed month, 
(a) obtained with the Penman-Monteith model and (b) the converted three-step average daily profile. 
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4. Results: the hourly thermal loads 
The software E-plus allows to select as hourly output a lot of different parameters. 

Among them, the most interesting quantities related to the specific site where the building is built 
are the Site Outdoor Air Drybulb Temperature [°C], the Site Outdoor Air Relative Humidity [%] and the 
Site Wind Speed [m/s]. 

The quantities that evidence the attainment of the design conditions for the zone of interest of the 
building (in our case a single zone, the greenhouse) are the Zone Air Temperature [°C], the Zone Air 
Humidity Ratio [-] and the Zone Air Relative Humidity [%]. 

Figure 2 reports the outdoor and zone temperatures hourly profiles from E-Plus simulations for the 
month of January and July, respectively. The zone temperatures perfectly fulfil the requested set-points 
of minimal temperature equal to 16°C during winter and maximal temperature equal to 30°C during 
summer. 
 
 

        
                                        (a)                                                                                (b) 

 
Figure 2. External and indoor (Zone) temperatures profiles from E-Plus simulations for the month 

    of January (a) and July (b). 
 
 

The main outputs of the objects Zone Infiltration: Design Flow Rate and Zone Ventilation: Wind and 
Stack Open Area are the Zone Infiltration Air Change Rate [ach] and the Zone Ventilation Air Change 
Rate [ach], respectively. From these outputs one can calculate the Natural Convection Sensible Cooling 
Rate [MWh] (see table 1 and figure 3). 

The more relevant outputs of the object Water Use Equipment, strictly linked to the effect of 
evapotranspiration on hourly thermal loads (latent contribution), are the Water Use Equipment Total 
Mass Flow Rate [kg/s], the Water Use Equipment Zone Latent Gain Rate [W] and the Water Use 
Equipment Zone Moisture Gain Mass Flow Rate [kg/s]. From these outputs one deduces the 
Evapotranspiration heat load [MWh] (see table 1 and figure 3). 

The sensible loads for both heating and cooling are distinguished between the loads directly provided 
by the HVAC system (Supply Air) and those entirely delivered to the zone (Zone). The differences 
between these two different loads, meaningful only in cooling, represent the contribution of the Outdoor 
Air Economized, i.e. the forced convection of external air. In detail, the significant outputs are the Zone 
Ideal Loads Supply Air Sensible Heating Rate [W], the Zone Ideal Loads Supply Air Sensible Cooling 
Rate [W], the Zone Ideal Loads Zone Sensible Heating Rate [W] and the Zone Ideal Loads Zone Sensible 
Cooling Rate [W]. From these outputs one can infer the HVAC Sensible Heating and Cooling Rate 
[MWh] and the Forced Convection Sensible Cooling Rate [MWh] (see table 1 and figure 3). 
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Table 1. Energy contribution [MWh] of different elements of the air conditioning system. 
  

Months 
HVAC Sensible 

Heating Rate 
[MWh] 

HVAC Sensible 
Cooling Rate 

[MWh] 

Forced 
Convection 

Sensible Cooling 
Rate [MWh] 

Natural 
Convection 

Sensible Cooling 
Rate [MWh] 

Evapotranspiration 
[MWh] 

1 3.8004 0 0 0.0024 0.0151 
2 3.1254 0 0 0.0247 0.0439 
3 2.0493 0 0.0011 0.2176 0.1769 
4 1.4183 0 0 0.4751 0.3653 
5 0 0.0004 0.0216 2.0287 0.7480 
6 0 0.2971 0.1946 2.5111 1.2237 
7 0 1.5003 0.3335 1.5708 1.6563 
8 0 1.5181 0.2927 0.7096 1.4616 
9 0 0.3289 0.2822 0.3994 1.2052 

10 0.6016 0 0.0058 0.3206 0.6997 
11 2.2714 0 0 0.0194 0.2268 
12 3.7744 0 0 0 0.1557 

 

 
 

Figure 3. Energy contribution [MWh] of different processes involved in the greenhouse. 
 
 

From the analysis of table 1 and figure 3 one can deduce the following outcomes. 
During the heating season (winter months), the main load is obviously the sensible heating by the 

HVAC system, coupled with a feeble evapotranspiration activity. However, during the months of March, 
April and October, a weak cooling, obtained through natural convection, is required during the days 
with high outdoor temperature and great solar irradiation. 

On the contrary, during the cooling season the air conditioning system starts with the natural 
ventilation, eventually integrated with forced convection of external air. When these actions are not 
enough or the temperature of the outdoor air become too high and so unfavorable, the system closes the 
windows and turns on the forced convection of air treated by the HVAC plant. 

Finally, the evapotranspiration activity, greatly influenced by the solar irradiation, presents a trend 
that follows the seasonal variation of irradiation during the year, with a maximum during the month of 
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June. Furthermore, the evapotranspiration significantly contributes to the refrigeration of the greenhouse 
and it allows to reduce of energy consumption during the cooling season. 

 
5. Design of the borehole field for geothermal heat pump installation 
The exploitation of low enthalpy geothermal resources for air-conditioning represents an important 
opportunity to reduce the energy consumption and gas emissions even in the air conditioning greenhouse 
sector. Ground coupled heat pumps (GCHPs) exploit the favourable temperatures of the shallow ground 
in order to allow high COPs to be obtained. Moreover, in the greenhouse applications the heat pump 
performance is further enhanced due to the low target temperatures to be pursued at the HP condenser 
side and to the high target temperatures to be pursued at the evaporator side during the cooling period. 
In fact, in the current model, the internal greenhouse temperatures to be maintained are 16°C and 30°C 
during winter and summer, respectively. 

Geothermal heat pumps are generally coupled with borehole heat exchangers (BHEs) that play a key 
role in determining heat pump performance. The borefield design goal is the definition of the best BHE 
geometry (BHE arrangement, their number and spacing) and the minimum overall length of vertical 
pipes in order to obtain suitable carrier fluid temperatures from the BHE field able to realize the target 
seasonal heat pump performance. 

Different design criteria are available and all of them rely on a dynamic approach based on the 
knowledge of the building heat request in time. The simplest and widely employed design method for 
BHE fields has been developed by Kavanaugh and Rafferty [13], recommended by ASHRAE, and it 
accounts for three basic heat pulses over 10 years of operations. Monthly time step methods (e.g. EED, 
Hellström and Sanner [14]) use monthly average heat loads and peak heat loads to model both heating 
and cooling operations. They are based on the temperature response factor theory (g-functions) first 
introduced by Eskilson [15]. Finally, best analyses are those performed on an hourly time scale: they 
make use of hourly heat load series to perform a temporal superposition scheme (Bernier et al. [16], 
Fossa and Paietta [17]). 

In the present investigation, the E-plus output data are employed as input for GCHP simulations 
where the inverse machine COP is iteratively calculated as a function of the variable carrier fluid 
temperature which in turn depends on the variable temperature of the ground volume surrounding the 
BHE field. 

The selected BHE type is a double-U PE100 pipe with external diameter of 32 mm and length of 
about 100 m. The perforation is filled by grout with nominal thermal conductivity equal to 1.8 W/m K. 

The thermal conductivity of the ground has been evaluated according to the new method of enhanced 
Thermal Response Test described in [18]. It resulted from measurements equal to about 5 W/m K, a 
very high value, related to the presence of relevant groundwater movements. 

The required length of the BHE field is calculated according to three procedures, namely an hourly 
and 2 monthly time step calculations that include the use of the EED software (Earth Energy Designer) 
[14], probably the most widely used design tool for vertical borefield design for GCHP applications. 
Proprietary code TecGeo (Dalla Pietà and Fossa [19]) is employed to perform monthly simulations with 
reference to a custom BHE configuration made by 6 BHE arranged in a non-regular U-disposition (see 
figure 4). Finally the proprietary code MLAA17 [17], which represents a modified version of the 
Canadian algorithm MLAA [16], is employed for hourly simulations starting from complete E-plus 
information on greenhouse heating and cooling requirement during the year. The hourly simulation 
allows the Seasonal Perfomance Factor (SPF or average COP) to be evaluated and it results, for the 
given HP taken into consideration, equal to about 5.5. EED is employed to validate and check hourly 
results and the agreement is very good. 

All the simulations are carried out along 25 years. The two different approaches (monthly average, 
i.e. TecGeo, and hourly, i.e. MLAA17) are in close agreement and both able to describe the time varying 
behaviour of the ground heat exchanger system when responding to the building heat demand as 
calculated from E-plus simulations. Figure 5 shows the results of a double simulation made by 
proprietary codes developed at the University of Genova: the hourly values of the fluid temperature 
obtained by means of MLAA17 seem in very good agreement with the monthly average values 
calculated using TecGeo. 
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Figure 4. Greenhouse and BHE field layout.           Figure 5. Fluid temperatures from simulations        
                                                                                   made (25th year) by proprietary codes developed  
                                                                                   at the University of Genoa, MLAA17 and TecGeo. 

 
 

6. Conclusions 
The paper describes the results obtained in the framework of a Liguria Region research program “Smart 
Agro-Manufacturing Laboratory (SAM-LAB)”. The main goal of the project is to analyse and select air 
conditioning plant solutions (if possible combined with renewable energies) aimed at improving the 
energy efficiency in agriculture facilities. 

The first part of the study consists in an hourly energy demand simulation of the greenhouse by 
means of the open-source software Energy Plus (E-plus). The air conditioning system selected for the 
greenhouse prototype combines shadings applied to the glazing surfaces, natural ventilation through 
controlled opening windows, forced convection of external air and forced convection of air treated by 
HVAC unit (reversible heat pumps) for both heating and cooling purposes. In the energy balance of the 
greenhouse also the crop evapotranspiration is considered as latent heat contribution, and this aspect 
represents an original contribution of this Research. 

From the analysis of the hourly heat loads obtained as outputs of E-plus simulations one can deduce 
that, during the heating season, the main load is obviously the sensible heating by the HVAC system, 
coupled with a feeble evapotranspiration activity. During the transitional months (March, April and 
October) a weak cooling, obtained through the natural convection, is required during the days with high 
outdoor temperature and great solar irradiation. During the cooling season the system achieves the 
requested indoor conditions by means of the natural ventilation at the beginning, integrating it with the 
forced convection of external air or with the forced convection of air treated by the HVAC plant, if 
necessary. 

Finally, the crop evapotranspiration is greatly influenced by the solar irradiation and it presents a 
trend following its seasonal variation during the year, with a maximum during the month of June. 
Therefore, the evapotranspiration significantly contributes to the cooling of the greenhouse with a 
reducing of energy consumption during summer. 

The heating and cooling HVAC system couples a reversible heat pump with a borehole heat 
exchangers (BHEs) field, representing an innovative plant solution when applied to a greenhouse. 

To design the Ground Coupled Heat Pump (CGHP), three different design methods are used. Two 
of them are based on average monthly heat loads combined with seasonal peak (namely EED and 
TecGeo, the second being a proprietary software developed at Dime, University of Genoa). On the 
contrary, the third approach uses directly the E-plus hourly heat loads (MLAA17, a proprietary code 
that represents a modified version of the Canadian algorithm MLAA). 

The comparison between results obtained using the different methods reveals a very good agreement 
and the selected BHE field geometry is composed by 6 BHEs of about 100 m length, arranged in a non-
regular U-disposition. 
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