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Abstract

A “dual language” component-based approach to the development of real-time crit-
ical applications is proposed. UML provides the constructs for modeling the struc-
ture of the system and the behavior of the system’s components. A new descriptive
language based on temporal logic, called OTL (Object Temporal Logic) is defined,
in order to let the developer assert properties of the system at an abstract specifi-
cation level. A development process consistent with the proposed notation is also
briefly described.
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1 Introduction

In the last few years, UML [1] has achieved a great popularity, essentially
thanks to its graphical, easy-to-use notation and extensive tool support. Inter-
estingly, UML is also being increasingly used for the development of real-time
software. However, UML was not conceived for modelling real-time software.
Its application to the real-time domain is limited by its lack of constructs to
express time-related constraints and properties, as well as by its lack of formal
semantics. To solve some of these problems, UML for Real-Time (alias UML-
RT) has been defined on the basis of ROOM [9] and has been rapidly adopted
by many developers. However, the application of UML-RT to the real-time
domain is still suffering from several problems:

• UML-RT is not formally well defined. This is a relevant limitation, since
very often real-time applications are also safety-critical ones. Thus they
call for activities (e.g., property verification, system simulation, test case
generation) that are very hard –if at all possible– to carry out when the
specifications are written in semi-formal notations.

• UML-RT is an effective notation for the design and implementation of sys-
tems, but not for representing requirements or specifications. For instance,
when modeling the operational environment of a real-time system, it is often
necessary to represent non-deterministic behaviors or simultaneous events.
These phenomena are not supported by UML-RT.

• Finally, time-related information (i.e., the representation of time and time
constraints) are not treated at a native level, but only through ad-hoc com-
ponents (like timers).

The problems described above are particularly relevant since UML-RT is prob-
ably going to be included in the forthcoming UML 2.0 [11]. The development
of real-time critical applications calls for a rigorous process, which should be
based on notations that are expressive and close enough to those currently
used in industry, to keep their application cost low. At the same time, the
notations should be formal, to allow the application of formal methods for
property verification, test case generation, etc. In particular, we need:

• A simple, expressive notation for modeling the structure of real-time sys-
tems. For this purpose, a UML-based notation is probably the best choice.

• An easy-to-use, though precise notation for specifying the behavior of the
system, including time information in a quantitiative way.

• A notation to express the required properties of the system.

UML can deal with all of the above issues. Class and object diagrams describe
the system structure, state diagrams illustrate the dynamics of the system,
and OCL specifies both static and dynamic properties and constraints. Nev-
ertheless, real-time critical systems cannot be modeled satisfactorily with the
standard UML or UML-RT. In this paper, we propose a set of notations and
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a process to support the development of this kind of systems.

2 The proposed approach

Our proposal for extending/specializing UML for time critical systems is not
only a notation, unrelated to the development process. This specialized do-
main requires systematic and rigorous development, centered on explicit, pos-
sibly formal requirements specification, and requirement validation and verifi-
cation are also of crucial importance. Our proposal combines a set of carefully
thought and balanced notations which can support the most suitable devel-
opment methods and can be used by practitioners in industrial environments.

The hardware and software architecture of critical embedded systems is
often quite static. As for hardware, there are obvious reasons of stability and
continuity of functioning. From the software viewpoint, a static architecture
is needed because these systems are carefully designed to achieve high perfor-
mance and especially to exhibit a predictable behavior. This is often obtained
by a static allocation of objects and, in general, by a management of the
computational resources that is as invariant in time as possible.

The notation we propose is centered on architectural diagrams that corre-
spond to UML-RT collaboration diagrams. System components are modeled,
along with the relations of inclusion and communication, via a small set of fun-
damental constructs: capsules correspond to components; ports and protocols
model abstract interfaces (i.e., they describe only the alphabet, not the behav-
ior); and connectors correspond to communication relations. The partitioning
of a complex system into a set of components (i.e., parts) that conceptually
evolve in parallel and communicate via connectors can be iterated to an ar-
bitrary level of depth. This results in a tree-shaped hierarchy of parts and
sub-parts, where the root corresponds to the overall system being modeled,
and the leaves to the components that are not further structured, which are
modeled in an operational style with a state-transition machine. In our pro-
posal, however, leaf-level components may not be associated with a general
statechart, i.e., with and/or states decomposition and signal broadcast. We
believe that, although they may enrich the notation and make it more concise,
these features are often detrimental to understandability and semantic terse-
ness. We deliberately keep the architectural structuring mechanisms (i.e., the
partitioning of a system into a set of parts/components) completely separate
from those for describing the behavior (i.e., “flat” statecharts).

In addition to the statecharts associated with leaf-level capsules, we also
propose a descriptive formalism to specify the behavior of a system and its
components, whose style is thus complementary to that of statecharts. Specifi-
cally, this description consists of a formula of a new logic, called OTL (Object
Temporal Logic), which we define in such a way as to make it compatible
with the original OCL (Object Constraint Language) descriptive notation for
asserting properties in UML. OTL formulas and statecharts are also comple-
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mentary at the methodological level, since an OTL formula acts as an abstract
specification of constraints and temporal relations that must hold among the
states, events, and signals of the statechart machine associated with the same
capsule. Thus, we propose a “dual language” approach: the OTL part is
an abstract specification of the properties that are required to the behavior
of the state machine. Hence, there is no redundancy among the informa-
tion provided by the OTL formula and the statechart associated to a given
capsule/component: on the contrary, they must be in the classical specifica-
tion/implementation relation that is typical of dual language approaches to
the development of reactive systems.

3 The OTL language

The Object Constraint Language (OCL) defined in UML can be used to state
behavioral properties of a system and its parts. However, when dealing with
time-dependent systems, OCL (in its current form or in the one proposed in
[10] for OCL 2.0) needs to be extended to fully specify temporal aspects. OCL
cannot explicitly predicate about the temporal properties of a system, so only
some temporal properties can be modeled adequately. As an example, the
invariant construct inv is used to specify a property that must hold in all the
states of the system. This construct can be seen as the Always construct of
temporal logic, whose parameter is a property that must hold at all times dur-
ing the evolution of the system. However, not much else can be expressed as
far as temporal properties are concerned, so several other kinds of important
temporal properties of systems cannot be adequately specified (and therefore
verified). In particular, it is not possible to specify the time distance between
events, since time is not represented in OCL. This has a fundamental im-
portance in time-critical systems, where the response to a stimulus must be
guaranteed to occur within some specified time interval.

We propose Object Temporal Logic (OTL) as a temporal logic extension
to OCL. Based on one fundamental temporal operator, OTL provides the
typical basic temporal operators of temporal logics, i.e., Always, Sometimes,
Until, etc. In addition, OTL allows the modeler to reason about time in
a quantitative fashion. OTL is a part of a UML-based formalism, so it is
totally integrated with the other UML notations. As far as the OCL 2.0
standard library is concerned, OTL extends it by adding three new classes,
Time, Duration and Interval (see Fig. 1). Class Time models time instants,
which are defined based on the current time taken as the time origin. Class
Durationmodels duration of time intervals, i.e., the distance between two time
instants. Therefore, a time Interval can be defined by its initial Time instant
and its Duration. These classes inherit directly from class OclAny, which is the
root of the hierarchy of the base types in OCL 2.0. The existence of both class
Time and class Duration allows for a conceptually proper treatment of time
and the definition of sensible operations between objects of the two classes. For
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Fig. 1. The OCL standard library extended with types Time, Duration and Interval.

instance, class Time provides (1) an operation that checks the ordering between
its objects, so we can say if a time instant precedes or follows another time
instant, (2) an operation for finding the time distance between two instants,
which returns an object of class Duration, and (3) an operation that takes a
parameter d of class Duration and returns the Time object that lies at a time
distance d. Class Duration, for instance, has sum and subtraction operations
between its objects: the sum of two time distances is a new time distance,
whose extension is the sum of the extensions of the original time distances.
For instance, class Interval has operations for (1) finding if two intervals
overlap, (2) finding if one interval contains another interval, and (3) building
the union of two overlapping intervals. These operations allow modelers to use
quantitative time. Depending on the application at hand, Time and Duration

may be discrete or dense.

OTL formulas are evaluated with respect to an implicit current time in-
stant. To allow for the evaluation of a predicate p at a time different than the
current one, OTL introduces a new primitive as a method of class Time, in
a way that is consistent with the OCL notation. Thus, given a time instant
t, represented as an object t of class Time, the evaluation of p at time t is
carried out as follows:

t.eval(p)

Method eval receives an OclExpression as the parameter (p) and returns a
boolean value. Its meaning is that predicate p is evaluated at time t. With
reference to the definition of OCL 2.0 [10], it is interesting to note that our ex-
tensions do not require any change in the metamodel. Types Time, Duration
and Interval are simply three new types that are added to the OCL standard
library as specializations of OclAny. The full definition of these classes is not
reported here for space reasons. Based on method eval, all other temporal
operators can be defined. Since Time is introduced as an OTL type, collections
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of objects of class Time can be defined. For instance, if T is a set of objects
of class Time, formula T->forall(t: Time|t.eval(p)) is true if and only if
p is true at all time instants in T. To provide modelers with expressive tools
to describe time-critical systems, it is useful and convenient to define a set of
temporal operators. For instance,

context C

inv: Lasts_ie(p, t1, t2)

specifies that p holds in the interval from t1 (included) to t2 (excluded). This
statement can be defined as a shorthand for

context C

inv: let I: Interval = [t1..t2] in

I->forall(t: Time| t=t2 or t.eval(p))

Note: here we use forall, which in OCL is defined only for collections. OTL
classes Interval and Duration represent sequences that may possibly contain
infinite time instants. Therefore we define methods forall and exists in this
classes as well. Other operators can be defined similarly. For instance:

context C

inv: Until(p1, p2)

is equivalent to:

context C

inv: let I: Interval = [now..inf] in

I->exists(t: Time | Lasts_ie(p1,now,t) and t.eval(p2))}

where now represents the current (evaluation) instant, while inf indicates the
infinite. In addition, even the basic temporal operator t.eval(p) may be
denoted with the more convenient and intuitive syntax p@t. This syntax is
similar to the one used in standard OCL [1], where p@pre denotes the fact
that p holds before a method is executed.

4 The development process: methodological guidelines

The description of real-time systems according to the proposed notation is
meant to support a development process like the one described in Fig. 2.
The fundamental idea is that the description of the software system, of the
environment in which it operates, and of the user requirements is complete
and precise enough to let the developers:

• Validate the specification by simulating it (at least with respect to its time
behavior).

• Verify the specification through model checking, to ensure that a model
satisfies the properties specified with OTL (i.e., the provided statecharts
are a valid “implementation” of the system behavior).
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Fig. 2. The development process.

• Support verification by generating functional test cases that can guarantee
(to a reasonable extent) that the implementation of the system is consistent
with its specifications.

Some of the activities described above could require some sort of translation.
For instance, models written in our notation cannot be fed directly to existing
model checkers. In most cases, it should not be difficult to translate OTL
statements into, say, TCTL [2] or other notations as required by the model
checkers. However, as OTL is more expressive than TCTL, proving that a
property of a system specified with OTL holds could be undecidable. In
these cases, one could apply other techniques, like theorem proving or history
checking [4]. The latter approach would be preferable, as long as it does not
require particular skills in logics. In any case, as a fundamental prerequisite
for the application of the process depicted in Fig. 2 the system model must
be defined using the proposed notation. Guidelines for this step are therefore
needed. Of course, every analyst is free to define the model following the
procedure he or she likes best. However, a few reference points may be useful:

• The capsules reported in the collaboration diagrams represent the “do-
mains” of the problem and the elements of the solution. These can be iden-
tified and described according to various methods, for instance the “problem
frames” proposed by Michael Jackson [7].

• The behavior of each capsule can be described by statecharts so as to rep-
resent environment and system behavior. They take into account the in-
dications provided by the domain experts, the users, and the analysts. It
is important to note that the described behavior is in general the result of
decisions taken by the users and the analysts together.

• The OTL specifications represent user requirements at the most abstract
level. In practice they often concern the behavior of the system (including
the “machine”) from the user point of view. For instance, OTL statements
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Fig. 3. GRC regions of interest.
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Fig. 4. GRC: the physical components and their connections.

will generally concern also elements that are not directly visible by the
“machine”. Here, the term “machine” indicates a computer or a network of
computers, or more generally the IT solution provided by the implementers.

5 A case study

We illustrate our approach through a classic case study in the literature of
embedded, time critical systems: the generalized railroad crossing (GRC) [6].
The system operates a gate at a railroad crossing I, which lies in a region of
interest R (see Fig. 3). Trains travel through R on K tracks in one direction
(it has been proved that having trains traveling in both directions does not
change the complexity and relevance of the case study). Trains can proceed
at different speeds, and can even pass each other. Only one train per track is
allowed to be in R at any moment. Sensors indicate when each train enters and
exits regions R and I. Point RI and RO indicate the position of the entrance
and exit sensors for region R. II indicates the position of the sensor which
detects trains entering region I. dm and dM are the minimum and maximum
times taken by a train to cross RI-II zone. hm and hM are the minimum
and maximum times taken by a train to cross zone I. g is the time taken by
the bars of the gate to move from the completely open to completely closed
position (or vice versa).

The system must be safe, i.e., the gate must be closed when trains are
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T2: close()
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Fig. 5. The statecharts describing the behavior of the gate.

crossing the I region. Other required properties are discussed later.

The structure of the system is illustrated in Fig. 4. Note that the syntax
employed here is not exactly conformant to UML, nevertheless, the correspon-
dence with UML constructs (capsules, ports, etc.) should be evident.

The controller receives the RI, II, and RO signals from the sensors posi-
tioned on the tracks, and sends open and close commands to the gate. RI, II,
and RO signals have a parameter indicating the identity of the source track.
For space reasons, we give here already the internal structure of the controller,
while in general it would be specified later, as a consequence of the required
behavior of the whole system.

The gate behaves as described by the statechart reported in Fig. 5. It is
possible to note that we have introduced in the statecharts a few non standard
elements that are useful to deal with time and time constraints. In particular,
some transitions are associated with labels that indicate at what time the tran-
sition occurred: for instance, the transition from Closed to Opening occurred
at time T1. It is possible to specify time-dependent conditions for transitions:
in particular, it is possible to constrain the occurrence of a transition Tr in an
interval [Tlow, Tup], where Tlow and Tup are relative to the time the system
entered the source state of Tr. In our example the gate is closed exactly g
time units after receiving the close() signal. It is also possible to mention
time labels in the conditions: in our example if the gate has been opening for
a time To and a close() signal is received, then the gate takes exactly To to
reach the Closed state again. This is specified by “remembering” the instants
T1 and T2 when the open() and close() signals are received (respectively),
and constraining the system to reach state Closed exactly T2-T1 time units
after the close() signal is received. Tracks behave as described in Fig. 6 (as a
consequence of the behavior of trains). The controller is internally structured
in two components: a signal handler and a gate controller. The former passes
immediately the signals II and RO to the gate controller, while it generates
a signal X dm−g time units after receiving a RI signal (see Fig. 7). The gate
controller reacts to X signals, so that the gate gets completely closed exactly
when the fastest trains enter the crossing zone. More precisely, the gate con-
troller counts the trains that are in the R and I zones, by means of counters
ccr and cir, respectively: whenever ccr becomes greater than zero a close()
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^Controller.RI(k)
Outside Close

Crossing

[hm, hM]
^Controller.RO(k)

[dm, dM]
^Controller.II(k)

Fig. 6. The statecharts describing the behavior of the trains.
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Fig. 7. The statecharts describing the behavior of the signal handler.
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cir--, ccr-- ^gate.open()

NotEmpty

Fig. 8. The statecharts describing the behavior of the gate controller.

command is issued, when it returns null, an open() command is issued (see
Fig. 8). The safety property can be expressed as follows:

context Gate

inv:

self.Tracks->exist(oclInState(Crossing)) implies

self.oclInState(Closed)}

This property does not make explicit reference to time, so it can be expressed
using plain OCL. However, a gate that is always closed would satisfy the safety
requirement. Therefore we would like to express also a utility property, i.e.,
the gate must be open if no train has been in the region R for an interval of
g time units. This property can be expressed as follows:

context Gate

inv:

self.Tracks->forall(Lasted_ei(oclInState(Outside),g))

implies self.oclInState(Open)}

This property does not take into account that a train may be out of R for part
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of an interval with duration g, and for the rest of the interval the train could
be in the RI-Y region, where Y is a point in R preceding X. If this is the case,
the gate should be open as long as the train is in Y-X. This property can be
expressed as follows:

context Gate

inv:

let D: Duration = [now-g, now] in

D->exists(T: Time | self.Tracks->forall(

Lasted_ei(oclInState(Outside),g) or

(Lasted_ei(oclInState(Close),now-T) and

(now-T)<(dm-g) and

Lasted_ee(oclInState(Outside),now-g, now-T))))

implies self.oclInState(Open)}

In the OTL statement above now indicates the current instant (i.e., if inv
means ∀t, then now is t). Lasted(P,t1,t2) means that P was true in the interval
[t1,t2], thus Lasted(P,d) = Lasted(P,now-d,now). Note that Lasted(P,k) is
true for every k<0, and Lasted(P,t1,t2) is true whenever t2<t1.

Note that the OTL statements that express the safety and utility properties
refer only to elements of the gate and the tracks, which belong to the problem
domain, so they can be considered as part of the requirements specifications.
The statechart of the controller (Fig. 8) can be considered the result of a
preliminary design activity. The process sketched in Fig. 2 suggests that the
model including the statechart of the controller should be verified with respect
to the safety and utility properties by means of a model checker. Once it is
proved that the model is correct, implementation can start. The component-
based structure of the model provides a starting point for a component-based
implementation of the system.

6 Conclusions

The development of real-time critical applications calls for a specific process
and rigorous notation. We propose a “dual language” approach, where UML
provides the constructs for modeling the structure of the system and the be-
havior of the system’s components. A new descriptive language based on
temporal logic, called OTL (Object Temporal Logic), allows the developer to
assert properties of the system at an abstract specification level.

The literature already contains a few proposals for augmenting OCL to
deal with time-dependent systems (see [8]). Some of them (e.g., [3]) deal with
time only from a qualitative viewpoint, i.e., no notion of temporal distance
between events is provided. Another proposal allows modelers to deal with
time in a quantitative fashion, by extending the set of operators of OCL [5].
However, in the latter approach a discrete time is associated with the system
states and events, while in our approach real values can be used to represent
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time.
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