
Received February 26, 2019, accepted April 5, 2019, date of publication April 11, 2019, date of current version April 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910312

GASSER: An Auto-Tunable System for General
Sliding-Window Streaming Operators on GPUs
TIZIANO DE MATTEIS , GABRIELE MENCAGLI , DANIELE DE SENSI,
MASSIMO TORQUATI , AND MARCO DANELUTTO
Department of Computer Science, University of Pisa, I-56127 Pisa, Italy

Corresponding author: Gabriele Mencagli (mencagli@di.unipi.it)

ABSTRACT Today’s stream processing systems handle high-volume data streams in an efficient manner.
To achieve this goal, they are designed to scale out on large clusters of commodity machines. However,
despite the efficient use of distributed architectures, they lack support to co-processors like graphical
processing units (GPUs) ready to accelerate data-parallel tasks. The main reason for this lack of integration
is that GPU processing and the streaming paradigm have different processing models, with GPUs needing
a bulk of data present at once while the streaming paradigm advocates a tuple-at-a-time processing model.
This paper contributes to fill this gap by proposing Gasser, a system for offloading the execution of sliding-
window operators on GPUs. The system focuses on completely general functions by targeting the parallel
processing of non-incremental queries that are not supported by the few existing GPU-based streaming
prototypes. Furthermore, Gasser provides an auto-tuning approach able to automatically find the optimal
value of the configuration parameters (i.e., batch length and the degree of parallelism) needed to optimize
throughput and latency with the given query and data stream. The experimental part assesses the performance
efficiency of Gasser by comparing its peak throughput and latency against Apache Flink, a popular
and scalable streaming system. Furthermore, we evaluate the penalty induced by supporting completely
general queries against the performance achieved by the state-of-the-art solution specifically optimized
for incremental queries. Finally, we show the speed and accuracy of the auto-tuning approach adopted by
Gasser, which is able to self-configure the system by finding the right configuration parameters without
manual tuning by the users.

INDEX TERMS Data stream processing, sliding-window queries, GPU processing, autotuning, self-
configuring systems.

I. INTRODUCTION
Data streams have become commonplace in the realm of
data science. An ever-growing number of mining tasks are
applied to transient flows of data in a real-time manner rather
than offline, on static, permanent datasets [1]. Examples are
applications in finance, sensor networks, smart cities and
many others.

With the proliferation of sensing devices and the over-
whelming interest in 5G network technologies, input data
rates have started to raise at a dramatic speed and are expected
to skyrocket in the near future. The use of parallel processing
models and architectures to speed up streaming tasks is of
paramount importance to address the high-demanding perfor-
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mance requirements of time-critical applications. The design
of Stream Processing Systems (SPSs) mostly targets scale-
out scenarios using clusters of commodity machines [2].
Instead, the research of SPSs optimized for modern scale-up
servers equipped with co-processors like GPUs (Graphical
Processing Units) and FPGAs (Field Programmable Gate
Arrays) is still in progress.

Relatively few papers have proposed prototypes of SPSs
leveraging support to GPU processing [3], [4]. The common
approach is to split the stream into disjoint batches, offload
the processing of each batch on the GPU by exploiting data
parallelism, and collect the results on the CPU. This idea has
been applied to sliding-window queries [5] that repeat a user-
defined function over the most recent tuples (input items)–the
last n > 0 tuples or the ones received in the last n time units.
One of the most relevant papers in this topic is Saber [6],
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where windows can span across several batches and may start
or end in the middle of a batch. To express GPU parallelism in
Saber, the supported queries must be decomposable by the
user into two functions: the first producing a result per win-
dow fragment, the second assembling those results to build
the result of the entire window. Examples of such queries
are algebraic aggregates based on associative functions and
sliding-window joins.
Gasser (Gpu Accelerated Sliding-window StrEam pRo-

cessing) aims at filling two notable gaps within the literature
to date. First, approaches like Saber cannot be adopted
when the user-defined function is not decomposable, i.e. it is
expressed by a non-incremental algorithm needing access
to all the tuples of the window as a whole before starting
the processing. Such case is often supported by SPSs (e.g.,
Apache Flink) to write streaming queries when incremental
algorithms do not exist or, although available in the litera-
ture, they are hard to be implemented by a standard user.
Since in those cases the computation is not executed incre-
mentally, parallel processing techniques are a real challenge.
Second, existing prototypes are hard to be tuned in terms
of some system parameters like the batch size, which deter-
mines the efficiency of the parallel processing. Finding the
right value may depend on the hardware and the stream
characteristics that are often unknown before starting the
processing.

This paper presents the motivation, the architecture and the
run-time system of Gasser. The system has two main fea-
tures that distinguish it from the state-of-the-art by addressing
the two aforementioned gaps in the literature:

• it relies on the notion of sliding batches that allows
the processing of consecutive windows to be offloaded
on the GPU. Since the user-defined function is con-
sidered a blackbox by Gasser, to increase through-
put our system executes distinct windows in parallel
on the GPU cores. We call this model inter-window
parallelism;

• to automatize its configurationwith different queries and
data streams, Gasser provides an auto-tuning support
based on an online learning model to reach a system
configuration (in terms of batch size and other setup
parameters) achieving the optimal throughput.

By using Gasser the final users have two important advan-
tages with respect to using traditional frameworks:

• they can exploit a GPU device to increase throughput for
their streaming pipelines, feature not provided in tradi-
tional frameworks (e.g., Apache Flink and Storm).
Furthermore, the use of the GPU is not limited to some
predefined and built-in queries as in the few existing
GPU-based research prototypes [6];

• the programmers are not involved in deciding when and
how the GPU will be utilized: the system automatically
decides which configuration is the best according to the
workload conditions of the data stream and of the given
query to execute.

In conclusion, Gasser supports arbitrary windowed
queries while exploiting the most effective level of parallelism
and batching without manual tuning by the users.
The next section of the paper provides an overview

of the problem tackled by Gasser. Section III describes
the Gasser architecture and the GPU kernel. Section IV
presents the auto-tuning support. The evaluation is provided
in Section V, while Section VI reviews the state-of-the-art.
SectionVII outlines the conclusion of our work and our future
research directions.

II. PROBLEM OVERVIEW
In this section, we recall some basic concepts of streaming
queries by focusing on the sliding-window paradigm. Then,
we give the motivations of our work and we show the class of
queries that we want to target in this research.

A. SLIDING-WINDOW QUERIES
Queries in the streaming domain are different from the
ones in traditional databases. Streaming queries are standing,
always on execution, and provide continuous sequences of
results [5], [7]. In many applications the informational value
of each tuple is time-decaying [8]. The approach is to main-
tain a sliding window of the most recent tuples whose content
is updated as new tuples arrive while the oldest ones are
periodically eliminated. Then, at every window activation the
query logic goes over the tuples within the current window by
producing a new output result.

Most of the SPSs provide support to sliding windows [9].
Different models have been introduced over the years.Count-
based windows express both the window length w > 0—the
past history captured by the window extent—and the sliding
factor s ≤ w—how much the window moves ahead when it
slides—in number of tuples. When the window length and
the sliding factor are expressed in time units (e.g., seconds,
milliseconds), we are in presence of time-based windows.
Besides these two basic definitions, other more exotic models
have been proposed to support the users in specific applica-
tion domains [5], [10]–[12].

B. WINDOW PROCESSING
The users develop streaming applications as dataflow
graphs (topologies) of operators consuming input tuples and
producing output results. Some of those operators use an
interface to express sliding-window computations. SPSs pro-
vide different APIs, either supporting incremental or non-
incremental processing.
When the query is provided with an incremental function,

window results are incrementally computed by aggregating
the tuples as they arrive. For commutative and associative
functions, this allows for efficient computation because the
system may avoid recomputing each window from scratch by
reusing partial results of shared portions between consecutive
windows. Optimized algorithms for incremental queries have
been the subject of an intensive research for some notable
queries (e.g., aggregates and quantiles [13]–[15]). This has
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Listing 1. Process window function abstract class.

also been studied for providing parallel solutions on GPUs
(like in Saber [6]), where incremental queries allow the
window processing to be split by computing partial results
of different window fragments in parallel and then merging
them to obtain final window results.

Most of the SPSs provide also a non-incremental API to
instantiate operators with any offline algorithm that expects
to receive all the window tuples before starting the pro-
cessing. Since the input function is generic, this in general
prevents to exploit results already obtained for preceding
windows to save computation time. Listing 1 shows the
non-incremental API provided in Apache Flink version
1.7.1. The user implementing a non-incremental algorithm
has to extend the ProcessWindowFunction abstract
class by implementing the process() method with the
logic to be executed for each triggered window. The method
gets an Iterable containing all the elements of the
window.

Non-incremental APIs improve the generality of SPSs by
allowing the use of any already existing algorithm in stream-
ing pipelines. This goes in the direction to make stream-
ing frameworks more suitable for general data mining and
machine learning tasks, which enhance the capability to
extract actionable intelligence for decision makers. Indeed,
limiting the support only for incremental or one-pass algo-
rithms, although they are closer to the streaming context, cuts
off the use of standard algorithms for traditional problems.
Examples are classification [16] (e.g., decision trees, random
forest, support vector machines, K-NN), and most of the
inductive machine learning algorithms, which, in their tradi-
tional definition, need the training set available as a whole
and do not apply incremental processing for building the
model [17].

Unfortunately, GPU-based solutions for queries expressed
with non-incremental functions on data streams are gener-
ally not available. Gasser fills this gap that we claim has
practical relevance for the users. We will introduce a parallel
approach that assumes the query function to be a blackbox and
not decomposable, and extracts parallelism through a suitable
micro-batching technique. By working without assumptions
on the function, the approach is not optimal for incremental
queries (for which GPU solutions already exist in the litera-
ture), but extends the space of queries that can benefit from
GPU processing, which is our main goal.

C. MICRO-BATCHING CONFIGURATION
The most relevant GPU-based streaming prototypes
(reviewed in Section VI) share a common approach inspired
by the micro-batching technique of Spark Streaming [18].
They buffer input tuples in small batches, and offload the
processing of each batch on the GPU. The size of each
microbatch has a profound effect on the achieved throughput
and response time. Its optimal value depends on information
about the stream rate and the query workload, and the GPU
features in term of cores, memory and interconnection band-
width. So, any static choice of it is not portable and leaving
its configuration to the users is not practical.

To overcome these issues, Gasser adopts an online learn-
ing approach. During an initial short portion of the execution
after the query submission (called calibration), Gasser tries
different configurations (e.g., batch sizes) and collects mea-
surements needed to build a prediction model used to guess
the performance of untried configurations. At the end of this
phase, the system chooses a configuration that according to
the model provides the best throughput. Notably, the cali-
bration in our approach is fully integrated with the normal
execution from the user viewpoint, that is the stream is never
blocked and Gasser is always able to deliver results during
the calibration without interruptions.

III. GASSER ARCHITECTURE
Gasser is written on top of FastFlow [19], a C++
streaming framework for multicores, and Cuda. To instan-
tiate a Gasser operator, the programmer uses our API to
construct the C++ operator object by passing as input argu-
ments to the constructor the window specification (w, s) and
the non-incremental function (through a lambda expression).
Gasser keeps the layout of the data structures simple

and efficient (i.e. flat arrays without pointer traversal). For
the sake of compatibility with older GPU models, we do not
make use of the Unified Memory support recently introduced
by NVIDIA. That is, the Gasser run-time system explicitly
manages data transfers to/from the device. Gasser currently
supports count-based windows and we aim to extend the
support to other windowing models in the future.

Figure 1 depicts the architecturewith its essential elements.
The symbols D, C and R0, . . . ,Rn−1 are the distributor,
the collector and the n > 0 replica entities. The distributor
routes input tuples (redirected by the placeholder operator
in the topology, OPx in the figure), while the replicas are
functionally equivalent entities in charge of executing the pro-
cessing on different sliding windows. The collector receives
window results from the replicas and delivers them to the
topology in increasing order of the window identifier. Such
entities are executed by the runtime with threads running on
the CPU cores (the number of replicas is called concurrency
level in this paper). The replica threads, in addition to doing
the pre- and post-processing tasks on the CPU, can be con-
figured in two modalities: 1) they can call directly the non-
incremental function on each complete window and run it on
a CPU core; 2) they can batch tuples in order to collect enough
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FIGURE 1. Gasser: parallel window-based operator with GPU offloading
(red arrows).

data for processing several contiguouswindows, whose paral-
lel computation is offloaded on a GPU. In both cases, window
results are delivered to the collector thread.

To support GPU offloading, the design follows two prin-
ciples: i) input tuples are buffered and managed in sliding
microbatches; ii) Gasser uses a specialized form of data
parallelism for windowed processing to leverage the high
parallelism provided by modern GPU devices.

A. SLIDING MICROBATCHES
Gasser is based on a general assumption that different
windows can be processed independently from each other,
condition that is verified in almost all the common sliding-
window queries [5] presented in the literature so far.

In all the past approaches, the stream is partitioned into
disjoint batches usually of a fixed size. In some systems the
batch size depends on the specification of the sliding window
(e.g., in Spark Streaming both the window length and the
sliding factor must be multiple of the batch size), while in
others it is kept independent of the windowing semantics like
in Saber [6]. In Gasser we adopt a notion of partially
overlapped (sliding) batches. In the GPU offloading mode,
each replica continuously buffers the tuples needed to execute
several consecutive windows of the stream. We denote by
Bw > 0 a configuration parameter of Gasser corresponding
to the number of windows per batch (called batch length).
Figure 2 showsmicrobatches (hereinafter batches for brevity)
of Bw = 3 windows each with w = 4 tuples that slides
every s = 1 tuple. The number of tuples in a batch (called
batch size) is wb = (Bw − 1) · s+ w and the batched sliding
factor is sb = Bw · s tuples. Batches are like macro windows
of wb tuples that slide every sb tuples. Differently from past
approaches [3], [6], in our batching scheme each window
is fully contained within a batch, a condition allowing any
generic non-incremental algorithm to be used with Gasser.

FIGURE 2. Micro-batching with Bw = 3 and count-based windows of
length w = 4 and slide s = 1 tuples.

Batches are logically assigned to the replicas in a round-
robin fashion. In the figure, the first replica receives all the
tuples of the first batch (tuples 0− 5) while the second batch
is assigned to the second replica (tuples 3 − 8). The three
tuples shared in both the batches (tuples 3− 5) are multicas-
ted to both the replicas. Algorithm 1 shows the pseudocode
executed by the distributor at each new tuple arrival. The algo-
rithm extracts the identifier of the tuple t and calculates the
range of identifiers [first . . last] of the batches containing that
tuple. Then, t is transmitted to the replicas whose identifier
is in the set Ddst , i.e. those replicas assigned to at least one
batch in the range [first . . last]. The case with Bw = 1 is a
special one, where batching is not applied and single windows
are assigned to the replicas (it is used when replicas directly
compute windows on the CPU).

Algorithm 1 Batched routing strategy of the Distributor
1: procedure routingTuple(t) F t is a new input tuple
2: if id(t) < wb then F id(t) extracts the identifier of t
3: first ← 0
4: else
5: first ← d(eid(t)+ 1− wb)/sb
6: last ← d(eid(t)+ 1)/sb − 1
7: Ddst ← ∅
8: for j← first to last do
9: Ddst ← Ddst ∪ {j mod n}
10: for each r ∈ Ddst do
11: send t to replica r

This micro-batching technique was used in the past to
reduce the replication of tuples among replicas [20]. In this
work we use it with two goals: i) amortize the cost of host-
to-device data transfers; ii) find enough parallelism to exploit
GPU for non-incremental queries.

B. INTER-WINDOW PARALLELISM ON GPU
Each thread executing an operator’s replica in Gasser con-
tinuously buffers input tuples, prepares its batches by per-
forming some pre-processing tasks (e.g., projection, data
conversion) and then offloads the processing on the GPU
by launching a Cuda kernel per batch. The Cuda kernel
leverages the GPU parallelism degree by running the non-
incremental function in parallel on each window within the
batch. Figure 3 sketches the general idea. Several variants of
the kernel exist and can be configured by the user. Specifi-
cally, the kernel has different options in terms of data layout
and batch processing modalities. To increase parallelism,

48756 VOLUME 7, 2019



T. De Matteis et al.: GASSER: An Auto-Tunable System for General Sliding-Window Streaming Operators on GPUs

FIGURE 3. Cuda kernel running over the windows in a batch. Case with
Bw = 4 windows per batch.

each replica thread on the CPU has at least one dedicated
Cuda stream to offload the processing of the batches on the
GPU. A Cuda stream object allows a sequence of operations
(e.g., copy requests, kernel executions) to be offloaded on
the device in a specific order. Having more than one Cuda
stream, at least one per replica, allows kernels and copy
transfers to be performed by the device in parallel.

DATA LAYOUT. A batch is represented on the GPU as a
flat array Bin of wb tuples. Gasser supports either a row-
oriented layout with tuples stored contiguously, or a column-
oriented layout where Bin is actually composed of separated
arrays each storing the same attribute of the tuples in con-
tiguous memory. Once the kernel is launched, Bin is used in
read-only mode and the results are written in an array Bout
of Bw results on the device. In the default setting, Gasser
uses a plain copy approach. Each replica has k > 0 Cuda
streams and pairs (Bin, Bout ) used in a circular manner. When
a batch b is ready, the replica starts asynchronously the data
transfer and the kernel on one of the Cuda streams using a
pair (Bin, Bout ). The batch is copied from scratch from the
CPU to theGPU and, depending on theGPU features, the data
transfer and the kernel on the next batch b′ launched by the
same replica will use a different stream and pair of arrays and
can be overlapped with the kernel working on b.
Some of the tuples in the batch b′ could have been already

copied on the GPU if they took part of the previous batch
b. They are exactly wb − sb · n tuples. To leverage this data
sharing, Gasser can be configured to use an incremental
copy, where each replica works with one (Bin, Bout ) pair and
Cuda stream, and the new tuples of b′ are copied in the
same Bin by overwriting the oldest sb · n ones. However,
this requires a synchronous execution of the kernels launched
by the same replica, and a more complex processing since
some windows may have a wrap around representation in the
batch, with some of their tuples stored at the end and others
at the beginning of Bin. Since this may nullify the advantage
of copying less data, the plain copy semantics is the default
option adopted by Gasser.

MICRO-BATCH PROCESSING. The kernel is organized
as a 1D grid of Bw Cuda threads, thus it is essential to chose
the Bw value properly in order to exploit the full potential
of the GPU. Based on the current GPUs trend, the batch

length should be in the order of hundreds or thousands of
windows. The configuration in terms of threads per block will
be discussed in Section V.

As depicted in Figure 3, all the Cuda threads execute the
very same code (the non-incremental query function) in par-
allel on the partially overlapped data segments corresponding
to the windows to compute. The data layout guarantees that:
i) the tuples (or their attributes) are stored contiguously,
ii) the starting tuples of two consecutive windows are very
close to each other since the stride is proportional to the
sliding parameter s, which is of few items in scenarios where
windows trigger very frequently (the ones for which GPU
processing is expected to be beneficial). If the most conve-
nient layout is chosen for the batch (e.g., column-oriented
with aligned data), and if the function has a sequential
access pattern on the window data, requests issued to the
global memory by sibling threads can be grouped into single
requests to save memory bandwidth.

C. GASSER API
In this part, we introduce how to use Gasser in the con-
text of the FastFlow parallel programming framework [19]
written in C++. A FastFlow application is essentially
a pipeline of streaming operators exchanging data items.
Operators are implemented by extending the ff_node_t
template class. Each operator executes a processing function
every new data item, which is implemented by overwriting
the svc() virtual method of the base class. To efficiently
exchange data items, the run-time system adopts lock-free
queues [21] used to exchange pointers to heap-allocated data
structures. The data exchange is fully transparent to the high-
level programmer, e.g., the pointer to the returned value of the
svc() method is automatically pushed into the input queue
used by the next operator in the pipeline.

Listing 2 shows an example of Gasser usage. At line 15,
aFastFlow application consists of a pipeline (object of type
ff_Pipe) of four operators: a generator in charge of produc-
ing data items (e.g., by reading a file or a socket), a stateless
operator in charge of applying a one-to-one transformation on
each input item, a Gasser operator of name winOp and a
sink. The instancewinOp is created at line 13 by providing as
input arguments to its constructor the function to be executed
per window (created as a host/device lambda at line 9) and by
providing the basic parameters of sliding windows (i.e. length
and slide). Not shown in the code snippet for the sake of
space, the constructor may receive additional arguments such
as a pre-processing function, to be executed per window in
order to prepare the data (e.g., by projecting only the needed
attributes and/or using a column-oriented representation of
input data), and a post-processing function. By using such
triple of pre-/compute/post- processing functions, the user
can isolate the execution part that is more suitable to be
offloaded on the GPU with full control on the data layout to
be used.

Finally, in the example the application is run syn-
chronously with respect to the main process by spawning a
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Listing 2. Example of instantiation of a Gasser operator in a FastFlow
application.

pool of threads (line 16). Automatically, the Gasser opera-
tor starts its calibration phase (described in the next Section)
to choose the right configuration to use.

IV. AUTO-TUNING APPROACH
Gasser executes the non-incremental function in parallel on
different windows either on the CPU cores, or can leverage
the offloading on the GPU to exploit further parallelism.
In the first case, it can run with nmax > 0 different configura-
tions, equal to the maximum number of replica threads (this
depends on the number of available CPU cores). In the second
case, the space of configurations also includes the batch
length with its possible values Bw > 0.

Since the space of the feasible configurations C can be
potentially large by preventing an efficient manual tuning
by the user, Gasser is provided with an auto-tuning sup-
port1 able to automatically find the best configuration. Since
Gasser works under unknown conditions related to the
arrival rate from the input stream and the computational
features of the non-incremental function, this support has a
double valence:
• it is used to understand whether the offloading on the
GPU is really effective and to avoid using the GPU
if it does not help in achieving the highest throughput
(e.g., if the non-incremental function has too low warp
efficiency if executed in parallel on the Cuda cores);

• the auto-tuning support is in charge of finding the best
pair < n,Bw > optimizing throughput, where Bw > 1
has sense only for configurations that offload the query
processing on the GPU.

As hinted in Section II-C, we assume a stationary workload
(whose mean value does not change in time) and we apply
a calibration phase during the initial part of the execution.

1The basic idea of our auto-tuning support is based on our prior experience
with Nornir: http://danieledesensi.github.io/nornir/

During this phase, the auto-tuning support tries a small set
of possible configurations for a short time, by recording
the achieved throughput for each of them, and predicts the
performance of the untried configurations once the model
becomes sufficiently accurate. Then, it configures the system
with the optimal configuration for the rest of the execution.

In the rest of this section, we will focus on the two
fundamental points to achieve this behavior: first we need
mechanisms to change the configuration during the system
execution, second we need a strategy able to decide which
configurations to try and how the outcome of the untried ones
can be predicted with good accuracy.

A. CALIBRATION MECHANISMS
During the calibration, the auto-tuning support seamlessly
changes the current configuration several times without
blocking the processing. We will focus separately on mecha-
nisms to change the number of replicas and the batch length.
In the ensuing discussion, we refer to the general case where
a configuration consists of a concurrency level and a chosen
batch length. For CPU-only configurations, the batch length
is always equal to 1, which represents a special case.

1) CHANGING THE CONCURRENCY LEVEL
Suppose that the auto-tuning support changes the number
of replicas from n to n. This requires different steps: i) the
distributor must assign batches to n replicas instead of n; ii)
the replicas must be informed in order to do correctly the
removal of the old tuples. Given a reconfiguration, we iden-
tify a special tuple defined as follows:
Definition 1 (Reconfiguration tuple): Let a reconfigura-

tion r occur at time instant τr . The reconfiguration tuple tr
is the last tuple arrived before time instant τr .

In general, it is not possible to immediately change the
distribution from the next tuple seen after tr because there
exist a number of batches that include the tuple tr but are
not complete yet, and the distribution must guarantee that
the replicas that were already assigned to those batches will
receive all the tuples to complete them. We present two
different techniques: the first (soft reconfiguration) delays
the application of the configuration change in order to avoid
replaying any input tuple of the stream; the second (hard
reconfiguration) anticipates the change at the expense of
replaying some tuples that are needed for the correct process-
ing by the replicas. In this part we describe the behavior of the
two approaches while an experimental comparison of their
efficiency will be proposed in Section V.

SOFT RECONFIGURATION. The soft reconfiguration
consists of three phases starting from the reconfiguration time
instant to when the new distribution is fully in operation.
In the first phase, the old distribution is still used to assign
the batches to the replicas. In the second phase, both the
distributions are used in a mixed mode, i.e. the old one is
used to assign to the replicas the batches older than a specific
switch batch, while newer batches are assigned using the new
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FIGURE 4. Toy example of a soft reconfiguration: the number of replicas
is increased by one after tuple 5.

distribution. In the last phase, only the new distribution is
used and the reconfiguration is complete.

We show a toy example in Figure 4. We assume w = 5
and s = 1 with Bw = 2, which reflects in batches of
wb = 6 tuples that slide every sb = 2 tuples. We suppose
that before the reconfiguration, n is equal to 2 and then the
auto-tuning support decides to add a replica after the arrival of
tuple 5.

Batches are assigned to the two replicas in a circular man-
ner. At the time instant of the requested change, three batches
are open—B0, B1, B2. However, the reconfiguration cannot
be applied from the next batch B3 because, according to the
old modulo n = 2 distribution, this batch should be assigned
to the second replica R1 while with modulo n = 3 it should
be assigned to the first replicaR0. In the soft reconfiguration
approach, we look for a way to make the two scheduling
policies of batches compatible, thus we need to still assign B3
to R1 and to find a seamless way to change the distribution
and start using the additional replica. To this end, we define
the following notion of switch tuple:
Definition 2 (Switch tuple): The switch tuple tsw is the

first tuple received after tr (included) that opens a batch
assigned to the first replica R0 with both the old (modulo n)
and the new (modulo n) distribution policy.
The switch tuple can be found by applying expression (1)

where id(t) denotes the unique identifier of tuple t and LCM
is the least common multiple of two integer numbers:

id(tsw) =
⌈

id(tr )
LCM(n, n) · sb

⌉
· LCM(n, n) · sb (1)

The first batch containing tsw is called switch batch.
In the example, the switch tuple is tuple 12 that starts

the batch B6 (6 mod 2 = 6 mod 3 = 0). During the
time period between the reconfiguration tuple and the switch
tuple, all the batches are assigned using the old modulo

n distribution. When the system receives the switch tuple,
it enters in a transitory phase where tuples must be routed
to the replicas (line 9 in Algorithm 1) by remembering that
the batches with identifier smaller than 6 are assigned to the
replicas usingmodulo n = 2, while the batches with identifier
greater or equal than 6 are assigned using modulo n = 3. For
example, tuple 13 belongs to batches: B4 assigned toR0 with
the old distribution, B5 assigned to R1 with the old distribu-
tion, and B6 assigned to R2 with the old/new distribution. In
all cases, the system knows when this transitory phase ends:
Definition 3 (Safe tuple): The safe tuple tsf is the first

tuple after the switch tuple whose batches are assigned to the
replicas using the modulo n operation only.
The safe tuple in the example is tuple 16 and in general it

is computed as follows:

id(tsf ) = id(tsw)+ wb − sb (2)

When the system receives the safe tuple, it starts using
the new distribution only. Furthermore, in order to make the
replicas able to do the removal of the old tuples correctly,
a special message is sent to all the replicas immediately after
the arrival of tsf , in order to inform them that every time their
batch slides the oldest sb · n tuples must be deleted (instead
of sb · n). In the example of the figure, this changes from 4 to
6 tuples.

The same reasoning can be generalized to different cases
such as when n < n (a decrease in the concurrency level)
or for any increase/decrease of any size. One of the merits
of this solution is that tuples do not need to be replayed
by the distribution entity. However, the approach delays the
completion of the reconfiguration until a safe point is found,
and this may imply to receive a long sequence of tuples before
completing the change:
Definition 4 (Reconfiguration extent): The extent Lr >

0 of a reconfiguration r is the number of tuples received
from the reconfiguration tuple (included) to the safe tuple
(excluded).
Proposition 1: An upper bound to the size of the reconfig-

uration extent with the soft approach isLr ≤ LCM(n, n)·sb+
wb − sb.

Proof: The number of tuples from the reconfiguration
one (included) to the safe tuple (excluded) is Lr = id(tsf )−
id(tr ). This can be written as:

Lr = id(tsw)+ wb − sb − id(tr )

where id(tsw) is obtained by (1). We observe that for any pair
of positive numbers x, y the inequality dx/ye·y ≤ x+y holds.
Therefore, we can write:

Lr ≤ id(tr )+ LCM(n, n) · sb + wb − sb − id(tr )

= LCM(n, n) · sb + wb − sb

Since this upper bound is proportional to the LCMbetween
the old and the new concurrency level, the number of tuples to
process before completing the reconfiguration may be large
and thus the reconfiguration delay.
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HARD RECONFIGURATION. Making compatible the
two round-robin assignments of batches to the replicas is not
strictly necessary if the protocol is made a little bit more
complex and anticipates the configuration change. In the hard
approach we recognize two phases: in the first one the old
distribution is still used to assign batches, while in the second
phase we abruptly change to the new assignment policy.
To identify correctly the new safe tuple, we redefine the
switch tuple for the hard approach as follows:
Definition 5 (Switch tuple): The switch tuple tsw is the

first tuple received after tr (included) that according to the
previous assignment policy (modulo n) is the first of the next
batch assigned toR0.
This tuple can be found using a different expression with
respect to (1):

id(tsw) =
⌈
id(tr )
n · sb

⌉
· n · sb (3)

The safe tuple tsf is defined as in (2). During the time
interval between tr and tsf the distributor uses the old assign-
ment policy only (modulo n). When the system receives tsf ,
and before distributing it to the replicas, some actions are
executed:

• the distributor entity sends a special message to all the
replicas that throw away all their buffered tuples. The
replicas are made aware that every time one of their
batches slides, the sb · n oldest tuples must be removed;

• the distributor/replicas renumber the batches, i.e. the
batch started by the safe tuple tsf will be the new batch
B0;

• the distributor entity replays all the tuples from tsw
(included) to tsf , and such tuples are distributed based
on the new batch numbering using modulo n.

Figure 5 shows this idea applied to the toy example. The
switch tuple is tuple 8 and tsf is tuple 12. At the arrival of the
safe tuple, the first four batches (B0 − B3) have already been
completed by R0 and R1. The special message sent by the
distributor entity forces the two replicas to throw away tuples
8−11 (byR0) and tuples 10−11 (byR1). Then, the batches
are renumbered: i.e. batch B4 becomes B0, B5 becomes B1
and so forth. In this example, we replay the tuples to the
same replicas to which they were sent before (e.g., tuples 8-
11 toR0). However, this is a particular case and tuples might
be replayed to different replicas with respect to the previous
distribution.

This approach allows the system to reduce the size of
the reconfiguration extent which, in the hard approach, also
includes the replayed tuples received between tsw and tsf .
Proposition 2: An upper bound to the size of the reconfig-

uration extent with the hard approach isLr ≤ sb(n−2)+2wb.

The proof follows the same reasoning of the one for Propo-
sition 1. As intuitive, the upper bound is no longer propor-
tional to the LCM between n and n but depends on the old
concurrency level n and the batch length Bw only.

FIGURE 5. Toy example of a hard reconfiguration: number of replicas
increased by one after the arrival of tuple 5.

2) CHANGING THE MICRO-BATCH LENGTH
The auto-tuning support can change the number of windows
per batch from a value Bw to a new one Bw. This reflects
in a different wb and sb to be used. We have designed a
soft and a hard reconfiguration approach following the same
reasoning we presented before. In the implementation of
the soft approach, the switch tuple is the first one after the
reconfiguration tuple that, with both the old and the new batch
length, open a batch assigned to the first replica R0. We can
note that this tuple may be very far ahead since its identifier is
proportional to LCM(Bw,Bw). Instead, in the hard approach,
the switch tuple is still computed using (3), where sb is the
batched sliding parameter with the old batch length Bw. The
special message, sent to all the replicas before the safe tuple,
will include the new batch size wb and the value sb ·n used by
the replicas to correctly remove the old tuples. The number of
replayed tuples is stillwb−sb. Referring to Figure 5, a change
from Bw = 2 to Bw = 3 (without changing the replicas, i.e.
n = 2) translates into a new batch size of wb = 7 tuples with
sb = 3 tuples. After the replay of tuples 8 − 11, R0 is in
charge of computing the renumbered batch B0 (old B4) of 7
tuples.

It is worth noting that the hard approach, besides likely
having a smaller reconfiguration extent, it is also more flex-
ible. Indeed, it allows changing both the parameters together
(i.e. the batch length and the concurrency level) since the
switch tuple and the tuples to be replayed depend only on
the configuration before the switching (current n and Bw).
This is important in our calibration approach, since we are
able to switch from a configuration to any other one in a
singe step instead of splitting the change into two different
reconfigurations (for the batch length first and then for the
concurrency level, or vice-versa).

B. CALIBRATION STRATEGIES
The calibration strategy applies the mechanisms described
before to try a small subset of configurations and then to
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predict the best configuration to choose for the rest of the
execution by building a prediction model. This is performed
by an active entity called autotuner, a thread on the CPU that
chooses the configurations to be tried, receives measurements
from the collector and updates the model. The autotuner
applies the strategy in two phases:
• CPU calibration: to find the best CPU-only configu-
ration where the concurrency level is changed during
the calibration phase. The autotuner remembers the best
throughput achieved by using only the CPU;

• GPU calibration: to find the best GPU configuration
by exploring a larger space of possible configurations
where, in addition to the concurrency level, also the
batch length is chosen in a set of discrete possible values.

Then, the autotuner applies for the rest of the execution the
best configuration found among the two phases above, thus
avoiding using the GPU if it is not protifable for improving
throughput with the given query and data stream features.

In this part, wewill study how to build the predictionmodel
and what are the two strategies that are currently supported by
Gasser. Although they can be used both in the CPU calibra-
tion and GPU calibration phases, in the following we mainly
refer to the GPU calibration where both the concurrency level
and the batch length can be changed.

1) STATISTICAL INTERPOLATION
A configuration can be represented as a point in the space
(unidimensional during the CPU calibration, or a point in a
two-dimensional space during the GPU calibration). Our goal
is to collect the actual performance associated with some of
these points, and to predict the outcome of the other points by
interpolating the collected measurements.

In doing our interpolation, we would like to choose points
that are equally distributed over the space. Indeed, if we
collect data from two close configurations, it is likely that
they behave similarly. Therefore, the second point is not
adding any useful information. For this reason, we use a
low discrepancy generator [22] (known as quasi-random)
to decide which configurations to test. Such generators are
deterministic and cover the domainmore evenly than standard
pseudo-random generators.

To interpolate scattered data over an unstructured grid we
used a bary-centric approach, which relies on the Delaunay
triangulation.2 Before performing the interpolation, the per-
formance measurements of the configurations at the four
edges of the grid need to be collected, i.e. with the smallest
and the largest batch length and concurrency level. For this
reason, these will be the first four configurations tried by any
calibration strategy.

2) BASIC STRATEGY
In the basic strategy the autotuner can be in either of two
mutually exclusive states: 1) exploration state: the next con-

2We used the source code provided by http://rncarpio.github.
io/delaunay_linterp/

TABLE 1. Subroutines used by Algorithm 2.

figuration in the low discrepancy ordering is chosen and
applied. Once the throughput is stable, the autotuner uses the
measured throughput to refine the interpolation by updating
the predictionmodel; 2) targeting state: the autotuner chooses
a configuration that, according to the predictionmodel, is able
to provide the optimal throughput (in results/sec). In case
more than one optimal configuration exists, the autotuner
chooses the one with the smallest number of replicas or
shorter batch length. The optimal throughput is the highest
one theoretically produced by the system and defined as
follows:
Definition 6 (Optimal throughput): The optimal query

throughput, expressed in number of windows processed
per second, is equal to T opt

= λ/s, with s > 0 the sliding
parameter of the sliding-window query and λ > 0 the input
rate.

The pseudo-code, shown in Algorithm 2 and Table 1,
is continously executed by the auto-tuner thread. In the pseu-
docode, we use c to denote a generic configuration (< n >
during the CPU calibration, < n,Bw > in the GPU calibra-
tion). The autotuner starts in the exploration state and runs
the first I ≥ 4 configurations, where I is a configurable
parameter, collects their performance results and updates the
model. Then, it uses the model built so far to look for a
configuration achieving T opt (line 19). If this does not exist,
the system tries other tstep > 0 configurations and updates the
model again. If the prediction model returns a configuration
that is expected to achieve the optimal throughput, the system
enters the targeting phase and the configuration is applied
to the system. If its real measured throughput is not the
optimal one, the autotuner goes back to the exploration phase
(lines 13-16) and restarts the reasoning by trying other tstep >
0 configurations to refine the model.

The strategy has three main issues that must be carefully
considered and solved in Gasser. A first problem is that
once a configuration is applied, the system may need a
variable amount of time to reach a stable throughput. Our
solution to this problem consists of mesuring after the recon-
figuration completion the real throughput level every second
and maintaining a history of the last measures (few seconds
are sufficient in practice). Once the coefficient of variation
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Algorithm 2 Basic strategy of the Autotuner

1: c← cinit F initial configuration
2: cnt ← I
3: apply_configuration(c)
4: targeting← false
5: for i← 1 to |C| − 1 do
6: F Wait until throughput is stable
7: thr ← rcv_throughput()
8: if !targeting then F exploration state
9: update_interpolation(c, thr)
10: else F targeting state
11: if thr ≈ T opt then
12: break
13: else
14: cnt ← cnt + tstep
15: targeting← false
16: update_interpolation(c, thr)
17: F Find optimal configuration
18: if i == cnt then
19: copt ← find_optimal()
20: if copt 6= nil then F found: apply it!
21: targeting← true
22: apply_configuration(copt )
23: else F Not found, continue
24: cnt ← cnt + tstep
25: if !targeting then F get the next configuration
26: cnext ← get_next_conf()
27: apply_configuration(cnext )
28: i← i+ 1

among the recent measures is below a threshold (by default
of 5%), the throughput is considered stable and its average
value is transmitted to the autotuner (line 7).

Another problem is that sometimes the measured through-
put can be higher than the optimal one. This may happen
when the system is run with a bottleneck configuration for a
while, and then a fast configuration is chosen by the strategy.
In that case, it is possible to measure a higher throughput
because the system drains all the enqueued tuples received
when it was a bottleneck. To avoid such spurious measures,
the autotuner caps them to the estimated T opt value obtained
by measuring periodically the average input rate received by
the system.

The last issue is related to the calibration time. When the
system is a bottleneck with all the possible configurations,
the strategy tries other tstep configurations each time ending
up in a useless exhaustive search. To limit the duration of
the calibration, the autotuner stops the exploration phase if
the prediction error is lower than a threshold (by default
5%). If the errors are uniformly distributed, the prediction
model is already accurate and no optimal configuration exists.
This condition practically holds in all the experiments we
developed to test Gasser.

3) RAINDROP-BASED STRATEGY
The previous strategy has a potential pitfall: once a config-
uration reaching T opt is found, the system remains in that
configuration although the prediction errors might hide other

FIGURE 6. Raindrop strategy: fine movements to reach a better optimal
configuration, where (i, j ) is a configuration using i replicas and the j-th
available batch length.

still optimal configurations using a less number of replicas
(thus reducing the use of processors’ cycles) or with a smaller
batch length (useful to reduce latency).

To refine the strategy our idea is based on a raindrop
method: when a raindrop falls on the ground, it flows from
higher spots to lower ones due to gravity while choosing an
optimum path towards a reachable lower point on the ground.
To describe this analogy, we refer to the GPU calibration
phase, where the space of all the feasible configurations can
be represented as a matrix of points. Suppose that at the end
of the targeting state the configuration (i, j) is chosen and
used by the system (Figure 6). The autotuner analyzes the
predicted outcomes of the configurations within a square sub-
matrix of order Z whose top-right corner is (i, j). In the exam-
ple we consider a 2 × 2 sub-matrix. The figure shows with
a gray-scale the predicted throughput of each configuration,
where the darker the worse.

In top-left hand side of the figure, all the configurations
in the sub-matrix except (i, j) are not optimal. However,
the throughput predicted for (i−1, j) is slightly lower than the
optimal one suggesting that the prediction error could hide
an optimal configuration using fewer replicas. Therefore,
the autotuner tries configuration (i − 1, j) and collects its
real throughput. In the example this movement was effective:
configuration (i − 1, j) actually reaches T opt (see the top-
right hand side of the figure) and the measure is used to
update the prediction model. The reasoning is iterated until
the movement is not effective (the measured throughput is
sub-optimal) and the autotuner backtracks to the last optimal
configuration found. This is what happened in the example,
with (i − 2, j − 1) the final configuration. This behavior is
described in Algorithm 3, where ccurr is initialized with the
final configuration found by the basic strategy and the sub-
routine explore_neighborhood() explores the Z × Z
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TABLE 2. Non-incremental queries used in the Gasser experimental evaluation.

submatrix to look for a possible movement in the gradient
descendent direction in our 2D space that still maintains an
optimal throughput but with fewer replicas and/or a smaller
batch (depending on the user’s preference).

Algorithm 3 Raindrop-Based Refined Strategy
1: end ← false
2: cold ← ccurr

3: while !end do
4: cnew← explore_neighborhood(ccurr , Z )
5: if cnew 6= nil then
6: cold ← ccurr

7: ccurr ← cnew

8: apply_configuration(ccurr )
9: thr ← rcv_throughput()
10: update_interpolation(ccurr , thr)
11: if thr 6≈ T opt then F backtrack
12: apply_configuration(cold )
13: end ← true
14: else
15: end ← true

At line 4 the algorithm searches in the Z × Z sub-matrix
a candidate configuration to be tried. In general, Z should
be small although this may require a longer path to reach
the final configuration (the default value is Z = 2), and
the candidate configuration is chosen as the one with the
higher predicted throughput in the sub-matrix. Of course,
due to the heuristics nature of the strategy, there could be
unlucky cases where a better configuration is not reached.
However, as shown in the experiments, this strategy allows
Gasser to reach a minimal configuration in almost all the
studied cases and with a short calibration time. In conclusion,
we observe that one could use the raindrop strategy only (or
any kind of gradient descent technique). However, having
a first phase based on online learning allows us to find a
maximum throughput configuration as soon as possible, and
then to refine it successively with the raindrop strategy.

V. EVALUATION
The evaluation3 is organized in twomain parts. First, we show
thatGasser is able to effectively accelerate non-incremental

3The Gasser source code is freely available in GitHub:
https://github.com/ParaGroup/GASSER/.

queries on GPUs, by outperforming the peak throughput
achieved by using only CPUs for the processing. In this part,
we also evaluate the cost of the generality of our blackbox
model, which is expected to be less optimized for incremen-
tal queries than existing counterparts. In the second part,
we show the accuracy of the auto-tuning model and we
analyze in detail the two auto-tuning strategies discussed in
Section IV-B and the hard/soft reconfiguration protocols.

Themotivation of this work is to give GPU support for gen-
eral non-incremental queries. In our evaluation, we choose
two algorithms widely used in ML/Data Mining problems:
a polynomial regression and a partitional clustering algo-
rithm. They have a different arithmetic floating-point inten-
sity (higher in the first query) while the iterative nature of
the second query may generate a slight thread unbalancing
among Cuda cores. So, they form an interesting testbed to
assess the potential of our system. Table 2 gives more details
by showing a possible application scenario for each query.
All the experimental measures are obtained by running each
experiment at least five times and collecting the average
values. The standard deviation is always negligible, thus we
omit to show error bars in the plots.

EXPERIMENTAL SETUP. The machine is a dual-CPU
Intel Sandy-Bridge Xeon equipped with 16 cores operating
at 2GHz. Each core has an L1 (32KB) and an L2 (256KB)
cache. Each CPU has a L3 cache of 20MB. The machine has
32GB of RAM. The GPU, connected via PCI-e bus, is an
NVIDIA K40m with 12GB of RAM and 2880 Cuda cores
organized in 15 Streaming Multi-processors of Cuda 192
Cuda cores each. We use gcc compiler version 4.8.1,
Cuda 8.0 and we turn on all the compiler optimizations
(-O3 flag). Given the features of our GPUmodel, each kernel
is composed of Bw/384 blocks, each one having 384 threads
(two threads are executed per Cuda core of a Streaming
Multi-processor to mask memory access latencies). For this
reason, in the followingwe always use a batch lengthmultiple
of 384 windows: we will consider 15 different batch lengths
(i · 384 with i = 1..15) and 10 different concurrency levels
for a total of 150 configurations (some cores on the CPU are
used to execute other Gasser functionalities, like the stream
generator and the distributor/collector threads). Furthermore,
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Gasser is configured to use the plain copy approach (see
Section III-B) which always gave better results in our exper-
iments.

A. PERFORMANCE ANALYSIS
We assess when and howmuch the use of a GPU is convenient
with respect to CPU-only counterparts. The GPU starts to be
profitable if the ratio between the computation time of the
window function over the time interval between two consecu-
tive window activations is high. In those cases, batching input
tuples for a short time allows gathering a large parallelism
suitable for the GPU and useful to increase throughput if
windows become ready to be processed faster than the rate
at which they are processed by the CPU cores.

For the comparison, we use two different CPU baselines.
The first is Gasser configured for using only the CPU.
The second baseline is written using Apache Flink (version
1.7.1), a SPS providing good performance and generally
considered better than Apache Storm [26]. The Flink
implementation is based on the use of a flatmap operator
in charge of adding to each input tuple the identifier of the
corresponding windows in order to perform the distribution
to different replicas (sub-tasks in the Flink jargon) of the
window-based operator. In this way, different complete win-
dows are executed in parallel on the CPU cores by the Flink
run-time system. The query definition is provided using the
non-incremental API, see Listing 1.

SUSTAINABLE INPUT RATE. Our first goal is to find
the highest sustainable input rate. This limit is observed by
measuring the throughput provided by the system fed by a
stream with a very high rate. Then, the throughput is mul-
tiplied by the sliding factor to derive the sustainable input
rate. Figures 7a and 7b show the results for the first and
the second query. We tested various pairs (w, s) to study their
impact. The best configurations found are reported in Table 3.
As it is evident, Gasser and its offloading on a GPU device
allows sustaining significantly higher input rates in all the
tried scenarios. In the best case, the improvement with respect
to using the CPU only is more than 10× while in the worst
case it is of 2×. Complete results are in Table 3. The gain
with respect to Flink (configured to use all the cores of the
CPUs) is larger (from 7× to 66×), and this depends also on
a completely different run-time system (Flink is written in
Java/Scala and has additional features like reliability to faults
not covered by our system yet).

In general, smaller values of the slide parameter mean a
more frequent window activation. This is the reason for the
higher gain obtained by using smaller slides, because batches
become ready to be processedmore frequently and theGPU is
better utilized. Table 3 reports the best configurations (n,Bw)
found.

While a large batch is important to maximize throughput,
it negatively impacts the processing latency, i.e. the time
between the instant when the triggering tuple of the window
is produced by the stream’s source to when the corresponding

FIGURE 7. Maximum input rate (tuples/sec): comparison between
Gasser (CPU-only and GPU) and Apache Flink with Q1 (a) and Q2 (b).

FIGURE 8. Processing latency per window: comparison between Gasser
(CPU-only and GPU) and Apache Flink with Q1.

TABLE 3. Best configurations for each test case. G1 and G2 denote the
gain with respect to Gasser (CPU only) and Flink.

output result is delivered out from Gasser. Figure 8 shows
an experiment with Q1. The slide is set to 25 tuples while
we study different window and batch lengths. In this test,
the input rate is chosen in order to be sure that the system is
not a bottleneck in all the configurations with and without the
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use of the GPU, in order to prevent the latency from growing
without limits during execution.

The results show that when the CPU version sustains the
input rate, it is able to provide lower latency since it does
not apply any batching. Furthermore, the latency on the GPU
increases quickly with longer batches, which should thus be
used only when this is strictly required to sustain the input
pressure and the frequency of window activations. However,
we point out that the latency provided by a popular SPS
like Flink is at least comparable with the one achieved by
Gasser with a properly sized batch length, and at least two
orders of magnitude greater than Gasser on the CPU only.

BREAK-EVEN POINT ANALYSIS. We want to evaluate
how much frequent the windows should trigger to justify
the need of using a GPU. To do that, we consider a test
with a stream of 1M tuples/sec and three different window
lengths ofw = {25K , 50K , 100K } tuples.We vary the sliding
factor: the smaller the slide the more frequent the windows.
The break-even point is defined as the value of the sliding
factor from which the CPU baseline has the performance of
Gasser.
Figure 9a shows the results for query Q1. We measure the

GPU speedup, i.e. the ratio of the best throughput obtained
by Gasser to the one of the CPU baseline. For query Q1,
the processing time per window is of some milliseconds with
w = 100K tuples. The break-even point (i.e. GPU speedup
equal to 1) occurs for slides around 1/100th of the window
length (e.g., s = 500 with w = 50K ). Figure 9b shows the
results with Q2, which is more compute-intensive with 22.4
milliseconds to compute a window of w = 100K tuples. The
break-even point occurs for larger slides, i.e. thousands of
tuples (s = 2, 500 with w = 25K ). In general, it occurs
at 1/10th of the window length which, in this experiment,
corresponds to windows triggering every few milliseconds.
In those scenarios, the use of GPU contributes to increase
throughput and the best GPU configuration is chosen by the
auto-tuning support. Otherwise, in the less computationally-
demanding scenarios (e.g., with longer slides), the GPU
device is not used after the calibration.

PROFILINGRESULTS. To understand how Gasser uses
the GPU in streaming scenarios, we have collected some
measures using nvprof, a command-line NVIDIA profiler.
Figure 10 shows the results with a use case of the first
query Q1 with sliding windows of w = 25K and s = 25.
Qualitatively similar results can be achieved for the second
query, not shown for brevity. The GPU occupancy (top-left
plot) increases by using larger batches and so when more
blocks are assigned to the Stream Multi-Processors of the
GPU. However, higher occupancy does not automatically
mean higher performance. Since we work on a streaming
basis, greater batches need longer time to be entirely buffered,
and such buffering can be useless if we have already reached
the optimal throughput. In the bottom-left figure, the through-
put (normalized) no longer increases with batches greater
than 12 blocks, while Gasser is a bottleneck for smaller

FIGURE 9. Break-even point analysis by varying the sliding factor with
different window lengths: queries Q1 (a) and Q2 (b). GPU speedup is
reported in logarithmic scale.

batches. Furthermore, as already discussed before, longer
batches have negative effect on latency (top-right figure).

We report in bottom-right part, the warp execution effi-
ciencymetric, proportional to the probability of not-divergent
branches (the higher the better). As hinted before, the second
query is less efficient due to its iterative nature and represents
and interesting example to understand how much a GPU is
useful for queries causing a non-negligible thread divergence.
Finally, we report the fraction of time spent in the Cuda
API calls that copy batches on the device with respect to
the overall kernel execution. With high frequency streams,
relatively few new inputs need to be buffered and copied to
extract large inter-window parallelism. For both the queries,
the overhead of such calls is negligible (slightly higher for the
first query, which is more fine grained).

B. PENALTY OF THE NON-INCREMENTAL APPROACH
Gasser targets non-incremental queries (e.g., see Listing 1).
This generality in being able to use any offline algorithm
for streaming cases is paid by recomputing each window
from scratch. In this part, we want to evaluate the overhead
paid by our approach compared with a system supporting
only incremental queries and thus optimized for running them
efficiently. Figure 11 reproduces the results described in [6]
for Saber, where we use a simple incremental query that
computes the average (AVG) of all the tuples within a window
computed on a per-attribute basis. The query can be easily
decomposed in two parts by calculating the SUM query and
then dividing the value for the number of tuples per fragment.
Following the same memory layout described in [6], a stream
of 32-byte tuples is read at high speed from the memory
where each tuple consists of a 64-bit timestamp (not used for
the processing) and six 32-bit attributes drawn from a uniform
distribution.
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FIGURE 10. Profiling measures collected using nvprof.

FIGURE 11. Penalty of the non-incremental processing: comparison with
Saber.

We measure the throughput in MB/s, which represents the
speed at which the stream is read from the memory and all the
windows completely processed. Analogously with the exper-
iments developed by the Saber’s authors, we use windows
of 32KB (1K tuples) and we vary the sliding factor from two
tuples (64 bytes) to the whole window length (i.e. tumbling
windows). We compare the throughput provided by Gasser
against the one of Saber on our machine. Since the GPU-
only version of Saber uses only one thread on the host CPU,
to be fair we run Gasser with one replica and using large
batches (of 5, 760 consecutive windows) to fully exploit the
GPUdevice.Saber is configured in its default setting, where
batches are disjoint and of size 32, 768 tuples (1MB). Fig. 11
shows the result of this comparison.

With large sliding factors the gap between the non-
incremental processing and the incremental approach is
reduced up to 8% with tumbling windows, while it is max-
imum (49%) with a slide of 128 tuples. Indeed, with long
slides Saber works with a smaller number of larger frag-
ments and the gap is practically nullified in case of tum-
bling windows, where results are computed from scratch in
both cases. Interestingly, with very small slides Gasser
provides slightly better performance than Saber. This prob-
ably depends on the higher overhead spent in managing and
assembling a greater number of fragments.

TABLE 4. Reconfiguration extent in terms of no. of tuples from the
switching request until the reconfiguration completion.

To complete this analysis, wemention that Saber actually
supports a hybrid processing where both the CPU and GPU
resources are exploited for the processing of fragments in a
collaborative fashion. With that approach, the performance
measured by Saber are significantly greater than using only
the GPU. We do not compare directly with this support since
the Gasser model cannot split the window processing, and
CPU cores are used only for pre-processing tasks and to
offload batches onto the GPU once they have been prepared.
In conclusion, and as expected, Gasser shows to be less
efficient than existing systems for decomposable queries,
but it represents the only existing competitive solution for
using GPUs for accelerating any general algorithm applied
on sliding windows.

C. AUTO-TUNING EVALUATION
In this final part of the paper, we assess the effectiveness
of the Gasser auto-tuning support, both focusing on the
comparison between the two different implementations of our
calibration mechanisms, and by studying the behavior of the
two calibration strategies.

MECHANISMS EVALUATION. In this part, we compare
the soft and the hard reconfiguration approaches by varying
randomly the number of replicas. We executed some exper-
iments with w = 10K tuples, s = {5, 50}, input rate of
1Mt/s and we use three different Bw values. Table 4 reports
the average size of the reconfiguration extent.

The reconfiguration extent is up to one order of magni-
tude smaller with the hard approach and thus the replayed
tuples represent a small portion of the extent. This reflects
in an average delay spent to complete a reconfiguration up
to some seconds with the soft approach while the hard solu-
tion is always below one second. The advantage of the hard
solution is greater if we randomly change the batch length
(not reported for brevity). Although the system is working
during the change (i.e. the delay is not a downtime), faster
mechanisms should be preferred for a shorter calibration.
Therefore, the hard approach is the best solution in general.

STRATEGIES AT WORK. We choose two representative
scenarios of the (w, s) and (λ) parameters. In both cases,
the use of the GPU device outperforms configurations that
employ only the CPU. So, we focus on the GPU calibration
phase which is more interesting and with a larger configura-
tion space. Let T (n,Bw) be for each pair < n,Bw >∈ C the
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FIGURE 12. Behavior of the basic and raindrop-based strategies on two different scenarios for the first query Q1. The i -th batch length is equal to i · 384
windows. I and tstep are set to the default values of 5 and 2 respectively.

real throughput measured by running that configuration. This
is shown in Figure 12 as a heatmap, where darker colors are
associated with a lower measured throughput.

Figure 12(left) shows the first scenario with T increasing
by moving to the top-right corner of the domain, that is by
using the greatest batch length and the higher concurrency
level. The circle 6© indicates the configuration found by the
basic strategy, and the number in the circle (six) is the number
of configurations tried (five in the exploring phase and one in
the targeting phase). The square boxes are the configurations
visited by the raindrop-based strategy, which moves from
6© and ends up reaching 11 . The number in the box still
represents the i− th configuration visited by the strategy, e.g.,
configuration 7 is the one visited after 6©. When the strategy
tries the configuration 12 , it realizes that 12 does not give
the optimal throughput and backtracks to 11 that is the last
optimal configuration found.

The figure reports using a black line the Pareto frontier,
i.e. the set of minimal configurations achieving T opt . As we
can see, 11 is on the frontier. The same idea is shown
in Figure 12(right) for the second scenario. In this case,
the configuration in the top-right corner is sub-optimal and
the maximum is in the central part of the surface. This occurs
since using too many replicas and a very high rate the distrib-
utor D is not fast enough to efficiently distribute tuples to the
replicas. Even in this case the raindrop-based strategy selects
a configuration on the Pareto frontier.

PREDICTION ACCURACY. We run experiments of the
two queries by computing the average relative error of the
predicted throughput T̂ against the real one T . Figure 13
shows the error under six scenarios in terms of (w, s) and input
rate λ and by varying the number of tried configurations Tc
to train the model. The scenarios are chosen to cover both
shapes previously outlined. The second shape arises in the
scenarios using λ = 1.75M tuples/sec. The error is below
10% after training the model with 10 configurations. The
strategy visited only 6% of the total configuration space.

OPTIMALITY AND CALIBRATION TIME. We study
two distinct aspects for the query Q1 and Q2. We consider six
scenarios in term of (w, s) and λwhere both the two shapes of
T are tested. Wemeasure theChebyshev distance d ≥ 0 from

FIGURE 13. Relative error and no. of tried configurations.

TABLE 5. Optimality and calibration time (seconds).

the final configuration found by the strategy to the closest one
on the Pareto frontier (i.e. it is the minimum number of moves
between the two points). The smaller the distance the better is
the ability of the strategy to find an optimal configurationwith
minimum concurrency level or batch length. We observe that
the distance is sometimes not a integer because we average it
on multiple runs. Table 5 shows the results.

In all the tested cases, the raindrop-based strategy ends
up in an optimal configuration on the Pareto frontier or very
close to it. We show also the calibration timeCT , i.e. the dura-
tion of Gasser calibration. In general, few configurations
are tested (on average 5 with the basic strategy, 7 − 14 with
the refined one), and CT is in the order of tens of seconds
(at most few minutes in the worst case). This is a small
portion of the execution time for long-running applications
and definitely smaller than the time needed to exhaustively
try all the configurations, which lasts hundreds of seconds in
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the best case (e.g., it is about 800 seconds for Q1 and 3400
secs for Q2 with w = 50K and s = 100).

VI. RELATED WORK
In this section, we review the recent papers most closely
related to GPU-based supports in contexts of data stream
processing systems and applications.
Saber [6] is a GPU-based framework written in Java,

which proposes an execution model similar to Gasser.
Saber uses a notion of batch independent of the window
definition, where batches are disjoint sets of tuples and, dif-
ferently from Spark Streaming, the window length and slide
parameters may not be a multiple of the batch size. Batches
may contain fragments of different windows, and Saber
handles those fragments by computing partial results that
will be used to build results of complete windows. There-
fore, it supports only some operators and, more specifically,
relational algebra operators (e.g., aggregation and joins) and
not generic non-incremental algorithms like in Gasser.
For this reason, Gasser should be used complementary to
Saber since it is less optimized for incremental queries but
extends the processing on GPU for queries not supported by
Saber. The same batching approach is also adopted with
the bucket operator in [27]. Instead, Gasser is based on
sliding batches, where each batch contains the same number
of windows that are computed in parallel by the GPU cores.
Sliding batches have also been used in [28] to reduce the com-
munication overhead, although for multi-core CPUs only.
G-Storm [3] extends Apache Storm with support for

GPUs. G-Storm introduces the concept of GPU-Bolt. Like
our system, to run an operator on the device the user has
to write the kernel functions. G-Storm relies on JCUDA
to have easy access to a GPU in Java. The execute()
method of GPU-Bolts buffers incoming data in fixed-size
non-overlapped batches. The merit of this work is to have
extended a widely used framework. However, the system
does not support sliding window since windows span across
several batches. It can be used with tumbling windows which,
in general, trigger less frequently than sliding windows and
are less computationally demanding. However, G-Storm
could be modified to extend the window support by integrat-
ing several of the Gasser concepts.
GStream [4] targets GPU clusters by hiding to the user

the complexity of managing data transfers among GPU
devices. Furthermore, and analogously to Gasser, it is
a C++ template library allowing the creation of dataflow
graphs of filters connected by stream edges. Filters process
batches of input data obtained from an elastic API able
to maintain the integrity of the input buffer in presence of
concurrent pops by multiple downstream filters. A filter can
offload the processing of each window on the GPU provided
that the user is able to extract enough data parallelism from
the code to be executed. This approach can be adopted when
the window computation can be easily parallelized (e.g.,
aggregates based on associative functions), while Gasser
supports GPU parallelism for any windowed operator where

the provided function is treated as a blackbox. Finally, other
papers are tailored for specific operators (e.g., band-join [29]
and outliers detection [30]) and lack of general support to
broader classes of operators.

VII. CONCLUSIONS AND FUTURE WORK
Gasser is a system for accelerating streaming operators on
GPU devices. It targets non-incremental functions and pro-
vides an auto-tuning approach to automatically optimize the
query throughput. It fills a gap in the literature because non-
incremental queries have been overlooked in the design of
previous approaches, which are instead optimized for queries
allowing incremental processing. Although non-incremental
algorithms are not generally the best approach in streaming
contexts, existing SPSs support them to reuse well-known
algorithms and legacy code. Therefore, they have a significant
practical relevance.

In the future we aim at extending our work. First, to sup-
port time-based windows with variable cardinality. Second,
to study Gasser and its auto-tuning approach in case of
highly irregular workloads, to assess whether the proposed
approach can be periodically re-executed to adapt the query
configuration to time-varying input rates.
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