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ABSTRACT
Localization and navigation of passive target objects play
a key role in many important applications. An interest-
ing solution for passive localization and navigation is given
by monostatic wireless sensor radar (WSR) networks. In
this context, ultrawide band (UWB) radar provide fine de-
lay resolution enabling high accuracy localization also in
harsh environments such as indoor. We present a mathemat-
ical framework for analysis and design of passive navigation
based on UWB monostatic WSRs that relies on environ-
ment propagation and time-of-arrival estimation character-
ized by network experiments. A case study where a UWB
monostatic WSR network is deployed to infer the position of
moving target objects is considered. In particular, Bayesian
navigation based on particle filters implementation is an-
alyzed and the role of mobility model for inferring target
position is shown.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Algorithms, Design, Performance

Keywords
Passive navigation, TOA estimation, UWB, particle filters,
mobility models.

1. INTRODUCTION
Network localization and navigation is an emerging paradigm

enabling new important applications in various sectors such
as medical, industrial, and military [20]. Depending on
whether the objects to be localized infer their positions ac-
tively exchanging messages or passively backscattering sig-
nals, the navigation process is referred to as active or passive,
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respectively [8,18].1

The provision of location-awareness in cluttered environ-
ments (e.g., indoor) is challenged by multipath, line-of-sight
(LOS) blockage, and excess delay propagation through ma-
terials. Ultrawide bandwidth (UWB) technology [21,22,24]
can provide accurate localization [10,18,19] in such cluttered
environments due to its ability to resolve multipath, pene-
trate obstacles, and provide accurate time-of-arrival (TOA)
meaurements [6,15,23].

Monostatic wireless sensor radar (WSR) networks extend
the classical concept of single monostatic radar for passive
detection, localization, and navigation of target objects [3,
12, 16, 25]. UWB based WSRs networks can provide high
localization and navigation accuracy in harsh environments,
such as indoor [2]. A clear understanding on how network
setting and environment propagation affect the performance
can be obtained through characterization of these aspects
based on network experiments [5]. Several algorithms can
be used to perform navigation from TOA measurements.
In particular, Bayesian navigation based on particle filters
(PFs) and mobility models provide solution to inference tar-
get object position.

In this paper, we present a mathematical framework for
analysis and design of passive navigation. A UWB mono-
static WSR network is considered and the framework ac-
counts for the effects of network setting, obstructed line-of-
sight (OLOS) propagation conditions, TOA estimation, and
mobility models for Bayesian navigation algorithms. We
model TOA estimation accuracy based on measurements
collected in network experiments. A Bayesian navigation
algorithm with PF implementation is considered which com-
bines a prior knowledge based on mobility models with per-
ception models and UWB ranging measurements. A case
study in indoor environment is considered, where a UWB
monostatic WSR network is deployed to infer the position
of a target object moving on a trajectory by means of two
different mobility models.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the WSR network model and Section 3 dis-
cusses the navigation algorithm considered. In Section 4
results on the case study considered are presented and in
Section 5 some conclusions are given.

2. WIRELESS SENSOR RADARMODEL
In a monostatic WSR network, N nodes are involved in

localization and navigation of a target object moving within

1Hybrid active and passive solutions can also be considered
(see, e.g., [17]).



a surveillance area (SA). We denote with x(i)
R the vector of

ith radar position coordinates (static) and with xk the target
position (dynamic) at time index k. Each radar transmits a
sequence of pulses at a given pulse repetition frequency and
receives them after backscattering from the target object.

A target can be detected by a single radar if the received
signal-to-noise ratio (SNR) ξ is higher than a threshold value
ξth. This SNR threshold depends on the receiver sensitivity,
which is the minimum received power Prth for pulse recep-
tion and, consequently, for TOA estimation. The received
power from a radar-to-target link of length r is given by

Pr =

∫ fU

fL

St(f)ηt(f,Θt)ηr(f,Θr)σ(f)
4πr2βL′

d10
Lw(f)f2κ+2

df (1)

where St(f) is the transmitted power spectral density (PSD),
ηt(f,Θt) and ηr(f,Θr) are the transmitter and receiver an-
tenna gains, β is the path loss exponent, κ is the frequency
decaying exponent, [fL, fU] is the signal bandwidth, and
σ(f) is the radar cross section (RCS). In (1), the quan-

tity L′
d = Ldd

−2β
0 f−(2κ+2)

0 where Ld is the path loss at the
reference distance d0 and frequency f0, and Lw(f) is the fre-
quency dependent loss in dB due to the presence of walls and
it can be considered zero in LOS conditions. The path loss
exponent β depends on the environment, varying for LOS
or non-line-of-sight (NLOS) propagation. In NLOS propa-
gation, the exponent typically range from 3 to 4 if the path
is partially obstructed, and from 4 to 7 for total obstruc-
tion [13,14].

From (1), the maximum lenght of radar-to-target link is

r̂ !

(
1

L′
d4πPrth

∫ fU

fL

St(f)ηt(f,Θt)ηr(f,Θr)σ(f)
10Lw(f)f2κ+2

df

)1/2β

.

(2)
A target can be detected by a radar only if r ≤ r̂ .xf Thus,
we define the area covered by the ith radar as a circle of
radius r̂ centered in x(i)

R , in which TOA can be measured.

We denote with τττk =
[
τ (1)
k τ (2)

k · · · τ (N)
k

]
the TOA vector

whose elements represent the TOA from each radar (i =
1, 2, . . . , N) at the time index k. Then, the vector of dis-
tances between the target and each radar results in rk =[
r(1)k r(2)k · · · r(N)

k

]
where r(i)k = τ (i)

k c/2. Each TOA esti-

mate τ (i)
k can be modeled as

τ (i)
k =

∥∥∥xk − x(i)
R

∥∥∥

c
+ ε (3)

where the error ε can be modeled as a Gaussian distributed
random variable ε ∼ N (µ,στ

2) with mean µ taking into
account the presence of positive bias in obstructed paths
(zero in LOS conditions) [6]. The standard deviation στ

depends on the propagation environment, the received SNR
ξ, and the hardware for TOA estimation. Thus, to analyze
WSR network performance the relation between στ and ξ is
needed. A non-increasing function is typically considered as

στ = 10f(ξdB) (4)

where f(ξdB) depends on the hardware solution for TOA
estimation. In our case study, described in Section 4, energy
detector TOA estimation is considered for which f(ξdB) is
determined.

The presence of obstacles and walls obstructing signal
paths results in a positive bias on the TOA called excess

Figure 1: Case study environment, radar positions
(magenta) and target positions localized without
ambiguities (green).

delay (ED) and in an attenuation called partition penetra-
tion loss [4, 7]. The knowledge of the characteristics of ma-
terials is needed to evaluate such effects. Network experi-
ments are performed in [5] also to characterize the ED due
to the presence of concrete walls in a typical office building.
In particular, for UWB signals, the ED increases with the
total thickness of the encountered walls dw as dw/c. The
penetration loss (dB) in (2) due to the presence of walls is
given by [4]

Lw(f) =
ntw∑

j=1

njXj(f) (5)

where ntw is the number of types of walls encountered by
the signal, nj is the number of walls of types j, and Xj(f)
is the frequency dependent insertion loss for wall of type j.

3. NAVIGATION ALGORITHM
The aim of a navigation algorithm is to estimate the tar-

get position xk at each time index k (i.e., the states) from
measurements rk (i.e., the observations) [20]. The Bayesian
inference of position’s belief b(xk) = p(xk|r1:k) (i.e., poste-
rior distribution of the position state vector, given past ob-
servations) is obtained in two phases: (i) a prediction phase
in which the belief is determined based on previous position
and a mobility model, and (ii) an update phase where the be-
lief is updated based on new measurements and a perception
model. Therefore, by denoting with r1:k the set of available
observations at time index k, b(xk) is given by [1,11]

b(xk) =
b−(xk) p(rk|xk)
p(rk|r1:k−1)

(6)

where b−(xk) = p(xk|r1:k−1) is the predicted belief given by

b−(xk) =

∫
p(xk|xk−1)b(xk−1) dxk−1 . (7)

The term p(xk|xk−1) is the mobility model of the target
and gives the probability distribution function (PDF) of xk

conditioned on previous position xk−1. The (7) is solved
in the prediction phase and then updated according to (6)



and new measurements. Finally the estimated position x̂k

is determined as that value maximizing b(xk).
Various implementations of Bayesian inference are possi-

ble, which differ in the beliefs computation. In particular,
we consider the PF algorithm. The key idea of PFs is to
represent the posterior distribution (the belief), by a set of
random samples (particles) with associated weights as

b(xk) ≈
Ns∑

s=1

wk,sδ(xk − xk,s) (8)

where Ns is the number of particles, δ(·) is the Delta func-
tion, wk,s ≥ 0 ∀k, s is the weight for particle s at time index
k, and

∑Ns
s=1 wk,s = 1. The weights are chosen using the

principle of importance sampling [1, 9] in which a distribu-
tion of samples is considered with more dense samples where
it is more probable that the object is located. In PF algo-
rithms the main important recursive steps for evaluating the
sth particle can be summarized as follow

xk,s ∼ p(xk|xk−1,s) mobility model (9)

wk,s = wk−1,s p(rk|xk,s) perception model . (10)

A Gaussian mobility model is considered as given by

p(xk|xk−1) =
1√

2πσm

e
−‖xk−µk‖2

2σ2
m (11)

where the standard deviation σm considers the uncertainty
on the target movement, and the mean µk depends on xk−1

and intra-node measurements. We propose two different mo-
bility model: the speed known direction unknown (SKDU)
and the speed and direction learning (SDL).

In the SKDU model we assume the target speed intensity
is known but there are no direction information. The mean
of the Gaussian distribution is determined as

µk = xk−1 + v T (12)

where the angle of the speed vector v is uniformly dis-
tributed between −π and π and T is the time between two
consecutive measurements.. In the SDL model the speed
vector is completely calculated from previously estimated
positions as

vk−1 =
1

Nυ T

Nυ∑

v=1

(xk−v − xk−v−1) (13)

where Nυ is the length of a sliding window of previous states.
Hence, the mean of the Gaussian distribution is

µk = xk−1 + vk−1 T (14)

We consider independent observations, thus the perception
model is given by

p(rk|xk) =
N∏

i=1

p(r(i)k |xk) (15)

where rk,i is the measurement from the ith radar at time
index k. We assume a perception model with Gaussian dis-
tribution as given by

p(r(i)k |xk) =
1√
2πσp

e
−

(

r
(i)
k

−

∥

∥

∥

∥

xk−x
(i)
R

∥

∥

∥

∥

)2

2σ2
p . (16)

Figure 2: Real and estimated (red line) trajectory
with SKDU. Blue and green represent detected only
and localized without ambiguities target position,
respectively.

The standard deviation σp depends on both the accuracy of
localization technology and signal propagation conditions.

4. NUMERICAL RESULTS
We now present navigation performance metrics and re-

sults for a case study in indoor environment.

4.1 Performance Metrics
As performance metrics we consider the navigation error,

the navigation root mean square error (RMSE) and the nav-
igation error outage (NEO). The navigation error, for each
time index k, is given by

e(xk) = ‖x̂k − xk‖ (17)

which represents the Euclidean distance between the target
estimated position x̂k and the true position xk. From (17),
the navigation RMSE results in

eRMS =

√√√√ 1
K

K∑

k=1

[e(xk)]2 . (18)

where K is the number of the estimated positions along the
trajectory. Another important performance metric is the
NEO, which is the probability that the navigation error falls
below a given target value eth defined as

PNEO = P{e(xk) > eth} (19)

=
1
K

K∑

k=1

E{I{‖x̂(k)− x(k)‖ > eth}}

where I{·} is the indicator function, which is zero when the
proposition is false and one otherwise, and E{·} represents
the spatial-temporal statistical expectation.

4.2 Case study
We now provide results for a monostatic WSR in the envi-

ronment of Fig. 1. The WSR is composed of 22 UWB mono-
static radars located at the corner of squares with side of 5



Figure 3: Real and estimated (red line) trajectory
with SDL. Blue and green represent detected only
and localized without ambiguities target position,
respectively.

m. The UWB transmitted PSD is St = −42 dBm/MHz over
the 1.7GHz frequency bandwidth (fL = 3.1 GHz, fU = 4.8
GHz), which is the European UWB lower band. We consider
coherent accumulation of 126 pulses with frequency of pulse
repetition 10MHz for obtaining a TOA estimation, omni-
directional antennas, ηt(f,Θt) = ηr(f,Θr) = 1, and RCS
σ(f) = 1m2. The reference distance d0 is set to 1m, κ = 0,
and L0 = c2/(4πf0)

2 where f0 is the central frequency. The
path loss exponent β has been chosen equal to 3.07 (i.e.,
NLOS condition for the standard IEEE 802.15.4a) despite
that we consider also the effects of each wall. This choice
allows a worst-case performance evaluation. The minimum
receiver sensitivity is set to Prth = −85 dBm. Note that
with the chosen parameters a target located in any position
of the SA can be detected. The target positions where lo-
calization is possible without ambiguities (i.e., at least three
radars detect the target) is also shown in Fig. 1.

As discussed in Section 2, a key aspect affecting the perfor-
mance is the ability of accurate TOA estimation for a given
received SNR which is modeled by function f(ξdB) in (4).
This function has been chosen following a characterization
activity on energy detector based TOA estimation. In this
case, it is possible to distinguish three different SNR regions.
The regions of small and large SNR values respectively cor-
respond to regions of large and small constant standard de-
viation στ . A transition region is verified for moderate SNR
values. In particular, the upper and lower values of στ de-
pend on the observation time Tg and the integration time
Tint of the energy detector, respectively, as follows

f(ξdB) =






log10

(
Tg√
12

)
ξdB ≤ ξ(L)dB

A+ B ξdB ξ(L)dB < ξdB ≤ ξ(H)
dB

log10

(
Tint√

12

)
ξdB > ξ(H)

dB

(20)

For our case study we consider Tint = 4ns, Tg = 120 ns,

A = −7.39, B = −0.0875, ξ(L)
dB = 0.8 dB, and ξ(H)

dB = 17 dB.
To account for the effects of walls in the environment prop-
agation, we choose the trajectory shown in Fig. 2 where
two different situations can be distinguished. In the first
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Figure 4: NEO for SKDU (dashed) and SDL (solid)
in LOS (magenta) and OLOS (green) conditions.

part of the trajectory, no walls obstruct the signal path be-
tween the target and the radars able to detect it, while in
the second part OLOS conditions are present. The velocity
of the target is v = 1m/sec, the time between two consecu-
tive measurements is T = 0.1s and for the perception model
σp = 0.2m has been considered. Figure 2 shows the real and
the estimated trajectories when considering the SKDU mo-
bility model with σm = 0.8m. This value is such that with
probability 0.9 the new position is within a circle centered in
µk of radius v T , with v the speed we assumed known. The
two trajectories can be compared in both detection only and
localization without ambiguities conditions. In Fig. 3 simi-
lar results are shown for the SDL case with sliding window
Nυ = 10, and standard deviation calculated as for SKDU
with v = |vk−1|. The RMSE for the SKDU is 1.2m, whereas
for the SDL is 0.35m. This results show a clear difference,
in terms of global navigation accuracy over the trajectory
between the two mobility models. Moreover, note that the
estimated trajectory shown in Fig. 2 for the SKDU mobility
model presents an ambiguity which is solved by means of
SDL mobility model in Fig. 3. Finally, in Fig. 4 the NEO is
given for SKDU and SDL mobility models for the two parts
of the trajectory in LOS and OLOS conditions. The figure
shows as the mobility model and the propagation conditions
strongly impact the NEO. For example, results in Fig. 4 in-
dicate that using SKDU in 80% of cases the navigation error
is below 0.5m in the first part of the trajectory (LOS) and
it is below 2.7m in the second part (OLOS). When SDL is
used, in 80% of cases the navigation error is below 0.3m in
the first part of the trajectory (LOS) and it is below 0.4m
in the second part (OLOS).

5. CONCLUSION
A framework for analysis and design of monostatic WSR

networks for passive localization and navigation is presented.
The framework accounts for the network setting, environ-
ment propagation, TOA estimation techniques, and Bayesian
navigation algorithms based on perception and mobility mod-
els. Navigation techniques based on particle filter algorithm
and different mobility models have been compared in terms
of localization error and navigation error outage for a case



study in indoor environments. It is shown as mobility model
can enhance navigation performance even in difficult envi-
ronment propagation.
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