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ABSTRACT This paper presents the multiobjective optimization aspects of three thermal devices and two 

thermodynamic cycles. The thermal devices considered are: two stage thermoelectric cooler, heat pump, 

and a plate-fin heat exchanger. The thermodynamic cycles considered are: transcritical CO2 cycle and the 

irreversible Carnot power cycle. A posteriori multiobjective version of self-adaptive multipopulation (MO-

SAMP) Jaya algorithm is proposed and it is applied for multiobjective optimization of the selected thermal 

devices and cycles to obtain sets of nondominated alternative solutions. The results of computational 

experiments obtained by MO-SAMP Jaya algorithm are found better than those obtained by the latest 
reported optimization algorithms.  

INDEX TERMS Carnot cycle, Heat pump, Jaya algorithm, Multiobjective optimization, Plate-fin heat 
exchanger, Thermoelectric cooler, Transcritical cycle. 

 
I.    INTRODUCTION 

Solving the complex optimization problems in the limited 

time is an indispensable issue in the field of engineering 

optimization. Due to the complexity of the problems, the 

conventional methods become tedious and time-consuming 

and these approaches do not guarantee the achievement of 

the optimal solution. Therefore, metaheuristic based 

computational methods (also called advanced optimization 

algorithms) are developed. These methods are capable of 

achieving the global or near global optimum solution with 

less information about the problems.  

Some of the well-known advanced optimization 

algorithms are: genetic algorithm (GA) and its variants (real 

coded GA, parallel GA, hybrid interval GA, etc.), simulated 

annealing (SA) algorithm, tabu search (TS), ant colony 

optimization (ACO),  particle swarm optimization (PSO) 

and its variants (e.g. niching PSO, culture-based PSO, 

aging theory inspired PSO, etc.), differential evolution (DE) 

and its variants (e.g. DE with multi-population ensemble, 

DE with self-adapting control parameter, DE with optimal 

external archive etc.), nondominated sorting genetic 

algorithm (NSGA) and its variants, etc.  

In the last decade several metaheuristic algorithms are 

proposed. Some prominent algorithms are: artificial bee 

colony (ABC) algorithm, imperialist competitive algorithm 

(ICA), firefly algorithm (FFA), gravitational search 

algorithm (GSA), bat algorithm(BA), cuckoo search (CS), 

teaching-learning-based optimization (TLBO) algorithm, 

differential search algorithm, colliding bodies optimization 

algorithm, grey wolf optimization algorithm, ant lion 

optimization algorithm, cat swarm optimization algorithm, 

etc. [1-3]. 

The advanced optimization algorithms have their own 

merits but they require tuning of their specific parameters. 

For example, GA needs a proper setting of crossover 

probability, mutation probability, selection operator, etc.; 

NSGA needs crossover probability, mutation probability, 

SBX parameter, mutation parameter, etc.; SA algorithm 

needs initial annealing temperature and cooling schedule. 

PSO needs inertia weight and social and cognitive 

parameters. Similarly, ICA, DE and other algorithms 
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(except TLBO algorithm) have respective specific 

parameters to be set for effective execution. These 

parameters are called algorithm-specific parameters and 

need to be controlled in addition to the common control 

parameters of number of iterations and population size. All 

population-based algorithms need to tune the common 

control parameters but the algorithm-specific parameters 

are specific to the particular algorithm and these are also to 

be tuned as mentioned above. 

The performance of the optimization algorithms is much 

affected by the algorithm-specific parameters. Increase in 

the computational cost or tending towards the local optimal 

solution is caused by the improper tuning of these 

parameters. Hence, to overcome the problem of tuning of 

algorithm-specific parameters, TLBO algorithm was 

proposed which is an algorithm-specific parameter less 

algorithm [3,4]. Keeping in the view of the good 

performance of the TLBO algorithm, another algorithm-

specific parameter less algorithm has been recently 

proposed and it is named as Jaya algorithm [5].  

The thermal system design process consists of many 

objecvtives based on the application requirements and these 

objectives are: heat transfer rate, cooling capacity, 

coefficient of performance, thermal resistance, pressure 

amplitude, effectiveness, pressure drop, etc.  The total cost 

of the system should be minimized while achieving the 

desired objectives within the specified limits of the 

constraints. A number of design variables and objective 

functions are involved in the design optimization of a 

thermal system. Therefore, it would be beneficial to apply 

optimization techniques to individual components or 

intermediate systems than to a whole system. For example, 

in a thermal power plant, individual optimization of heat 

pump, heat pipe and cooling tower are computationally and 

mathematically simpler as compared to optimization of the 

entire system [6].  

For the design optimization of thermal systems and 

devices some advanced optimization techniques have been 

applied such as GA, multiobjective GA (MOGA), PSO, 

ABC, differential evaluations (DE), Grenade explosion 

method (GEM), niched pareto genetic algorithm (NPGA) 

and teaching-learning-based optimization (TLBO) 

algorithm for the optimization of different objectives [7]. 

These algorithms have shown their excellent performance 

in a number of design optimization problems. However, 

these algorithms require algorithm-specific parameters 

(except TLBO algorithm) to be tuned. 

Recently, an algorithm-specific parameter-less algorithm 

called Jaya algorithm has been developed [5]. The Jaya 

algorithm is simple in concept and is reported to give better 

results as compared to the other optimization algorithms. In 

this paper a posteriori multiobjective version of Jaya 

algorithm named as multiobjective self-adaptive muti-

population Jaya algorithm is developed and this is applied 

for the design optimization of selected thermal devices and 

basic thermal cycles. The selected thermal devices include 

two-stage thermoelectric cooler (TEC), two-stage 

irreversible heat pump (HP), plate-fin heat exchanger 

(PFHE) and selected basic thermal cycles include 

transcritical cycle and irreversible Carnot power cycle. The 

key feature of MO-SAMP Jaya algorithm is that it can 

provide a set of nondominated solutions in a single 

simulation run.  

The objectives of this research work are as follows:  

a) To develop a posteriori multiobjective version of the 

self-adaptive multipopulation Jaya algorithm.  

b) To apply the posteriori multiobjective version of the 

Jaya algorithm to the design optimization of selected 

thermal devices such TEC, two-stage irreversible HP, 

PFHE and  two basic thermal cycles known as 

transcritical cycle and irreversible Carnot power cycle 

and to compare the results with those of the other 

advanced optimization algorithms.  

The next section presents the details of working of MO 

SAMP-Jaya algorithm which is developed and used in this 

research papers for the design optimization of selected 

thermal devices and basic thermal cycles.  

 
II.  PROPOSED MO-SAMP JAYA ALGORITHM 

In the Jaya algorithm, the candidate solutions in every 
iteration are updated in accordance with (1) [5]: 

A'q,r,i= Aq,r,i + r1*(Aq,best, i- │Aq,r,i│) - r2*(Aq,worst,i- │Aq,r,i│) (1) 

Where, Aq,r,i is the value of the q
th variable for the r

th 
candidate for the i

th iteration, and A'q,r,i is the modified 
value of the same. Aq,best,i and Aq,worst,iis value of qth variable 
corresponding to the best and worst  solutions respectively 
in the entire population during the i

th iteration. The 
modified solutions will be accepted if found better than the 
previous solution(s) otherwise old solution(s) will be kept. 
For more details of working of the Jaya algorithm the 
readers may refer to [7]. The proposed MO-SAMP Jaya 
algorithm is a posteriori multiobjective optimization 
version of self-adaptive multi-population Jaya algorithm [8] 
which is a modified version of Jaya algorithm. The detailed 
working of MO-SAMP Jaya algorithm is shown in Fig. 1.  

There are basically two approaches to solve a 
multiobjective optimization problem and these are: a priori 
approach and a posteriori approach. In a priori approach, 
multiobjective optimization problem is transformed into a 
single objective optimization problem by assigning an 
appropriate weight to each objective. This ultimately leads 
to a unique optimum solution. In the a priori approach, the 
preferences of the decision maker are asked and the best 
solution according to the given preferences is found. The 
preferences of the decision maker are in the form of 
weights assigned to the objective functions. The weights 
may be assigned through any method like direct 
assignment, eigenvector method [9], empty method, 
minimal information method, etc. Once the weights are 
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decided by the decision maker, the multiple objectives are 
combined into a scalar objective via the weight vector. 
However, if the objective functions are simply weighted 
and added to produce a single fitness, the function with the 
largest range would dominate the evolution. A poor input 
value for the objective with the larger range makes the 
overall value much worse than a poor value for the 
objective with smaller range. To avoid this, all objective 
functions are normalized to have same range. For example, 
if f1(x) and f2(x) are the two objective functions to be 
minimized, then the combined objective function can be 
written as,  

 

��� ���� = {�� ������
��∗

�� + �� ������
��∗

��}  

           (2)             
 
Where, f(x) is the combined objective function and ��

∗is the 
minimum value of the objective function f1(x) when solved 
it independently without considering f2(x) (i.e. solving the 
multiobjective problem as a single objective problem and 
considering only f1(x) and ignoring f2(x)). And ��

∗is the 
minimum value of the objective function f2(x) when solved 
it independently without considering f1(x) (i.e. solving the 
multiobjective problem as a single objective problem 
considering only f2(x) and ignoring f1(x)). w1 and w2are the 
weights assigned by the decision maker to the objective 
functions f1(x)) and f2(x) respectively.  

Suppose f1(x) and f2(x) are not of the same type (i.e. 
minimization or maximization) but one is a minimization 
function (say f1(x)) and the other is a maximization function 
(say f2(x)). In that case, (2) is written as (3) and ��

∗is the 
maximum value of the objective function f2(x) when solved 
it independently without considering f1(x). 
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                                       (3)             
 

In general, the combined objective function can include 
any number of objectives and the summation of all weights 
is equal to 1. The solution obtained by this process depends 
largely on the weights assigned to the objective functions. 
This approach does not provide a set of Pareto points. 
Furthermore, in order to assign weights to each objective 
the process planner is required to precisely know the order 
of importance of each objective in advance which may be 
difficult when the scenario is volatile or involves 
uncertainty. This drawback of a priori approach is 
eliminated in a posteriori approach, wherein it is not 
required to assign the weights to the objective functions 
prior to the simulation run. 

A posteriori approach provides multiple tradeoff (Pareto-
optimal) solutions for a multiobjective optimization 
problem in a single simulation run. The designer or process 
planner can then select one solution from the set of Pareto-
optimal solutions based on the requirement or order of 
importance of objectives. On the other hand, as a priori 

approach provides only a single solution at the end of one 
simulation run, in order to achieve multiple trade-off 
solutions using a priori approach the algorithm has to be 
run multiple times with different combination of weights. 
Thus, a posteriori approach is very suitable for solving 
multiobjective optimization problems wherein taking into 
account frequent change in customer desires is of 
paramount importance and determining the weights to be 
assigned to the objectives in advance is difficult. 
Evolutionary algorithms are popular approaches for 
generating the Pareto optimal solutions to a multiobjective 
optimization problem. Currently, most evolutionary 
multiobjective optimization algorithms apply Pareto-based 
ranking schemes [10]. Evolutionary algorithms such as the 
Nondominated Sorting Genetic Algorithm-II (NSGA-II) 
and Strength Pareto Evolutionary Algorithm 2 (SPEA-2) 
have become standard approaches. The main advantage of 
evolutionary algorithms, when applied to solve 
multiobjective optimization problems, is the fact that they 
typically generate sets of solutions, allowing computation 
of an approximation of the entire Pareto front. The main 
disadvantage of evolutionary algorithms is their lower 
speed and the Pareto optimality of the solutions cannot be 
guaranteed. It is only known that none of the generated 
solutions dominates the others. Furthermore, these 
algorithms require the tuning of respective algorithm-
specific parameters.   

In this paper MO-SAMP Jaya algorithm is proposed 
which does not have any algorithm-specific parameters to 
tune. The step by step working of MO-SAMP Jaya 
algorithms is defined as follows: 

 
Step 1: Set the design variables (d), population size (P) and 
stopping condition  

Step 2: Calculate the value of fitness function for the initial 
populations. 

Step 3: Group the entire population into m number of sub-
populations based on the nondominance rank and crowding 
distance of solutions.  

The solution with the highest rank (rank=1) is selected as 
the best solution. The solution with the lowest rank is 
selected as the worst solution. In case, there exists more 
than one solution with the same rank in a population or 
subpopulation then the solution with the highest value of 
crowding distance is selected as the best solution and vice 
versa. This ensures that the best solution is selected from 
the sparse region of the search space. 

 
Step 4: Update solutions of each group as per (1).  

Step 5: All the modified solutions of subpopulation are 
merged into single population. 

Step 6: Initial/previous solutions and modified solution are 
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merged into single population which is equals to 2*P 
populations. 

Step 7:  Nondominated sorting and crowding distance 
computation of the population is done and P best solutions 
are selected from 2*P solutions. 

 
FIGURE 1.  Flowchart of MO-SAMPJaya algorithm. 

 
Step 8:  Check for the improvement in rank 1 solution(s):  

 If Yes  
          then m=m + 1;  
Else if m>1  
          then m= m -1; 
End 

Step 9: Check the stopping condition(s) reached. If yes, 
then terminate the process and report the best optimum 
solution. Otherwise, go to Step 3 and follow the steps until 
the stopping condition is reached.  

The readers may refer to [4] for detailed evaluation of 
nondominated sorting and calculation of crowding distance. 
The proposed MO-SAMP Jaya algorithm is used in this 
work for the design optimization of selected thermal 
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devices and basic thermal cycles. 
The next section presents the precious research work 

carried out for the design optimization of selected thermal 
devices and basic thermal cycles. 

III. LITERATURE REVIEW ON OPTIMIZATION OF 
SELECTED THERMAL DEVICES AND BASIC THERMAL 
CYCLES 

A. THERMO-ELECTRIC COOLER 

Due to the need of a steady, low temperature and eco-
friendly operating environment for different applications 
the demand of thermoelectric coolers (TECs) has grown 
significantly. It is extensively used in various applications 
such as aerospace, military, medicine, and other electronic 

devices etc. However, the cooling capacity and coefficient 
of performance (COP) of TCEs are comparatively low as 
compared with traditional cooling devices. Therefore, the 
improvement in the performance of TECs is the most 
important issue in their applications [11, 12]. 

Single stage TEC can produce a maximum temperature 
difference of 70 K when its hot end is maintained at room 
temperature. Therefore, when large temperature difference 
is required then two stage TECs should be used [13]. 
Basically, two-stage TECs are commercially arranged in 
cascade. The two-stage TECs are arranged in two different 
design configurations namely electrically separated and 
electrically connected in series.  Fig. 2 presents the different 
configurations of two-stage TECs [14]. 

 
FIGURE 2.  Two stage TEC (a) Electrically separated; (b) Electrically connected in series [14]. 

 
Chen et al. [15] analyzed the performance of a two-stage 
TE heat pump system driven by a two-stage TE generator. 
Many researchers [1, 16-20] had analysed the two stage 
TECs for optimization of COP or for best layout of the TE 
module. Cheng and Shih [14] described the thermal model 
of the two stage TECs. It is described as below. 

The cascade two stage TECs are stacked one on the top 
of the other (Fig. 2). Here in this arrangement the top stage 
is the cold stage and the bottom stage is the hot stage. In 
Fig. 2, Qc,c and Qh,h are the cooling capacities of the cold 
side of the cold stage and the heat rejected at the hot side of 
hot stage respectively. Tc,c, Tc,h, Th,c and Th,h are the 
temperatures of the cold side of the cold stage, hot side of 
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the cold stage, cold side of the hot stage and hot side of the 
hot stage respectively. Ic and Ih are the input currents to the 
cold stage and the hot stage respectively. n And p stand for 
n-type and p-type TE modules respectively. The COP of the 
two stage TECs is given as follows: 

cchh
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COP
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,
                                                             (4) 

where, Qc,c and Qh,h are obtained by heat balance at relevant 
junction of TECs. 
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where, Nt is the total number of TE modules of two stages 
and r is the ratio of the number of TE modules between the 
hot stage (Nh) to the cold stage (Nc). α, R and K are the 
Seebeck coefficient, electrical resistance and thermal 
conductance of the cold stage and the hot stage 
respectively. The total thermal resistance (RSt) existing 
between the interface of TECs is calculated as follows: 
RSt=RSsprd+RScont                                                               (7) 

Here, RSsprd and RScont are the spreading resistance and 
contact resistance between the interfaces of the two TECs 
respectively. 

The heat rejected at the hot side of the cold stage (Qc,h) 
and cooling capacity at the cold side of the hot stage (Qh,c) 
are obtained by considering the heat balance at the interface 
of TECs and it is calculated as follows. 
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This case study is taken from the work of Hadid (2017). 
The maximization of COP and cooling capacity is 
considered as objective functions which are calculated by 
(4) and (5) respectively. 

The objective functions are governed by the three 
design variables whose ranges are given below: 

114 ≤≤ hI                                                                     (10) 

114 ≤≤ hI                                                                     (11) 

33.72 ≤≤ r                                                                   (12) 

B. TWO STAGE IRREVERSIBLE HEAT PUMP 

Heat pumps are widely used for transporting heat from low 

temperature sources to higher ones and are usually single-

stage heat pumps [21]. However, there are some limitations 

in conventional single-stage compression heat pumps, for 

example, the inefficient performance, high discharge 

temperature and low performance of compressor especially 

in winter which make them less popular. With the purpose 

of gaining a higher range of temperature difference between 

the environment and heated space, two stage heat pump 

plants are developed and are widely used in industrial scale. 

Many authors had investigated the performance of single 

stage vapor compression and absorption heat pumps and 

refrigeration cycles employing finite time thermodynamics 

[22]. Fig. 3 illustrates the T–S diagram of the model [22].  
This is a two stage irreversible heat-pump system. 

Because of a number of causes such as heat resistance, 
friction, internal losses and heat leak, the cycle differs from 
the ideal system. In the present study, the heat leak and 
friction losses are considered as internal losses and finite-
rate heat transfer. The two cycles with two distinct working 
fluids might work within various temperature ranges. The 
heat exchanger between them transfers the heat from one to 
another to recover the heat between two cycles. There are a 
number of investigations in literature related to irreversible 
Carnot heat pump cycle with irreversibility of heat 
resistance, heat leak and internal loss [22] 

This case study is considered from the work of 
Sahraie et al. [22]. In this study, the authors had developed 
mathematical models to optimize the performance of the 
two-stage irreversible heat pump (HP) while satisfying the 
imposed conditions. The objectives of this HP are as 
follows: 
a. Maximization of co-efficient of performance (COP) 

and it is defined as:  
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Here, R denotes the heat leakage percentage and is assumed 
to be an identified constant. TW, TX, TY and TZ are known as 
the temperatures of warm working fluid of the second 
cycle, warm working fluid of the first cycle, cold working 
fluid of the first cycle and cold working fluid of the second 
cycle respectively. I1 and I2 are known as irreversibility of 
first stage and second stage respectively. 

b. Maximization of heat transfer rate (qH) and is defined 

as:
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c. Maximization of thermo-economic benchmark of absorption heat pump (F): 
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Design variables and there ranges are as follows: 

 8.4484.412 ≤≤ XT  

6.2656.249 ≤≤ ZT  

9715.09041.0 ≤≤ u  

11.0 ≤≤ k  

Where, u = TY/TW & k = a/b and 
I1 = I2 = 1.05, R = 0.02, UH = UL = UW = 0.5, TH = 400K, TL 
= 273K.

 

 

FIGURE 3.  Two-stage combined irreversible heat pump model and its Temperature–Entropy diagram [22]. 

C. PLATE-FIN HEAT EXCHANGER 

In recent years the application of advanced optimization 
algorithms for design problems of PFHE has gained much 
momentum. Mixed-Integer-Non-Linear-Programming was 
used for the design optimization of PFHE system with 
discrete and continuous variables [23]; Traditional methods 
were also used for carrying out the optimization of these 
systems having a complex mathematical model [24]. 
Simulated annealing (SA) [25], artificial neural networks 
[25] and evolutionary algorithms [27-32] had been used for 
the thermal design optimization of heat exchanger.  

The details of mathematical model considered from the 

work of Hadid [31] are as follows: Effectiveness of an 
unmixed cross-flow heat exchanger is expressed as [31]: 
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Here, C is known as heat capacity ratio and 
defined as: 
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Here, suffix h and c denotes the hot and cold side 
respectively. Fig. 4 presents the layout of a PFHE.
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FIGURE 4. Detailed layout of plate-fin heat exchanger [29] 

Outlet temperatures of hot fluid (Th,o) and cold fluid (Tc,o) 
are calculated as: 
Th,o = Th,i - ε Cmin/Ch(Th,i – Tc,i)                                        (18) 

Tc,o = Tc,i + ε Cmin/Cc(Th,i – Tc,i)                                       (19) 

Now, the number of transfer units (NTU) can be calculated 
as: 

tUA

C

NTU

min1
=

                                                         

          (20) 

At is the total heat transfer area of plate-fin heat exchanger 
and U is known as overall heat transfer co-efficient. It is 
defined as:  

( ) ( )
ch

hAhAUA
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        (21) 

Convective-heat transfer coefficient is calculated as:  

 h = j.G.Cp.Pr
-2/3                                                                                                (22) 

Here, j is known as Colburn factor [31]; G is mass flux and 
defined as:

[ ] 1.0055.1456.0504.034.150678.01499.01541.05403.0 )()()((Re)10269.51)()()((Re)6522.0 −−−−− ×+×= γδαγδαj
           (23)

 

G = m/Af                                                                                                             (24) 

Here, α, δ and γ are the geometrical parameters of PFHE. 
Re is known as Reynolds number and defined as: 
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    (25) 

Here µ is dynamic viscosity and Dh is known as hydraulic 
diameter and can be evaluated as: 

( )( )
( ) ( ) ( )( ) ( ) 22

4

fffffff

ff

h
ttcttbtxtbxtc

xtbtc
D

−−+−+−+−

−−
=

                                                        

  (26) 

Here, tf, b, c and x are the thickness, height, pitch and length 
of the fin, respectively. Af is known as free flow area and is 
evaluated as: 
Af,h = LhNp(bh– tf,h)(1 – nh.tf,h)                                          (27) 

Af,c = Lc.(Np+1)(bh– tf,h)(1 – nh.tf,h)                   (28) 

, L c and Lh are the hot and cold flow length. Heat transfer 
area of hot side and cold side is calculated as: 
 Ah = LhLcNp[1+ 2nh(bh – tf,h)]                     (29) 

Ac = LhLc(Np+1)[1+ 2nc(bc – tf,c)]                                 (30) 

Now, the total heat transfer area is calculated as: 
  At = Ah + Ac                                                             (31) 

And the rate of heat transfer is evaluated as: 
  Q = ε Cmin(Th,i – Tc,i)                                                      (32) 

Due to friction, pressure drop is caused. Hot and cold side 
pressure drop is evaluated as: 

hhh
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Here, for an off-strip fin fanning factor f is evaluated as: 
 

[ ] 1.0236.0767.3920.0429.482659.03053.01856.07422.0 )()()((Re)10669.71)()()((Re)6243.9 γδαγδα −−−− ×+×=f
  

                                                            (35) 
 

The allowed ranges of the design variables are shown 
below [31]: 

• Stream flow length of hot side, Lh(m)=  0.1 ≤ Lh ≤ 
1. 

• Stream flow length of cold side, Lc(m)=  0.1 ≤ Lh ≤ 
1. 

• Fin height, b (mm)=  2 ≤ b ≤ 10. 

• Fin thickness, tf (mm)=  0.1 ≤ tf ≤ 0.2. 

• Frequency of fin (n)= 100 ≤ n ≤ 1000. 

• Offset length, x (mm)= 1 ≤ x ≤ 10. 

• Fin layers number (NP)= 1 ≤ Np ≤ 200. 

Out of these parameters, NP is a discrete variable and rest of 
the variables are continuous in nature. 

Nine constraints are imposed on the PFHE design, in 
order to get the specific duty of heat exchanger with 
limitations on mathematical model and geometries, are 
defined as follows: 

The value of Re for hot and cold steam flow must be in 
the following range: 

Constraint 1: 120 ≤ Rec≤ 104  

Constraint 2: 120 ≤ Reh≤ 104  

The equations used for the calculation of Colburn factor 
and fanning factor are to be used only when the values Re 
of the suggested design falls in the above given range. The 
geometrical parameters of the PFHE must be in the 
following ranges: 
Constraint 3: 0.134 ≤ α ≤ 0.997 

Constraint 4: 0.041≤ γ ≤ 0.121 

Constraint 5: 0.012 ≤ δ ≤ 0.048 

Eqs. of Colburn factor and fanning factor) are valid only for 
above ranges. 
No-flow length (Ln) of PFHE is also restricted: 
Constraint 6: Ln = 1.5 

The value of Ln is evaluated with the help of following 
equation: 

Constraint 7: Ln = b – 2tp + Np(2b + 2tp)                       (36)  

Heat duty required for the PFHE is also taken as 
constraint in order to meet the minimum heat duty [28]: 

Constraint 8: Q ≥ 1069.8 kW 
Allowed pressure drop of hot side and cold side: 

Constraint 9: ∆Ph≤ 9.5 kPa and ∆Pc ≤ 8 kPa 

Four different objectives  are taken up for the design 
optimization of PFHE. The details of the objective 
functions considered from the work of Hadidi [31] 
described below.  

First objective is the minimization of total annual cost 
which is the sum of initial investment cost Cin and 
operational cost Cop. Detailed mathematical model for the 
calculation of these costs is described as follows: 
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and Ctot =Cin + Cop                                                                                           (39)                                             

 In the above equations, Ca is cost per unit of At; n1 is 
exponent value; kel is electricity price; τ is hours of 
operation and η is known as compressor efficiency. In (37), 
a is known as annual cost coefficient and described as 
follows: 

( ) ny
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i
a

−
+−

=
11

                           

       (40) 

Where, i is rate of interest and ny is time of depreciation. 
Minimization of heat transfer area required for proper 

heat transfer is the second objective of this study. Total area 
required is calculated from the (31). This design equation is 
linked with investment cost of the considered PFHE. Third 
objective is also to be minimized which is a combined 
function of pressure drops of cold side and hot side fluids. 
The objective of this case is linked with the operating cost 
of the PFHE system. A combined normalized function of 
pressure drops is used in the optimization study and it is 
defined by the following equation: 

max,max,
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(41) 

Maximization of effectiveness is considered as the fourth 
objective. Calculation of the effectiveness of the heat 
exchanger is based upon (16). 
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D. TRANSCRITICAL CYCLES 

Due to increasing greenhouse effect of hazardous 

refrigerants on the environment, it has become need of the 

world to use eco-friendly refrigerants for heating or cooling 

applications. Carbon Dioxide (CO2) can be used as a 

substitute to the other harmful refrigerants. The advantages 

of selecting CO2 (R744) as working fluid are: low cost, non-

toxicity and non-flammability. The main advantages of 

using CO2 as refrigerant in comparison to other refrigerants 

are: having zero Ozone layer depletion layer index and low 

global warming potential. The environmental damages can 

be minimized by taking the advantages of transcritical (TC) 

cycles. A TC cycle is a type of thermodynamic cycle in 

which the working fluid goes under both critical and 

subcritical state (Khanmohammadi et al., 2018).  
Sarkar et al. [33] performed the optimization of TC CO2 

heat pump cycle for simultaneous applications of heating 
and cooling. The objective functions considered in their 
study were maximization of coefficient of performance, 
minimization of discharge pressure and maximization of 
output temperature. A theoretical optimization method was 
used by Rezayan and Behbahaninia [34] for minimizing the 
annual costs of a cascade system with ammonia and CO2 as 
refrigerants. 

Fazelpour and Morosuk [35] had developed a cost and 
energy efficient TC refrigeration system. It was 
recommended that by using the economizer as an 
supplementary component for single-stage TC refrigeration 
system can reduce the total cost about 14%. Bai et al. [36] 
carried out an advanced analysis of an ejector expansion 
transcritical TC refrigeration system. The study had 
suggested that compressor with highest avoidable 
endogenous exergy destruction required to improve 
performance of refrigerator. 

Khanmohamadi et al. [37] did the modeling and thermal 
and economic optimization of a modified TC CO2 
refrigeration cycle by using multiobjective genetic 
algorithm (GA). The maximization of cooling capacity and 
minimization of cost were considered as objectives. The 
authors had used decision making techniques in order to get 

the best set of solution among the nondominated solutions. 
Ahmadi et al. [38] did the exergy and thermodynamic 
analysis, and multiobjective (MO) optimization of a TC 
CO2 power cycle by using nondominated sorting GA 
(NSGA-II). This cycle was powered by geothermal energy 
having heat sink in the form of liquefied natural gas. The 
minimization of total heat exchange area and maximization 
of exergetic performance criteria, and exergy efficiency 
were considered as objective functions. The authors had 
used three decision making techniques in order to get the 
best set of solution among the nondominated solutions. 

Ahmadi et al. [39]) performed thermodynamic analysis 
and MO optimization of a TC CO2 power cycle by using 
NSGA-II. This cycle was powered by solar energy having 
heat sink in the form of liquefied natural gas. The 
maximization of thermal efficiency and solar fraction and 
minimization of total cost of the system were considered as 
the objective functions. The authors had used three decision 
making techniques in order to get the best set of solution 
among the nondominated solutions.  

1. MODIFIED TRANSCRITICAL CO2 REFRIGERATION 

CYCLE 

A graphical representation of the modified TC CO2 
refrigeration cycle with its parts is shown in Fig.5 [37]. It is 
having nine important parts which are included in the 
modified TC CO2 refrigeration cycle. These are namely, 
ejector, evaporator, low-pressure compressor, internal heat 
exchanger, high-pressure compressor, expansion valve, 
separator, gas cooler and intercooler. 

Khanmohammadi et al. [37] developed a mathematical 
model to optimize the modified trasncritical CO2 
refrigeration cycle. The design variables considered in their 
study were, cooling water temperature (Tgc), gas cooler 
pressure (Pgc), evaporator temperature (Te) and extracted 
mass flow rate (α). The objective functions consisted in this 
work was the maximization of cooling capacity (Q) and 
minimization of cost rate (Z). The equations of the 
objectives are defined as follows: 

 

                                                            (42)   

Where, 
C23= a01+ a11*Pgc +a21*Tgc +a31*(Pgc

2) +a41*Tgc
2 

+a51*Pgc*Tgc; 
C13= a02+ a12* α +  a22*Tgc +a32*α

 2 + a42*Tgc
2 + a52*α*Tgc; 

C34= a03+ a13*Tgc+ a23*Te+ a33*Tgc
2 + a43*Te

2+ a53*Te*Tgc; 

C2313= a04 + a14*C23 + a24*C13 +a34*C23
2 + a44*C13

2 + 
a54*C23*C13; 
 

                                                       (43) 

Where, 
Z14= c01+ c11*α + c21*Te+ c31*α

 2+ c41*Te
2 + c51* α*Te; 

Z34= c02+ c12*Tgc + c22*Te + c32*Tgc
2 + c42*Te

2+ c52*Tgc*Te; 
Z2214= c03 + c13*Pgc+ c23*Z14 + c33*Pgc

2 + c43*Z14
2 + 

c53*Pgc*Z14; 

Z3422 = c04 + c14*Z34 + c24*Pgc+ c34*Z34 + c44*Pgc
2 + 

c54*Pgc*Z34; 

The values of constant used in Eqs. (42).and (43) can be 
obtained from [37]. 
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The ranges of design variables are as follows: 
• 35oC ≤ Tgc ≤ 55oC,  Gas cooler temperature; 

• 75 bar ≤ Pgc ≤ 140 bar, Gas cooler pressure; 

• -30oC ≤ Te ≤ -1oC,  evaporator temperature; 

• 0.1 ≤  α ≤  0.9, extracted mass flow rate 

 
FIGURE 5.  Schematic diagram of modified two-stage refrigeration cycle [37]. 

2. TRANSCRITICAL CO2 HEAT PUMP CYCLE FOR 
SIMULTANEOUS HEATING AND COOLING 
APPLICATIONS 

The CO2 vapor compression refrigeration system was 
developed in 1850, subsequently it was used for many 
years. It was mainly used in marine. Many problems were 
found with the early CO2 based systems because of having 
low critical temperature of CO2. With the development of 
halocarbon refrigerants, CO2 was slowly rolled down from 
the applications of air conditioning and refrigeration. 
However, halocarbon refrigerants deplete the Ozone layer 
and hence negative effect on environment. This renewed a 
new interest in natural refrigerants such as CO2 [33]. A 
schematic diagram of CO2 based heat pump of heating and 
cooling system having its main component are shown in 
Fig. 6 [33].  

Sarkar et al. [33] presented the optimization of a TC CO2 
heat pump. It is used for cooling and heating applications 
together. A Mathematical model was developed for 
maximization of COP, minimization of discharge pressure 
(Popt) and maximization of output temperature (t2) in terms 
of evaporation temperature (tev) and cooler exit temperature 
(t3). The details of the objective functions are as follows: 

   (44) 

              (45)
 

   (46)
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333max 0004.05.4805.02.02.48 ttttCOP ev ⋅−−⋅⋅++=

2
33 002.017.0256.29.4 tttPopt ev ⋅+−⋅+=

22
332 009.00188.044.178.365.10 evev ttttt ⋅+⋅−⋅−⋅+−=



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2885823, IEEE Access

 

VOLUME XX, 2017 1 

 

 
FIGURE 6.  Line diagram of a TC CO2 system [33]. 

E. IRREVERSIBLE CARNOT POWER CYCLE 

Analysis of the irreversible thermodynamic systems has 
gained importance especially after the petrol crisis 
happened in 1970s [40]. This engine provides us more 
realistic results than reversible Carnot cycle. Maximum 
available work from an irreversible system was analysed by 
Wu [41]. Ecological function criterion (ECF) was proposed 
by Angulo-Brown [42] which is used for the analysis of 
irreversible Carnot power cycle. Yan [43] suggested to use 
T0 (heat sink temperature) on the place of TL (heat sink 
temperature). 

Many research works are found in the literature 
regarding ecological optimization of irreversible Carnot 
power cycle [44]. Another thermo-ecological criterion 
called ecological coefficient of performance (ECOP) was 
presented and applied to various thermodynamic cycles by 
Ust et al. [45]. Similarly, to determine the relationship 
between exergy and exergy destruction for a cycle, 
performance coefficient so called exergetic performance 
criteria (EPC) was presented by Ust et al. [46]. To obtain a 
method for the application of exergy concept in finite time 
thermodynamic (FTT), a number of studies were published 
by several authors [47]. A new criterion for assessing 
actual thermal cycles was submitted by Acıkkalp [48]. 
Ahmadi et al. [49] had used multiobjective genetic 
algorithm (MO-GA) to optimize the thermal performance 
of irreversible Carnot power cycle. The results of MO-GA 
were further analyzed by using TOPSIS, LINMAP and 
fuzzy logic.  

The first law efficiency (η), the exergetic performance 
criteria (EPC) and the maximum available work (MAW) are 
the three objective functions considered for the 
optimization and given as follows. 

Ix−=1η
                                                                          (47) 

Ecological function criteria: 
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Maximum available work: 
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Here, I is the irreversibility parameter. TH and Th are the 
heat source temperature and hot working fluid temperature 
(K), respectively, and kH is the heat conductance (kW/K) 
between the hot temperature heat source and working fluid. 
TL and Tc are the heat sink temperature and cool working 
fluid temperature (K), respectively, and kL is the heat 
conductance (kW/K) between the low temperature heat sink 
and working fluid.  
Three decision variables have been chosen for our study, 
which are as follows: 
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For choosing the best Pareto optimal solution, a 
quantity measure index known as deviation index is 
evaluated. The deviation index defines the deviation of each 

solution from the ideal and non-ideal solutions and can be 
calculated as follows [10]: 

( ) ( ) ( )2
,

2
,

2
, idealnnidealnnidealnn MAWMAWEPCEPCd −+−+−=+ ηη                                                                    (50) 
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2

,
2

, idealnonnnidealnonnnn MAWMAWEPCEPCd
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−
ηη     

( ) ( )−+

+

+
=

dd

d
d                                                                                                                                        (51)  

The next section presents the application of the MO-
SAMP Jaya algorithm for the design optimization of 
selected thermal devices namely TEC, irreversible HP, 
PFHE and two basic thermal cycles namely transcritical 
cycle, and irreversible Carnot power cycle. 

IV. RESULTS AND DISCUSSION  

A. THERMO-ELECTRIC COOLER 

The results obtained by using MO-SAMP Jaya algorithm 
are presented below. Two different case studies namely 
electrically separated and eclectically connected are 
considered. Table 1 presents the results obtained by MO-
SAMP Jaya algorithm and their comparison for the thermal 
performance optimization of two-stage electrically 
separated TEC. Table shows the comparison of results for 
single objective optimization. It can be observed from this 
table that the results obtained by using MO-SAMP Jaya 
algorithm are better as compared to the results of GA [14], 
PSO, ABC, TLBO, modified-TLBO [19] and CRO 
algorithms [20] for each value of RSt. When the value of 
RSt  = 0.02 cm2 K/W is considered. The value of COP 
obtained by MO-SAMP Jaya algorithm is increased by 
1.808%, 1.29%, 0.775%, 0.775%, 0.775% and 4.392% as 
compared to the results of GA, PSO, ABC, TLBO, 
MOTLBO and CRO algorithms. Subsequently, the value 
cooling capacity is increased by 4.28%, 0.697%, 0.646%, 
0.608%, 0.608% and 3.90% as compared to the results of 
GA [14], PSO, ABC, TLBO, modified-TLBO [19] and 
CRO [20] algorithms.  

When the value of RSt = 0.2 cm2 K/W is considered. The 
value of COP obtained by MO-SAMP Jaya algorithm is 
increased by 5.74%, 1.705%, 1.705%, 1.705%, 1.705% and 
6.64% as compared to the results of [14], PSO, ABC, 
TLBO, modified-TLBO [19] and CRO [20] algorithms.. 
Subsequently, the value cooling capacity is increased by 
6.6473%, 1.495%, 1.495%, 1.495%, 1.495% and 6.14% as 
compared to the results of GA [14], PSO, ABC, TLBO, 
modified-TLBO [19] and CRO [20] algorithms.. When the 
value of RSt  = 0.02 cm2 K/W is considered. The value of 
COP obtained by MO-SAMP Jaya algorithm is increased 
by 7.253%, 1.612%, 0.868%, 0.564%, 0.54% and 4.213% 
as compared to the results of GA [14], PSO, ABC, TLBO, 
modified-TLBO [19] and CRO [20] algorithms. 

Subsequently, the value cooling capacity is increased by 
7.93%, 1.498%, 1.323%, 1.323%, 1.323 and 4.256% as 
compared to the results of GA [14], PSO, ABC, TLBO, 
modified-TLBO [19] and CRO [20] algorithms.  

Table 2 presents the results obtained by using MO-SAMP 
Jaya algorithm and their comparison for the design 
optimization two-stage electrically connected TEC. Table 
shows the comparison of results for single objective 
optimization. It can be observed from this table that the 
results obtained by using MO-SAMP Jaya algorithm are 
better as compared to the results of GA [14], PSO, ABC, 
TLBO, modified-TLBO [19] and CRO [20] algorithms for 
each value of RSt. When the value of RSt  = 0.02 cm2 K/W is 
considered. The value of COP obtained by MO-SAMP Jaya 
algorithm is increased by 3.45%, 2.94%, 2.94%, 2.94% and 
2.94% as compared to the results of PSO, ABC, TLBO and 
modified-TLBO [19] algorithms. Subsequently, the value 
cooling capacity is increased by 2.81%, 0.435%, 0.435%, 
0.435% and 0.355% as compared to the results of GA [14], 
PSO, ABC, TLBO and modified-TLBO [19] algorithms. 

When the value of RSt  = 0.2 cm2 K/W is considered. The 
value of COP obtained by MO-SAMP Jaya algorithm is 
increased by 9.735%, 3.867%, 3.867%, 2.965% and 
2.965% as compared to the results of GA [14], PSO, ABC, 
TLBO and modified-TLBO [19] algorithms. Subsequently, 
the value cooling capacity is increased by 3.39%, 1.64%, 
1.524%, 1.524% and 1.524% as compared to the results of 
GA [14], PSO, ABC, TLBO and modified-TLBO [19] 
algorithms. When the value of RSt  = 2 cm2 K/W is 
considered. The value of COP obtained by MO-SAMP Jaya 
algorithm is increased by 6.16%, 1.08%, 1.08%, 1.08% and 
1.08% as compared to the results of GA [14], PSO, ABC, 
TLBO and modified-TLBO [19] algorithms. Subsequently, 
the value cooling capacity is increased by 3.39%, 1.287%, 
0.780%, 0.6498% and 0.6498% as compared to the results 
of GA [14], PSO, ABC, TLBO and modified-TLBO [19] 
algorithms. 

Table 3 presents the specification of sample design points 
obtained by MO-SAMP Jaya algorithm and its comparison 
with modified-TLBO for the thermal performance 
optimization of two-stage electrically separated TEC. It can 
be observed from this table that results obtained by using 
MO-SAMP Jaya algorithm is better at each design point 
with respect to both the objective as compared to the design 
points suggested by modified-TLBO.  
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TABLE 1 

OPTIMIZATION RESULTS OF INDIVIDUAL OBJECTIVES FOR ELECTRICALLY SEPARATED TEC 

 GA [14] PSO [19] ABC [19] TLBO [19] Modified-TLBO [19] CRO [20] MO-SAMP Jaya 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 0.02 cm2 K/W               

Ih (A) 8.613 6.611 9.2671 7.0044 9.3978 6.7299 9.3077 6.7299 9.3077 6.7299 7.596 7.376 9.13323 6.80538 

Ic(A) 7.529 7.592 7.8411 7.3077 7.6967 7.581 7.7146 7.581 7.7146 7.581 9.290 6.949 7.44642 7.23250 

r 5.25 6.143 5.25 5.25 5.25 6.143 5.25 6.143 5.25 6.143 5.37 6.023 5.29626 5.87360 

Nc 8 7 8 8 8 7 8 7 8 7 8 7 8 7 

Qc,c (W) 0.755 – 0.7833 0.6141 0.7837 0.5968 0.784 0.5968 0.784 0.5968 0.758 0.6006 0.78880 0.61851 

COP – 0.019 0.015 0.0191 0.015 0.0192 0.015 0.0192 .015 0.0192 - 0.0185 0.01532 0.01938 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 0.2 cm2 K/W               

Ih (A) 8.652 6.769 9.3278 6.5338 9.3278 6.5338 9.3278 6.5338 9.3278 6.5338 7.825 7.588 9.35051 6.71639 

Ic(A) 7.805 7.465 8.0121 7.8165 8.0121 7.8165 8.0121 7.8165 8.0121 7.8165 9.311 6.790 7.51670 7.28610 

r 5.25 6.143 5.25 6.143 5.25 6.143 5.25 6.143 5.25 6.143 5.34 6.011 5.02678 5.71820 

Nc 8 7 8 7 8 7 8 7 8 7 8 7 8 8 

Qc,c (W) 0.838 – 0.8826 0.6544 0.8826 0.6544 0.8826 0.6544 0.8826 0.6544 0.8409 0.6553 0.89600 0.68259 

COP – 0.021 0.0168 0.0219 0.0168 0.0219 0.0168 0.0219 0.0168 0.0219 - 0.0208 0.01715 0.02228 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 2 cm2 K/W               

Ih (A) 9.29 5.204 9.413 4.8169 9.609 4.5779 9.609 4.4163 9.609 4.4163 11 10.690 9.625534 4.549142 

Ic(A) 9.41 9.889 10.8829 10.2275 11 10.4732 11 10.722 11 10.722 9.592 4.576 11.0000 10.911666 

r 4.556 5.25 4.556 6.143 4.556 7.333 4.556 7.333 4.556 7.333 4.703 7.33 4.614992 7.330000 

Nc 9 8 9 7 9 6 9 6 9 6 9 6 9 6 

Qc,c (W) 2.103 – 2.25 1.3329 2.254 1.2381 2.254 1.201 2.254 1.201 2.187 1.209 2.284225 1.249334 

COP – 0.061 0.0406 0.0647 0.0393 0.0652 0.0393 0.0654 0.0393 0.0654 - 0.063 0.039678 0.065771 

 

. 
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TABLE 2 

OPTIMIZATION RESULTS OF INDIVIDUAL OBJECTIVES FOR ELECTRICALLY CONNECTED TEC 

 GA [14] PSO [19] ABC [19] TLBO [19] Modified-TLBO [19] MO-SAMP Jaya 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 0.02 cm2 K/W             

Ih (A) 8.415 7.27 8.5737 7.1558 8.5737 7.1558 8.5737 7.1558 8.5737 7.1558 8.36134 6.99632 

Ic(A) 8.415 7.27 8.5737 7.1558 8.5737 7.1558 8.5737 7.1558 8.5737 7.1558 8.36134 6.99632 

r 6.143 5.25 6.143 5.25 6.143 5.25 6.143 5.25 6.143 5.25 6.09197 5.56300 

Nc 7 8 7 8 7 8 7 8 7 8 7 8 

Qc,c (W) 0.73 – 0.7479 0.6405 0.7479 0.6405 0.7479 0.6405 0.7479 0.6405 0.75117 0.64292 

COP – 0.019 0.0159 0.0191 0.0159 0.0191 0.0159 0.0191 0.0159 0.0191 0.01666 0.01968 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 0.2 cm2 K/W             

Ih (A) 8.663 7.135 8.5978 7.4962 8.7375 7.4962 8.7375 7.1681 8.7375 7.1681 8.475959 6.992917 

Ic(A) 8.663 7.135 8.5978 7.4962 8.7375 7.4962 8.7375 7.1681 0.7375 7.1681 8.475959 6.992917 

r 6.143 5.25 6.143 5.25 6.143 5.25 6.143 6.143 6.143 6.143 5.837901 5.316666 

Nc 7 8 7 8 7 8 7 8 7 8 7 8 

Qc,c (W) 0.818 – 0.8328 0.7157 0.8338 0.7157 0.8338 0.7098 0.8338 0.7098 0.846712 0.716019 

COP – 0.02 0.0177 0.0213 0.0172 0.0213 0.0172 0.0215 0.0172 0.0215 0.018511 0.022157 

 Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP Max Qc,c Max COP 

RSj = 2 cm2 K/W             

Ih (A) 9.482 7.133 9.7236 7.305 10.1207 7.305 10.387 7.305 10.387 7.305 10.162302 7.239582 

Ic(A) 9.482 7.133 10.4581 7.305 10.1207 7.305 10.387 7.305 10.387 7.305 10.162302 7.239582 

r 4 4.555 4 3.546 4 3.546 4.556 3.546 4.556 3.546 4.277858 3.713758 

Nc 10 9 10 11 10 11 9 11 9 11 9 11 

Qc,c (W) 2.123 – 2.2614 1.6947 2.273 1.6947 2.276 1.6947 2.276 1.6947 2.290888 1.717034 

COP – 0.048 0.0398 0.0506 0.0374 0.0506 0.0354 0.0506 0.0354 0.0506 0.037107 0.051153 
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TABLE 3 

OPTIMAL OUTPUT VARIABLES FOR A TO E PARETO OPTIMAL FRONT SHOWN IN FIGURE 3 

Output variable Design point  

 A B C D E 

RSj= 0.02cm2/KW           

 
Modified-TLBO 

[19] 

MO-SAMP 

Jaya  

Modified-TLBO 

[19] 

MO-SAMP 

Jaya  

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Ih (A) 6.7299 6.80538 7.4285 7.34708 8.0476 7.99578 8.7347 8.58389 9.3077 9.13323 

Ic(A) 7.581 7.23250 7.4018 7.33201 7.5229 7.16217 7.6351 7.22088 7.7146 7.44642 

r 6.143 5.87360 5.25 5.50324 5.25 5.32409 5.25 5.26368 5.25 5.29626 

Nc 7  8  8  8  8  

Qc,c (W) 0.5968 0.61851 0.6788 0.68766 0.7375 0.74620 0.7745 0.77809 0.784 0.78880 

COP 0.0192 0.01938 0.0189 0.01914 0.018 0.01813 0.0165 0.01681 0.015 0.01532 

RSj= 0.2cm2/KW           

 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 

Ih (A) 6.5338 6.71639 7.0084 7.09158 7.5076 7.54155 8.0907 8.18007 9.3278 9.35051 

Ic(A) 7.8165 7.28610 7.5756 7.26253 7.6925 7.20519 7.8118 7.25475 8.0121 7.51670 

r 6.143 5.71820 5.25 5.37315 5.25 5.35857 5.25 4.92489 5.25 5.02678 

Nc 7  8  8  8  8  

Qc,c (W) 0.6544 0.68259 0.717 0.73706 0.782 0.79337 0.8368 0.85187 0.8826 0.89600 

COP 0.0219 0.02228 0.0217 0.02214 0.0212 0.02161 0.0201 0.02045 0.0168 0.01715 

RSj= 0.2cm2/KW           

 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 

Ih (A) 4.4163 4.549142 5.5156 5.483569 6.9828 7.032462 7.9011 7.833480 9.609 9.625534 

Ic(A) 10.722 10.911666 10.759 10.901168 10.866 10.919350 10.581 10.876827 11 11.000000 

r 7.333 7.330000 6.143 6.195861 5.25 5.186034 4.556 4.881261 4.556 4.614992 

Nc 6  7  8  9  9  

Qc,c (W) 1.201 1.249334 1.5826 1.586952 1.9754 2.011373 2.1289 2.153943 2.254 2.284225 

COP 0.0654 0.065771 0.0631 0.063862 0.0559 0.056329 0.0506 0.051445 0.0393 0.039678 
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TABLE 4 

OPTIMAL OUTPUT VARIABLES FOR A TO E PARETO OPTIMAL FRONT SHOWN IN FIGURE 4 

Output variable Design point     

 A B C D E 

RSj= 0.02cm2/KW           

 
Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Modified-TLBO 

[19] 

MO-SAMP 

Jaya 

Ih (A) 7.1558 11.00000 7.4227 11.00000 7.7519 11.00000 8.002 11.00000 8.5737 11.00000 

Ic(A) 7.1558 6.99632 7.4227 7.33878 7.7519 7.68009 7.6351 7.93147 8.5737 8.36134 

r 5.25 5.56300 5.25 5.59720 5.25 5.62531 5.25 5.85668 6.143 6.09197 

Nc 8  8  8  8  7  

Qc,c (W) 0.6405 0.64292 0.6785 0.69136 0.7127 0.72461 0.7294 0.74105 0.7479 0.75117 

COP 0.0191 0.01968 0.0189 0.01944 0.0184 0.01879 0.0178 0.01810 0.0159 0.01666 

RSj= 0.2cm2/KW           

 

Modified-TLBO 
MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 

Ih (A) 7.1681 4.000000 7.4634 4.000000 7.7568 9.322877 8.223 11.000000 8.7375 8.016163 

Ic(A) 7.1681 6.992917 7.4634 7.409904 7.7568 7.723920 8.223 8.157521 8.7375 8.475959 

r 6.143 5.316666 5.25 5.489646 5.25 5.572283 5.25 5.675717 6.143 5.837901 

Nc 8  8  8  8  7  

Qc,c (W) 0.7098 0.716019 0.7563 0.781089 0.7915 0.814710 0.825 0.841147 0.8338 0.846712 

COP 0.0215 0.022157 0.0209 0.021763 0.0204 0.021067 0.0191 0.019718 0.0172 0.018511 

RSj= 2cm2/KW           

 

Modified-TLBO 
MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 
Modified-TLBO 

MO-SAMP 

Jaya 

Ih (A) 7.305 6.270143 7.77 5.891394 8.285 6.028879 9.32 6.552738 10.387 4.000000 

Ic(A) 7.305 7.239582 7.77 7.760746 8.285 8.223616 9.32 9.252285 10.387 10.162302 

r 3.546 3.713758 3.546 3.714130 3.546 3.681142 4 3.985238 4.556 4.277858 

Nc 11  11  11  10  9  

Qc,c (W) 1.6947 1.717034 1.868 1.910634 2.02 2.043366 2.2258 2.240121 2.276 2.290888 

COP 0.0506 0.051153 0.0499 0.050397 0.0481 0.048739 0.0426 0.043095 0.0354 0.037107 
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Fig. 7 presents the distribution of Pareto optimal curve 
obtained by MO-SAMP Jaya algorithm and its comparison 
with modified-TLBO for electrically separated TEC with 
different values of RSt. It can be observed from this figure 
that the Pareto optimal solutions are uniformly distributed 
and clearly showing the conflicting nature of COP and 
cooling capacity for TEC. Furthermore, it can also be 
observed that the Pareto optimal solutions obtained by MO-
SAMP Jaya algorithm are dominating the Pareto optimal 
solutions suggested by modified-TLBO for each value of 
RSt. 

Table 4 presents the specification of sample design points 
obtained by MO-SAMP Jaya algorithm and its comparison 
with the modified-TLBO for design optimization of two-
stage electrically connected TEC. Table shows the 
comparison of results for multiobjective optimization. It 
can be observed from this table that results obtained by 
using MO-SAMP Jaya algorithm is better at each design 
point with respect to both the objective as compared to the 
design points suggested by modified-TLBO. Fig. 8 presents 
the distribution of Pareto optimal curve obtained by MO-
SAMP Jaya algorithm and comparison for electrically 
connected TEC with values of RSt.  

 
(a) 

 
(b) 

 
(c) 

FIGURE 7. The distribution of Pareto-optimal points solutions for 

electrically separated TEC using the modified TLBO algorithm and MO-

SAMP Jaya algorithm (a)RSj= 0.02 cm
2
 K/W, (b)RSj=0.2 cm

2
 K/W, and 

(c)RS=2 cm
2
 K/W. 

B. TWO STAGE IRREVERSIBLE HEAT PUMP 

Table 5 presents the set of nondominated solutions obtained 
by using MO-SAMP Jaya algorithm for multiobjective 
optimization of irreversible heat pump. A designer may 

select any solution based on the application requirement.  
 

TABLE 5 

 SETS OF NONDOMINATED SOLUTIONS FOR TWO-STAGE IRREVERSIBLE HEAT PUMP 

S.No.  Tx (K) Tz (K) u K COP Qh (kW/m2) F 

1 4.12E+02 2.66E+02 9.72E-01 1.00E+00 2.27E+00 2.08E+00 1.08E+00 

2 4.49E+02 2.50E+02 9.04E-01 1.00E-01 1.80E+00 8.17E+00 1.76E+00 

3 4.16E+02 2.66E+02 9.70E-01 1.00E-01 2.24E+00 2.28E+00 2.04E+00 

4 4.12E+02 2.66E+02 9.72E-01 1.82E-01 2.27E+00 2.08E+00 1.89E+00 

5 4.49E+02 2.50E+02 9.19E-01 6.02E-01 1.83E+00 7.60E+00 1.60E+00 

6 4.45E+02 2.50E+02 9.04E-01 1.00E+00 1.81E+00 7.89E+00 1.48E+00 

7 4.41E+02 2.52E+02 9.22E-01 1.00E-01 1.88E+00 6.70E+00 1.83E+00 

8 4.26E+02 2.55E+02 9.32E-01 1.00E-01 1.98E+00 5.11E+00 1.91E+00 

9 4.31E+02 2.57E+02 9.42E-01 1.00E-01 1.99E+00 4.94E+00 1.92E+00 

10 4.23E+02 2.62E+02 9.54E-01 1.00E+00 2.11E+00 3.57E+00 1.33E+00 

11 4.26E+02 2.60E+02 9.53E-01 1.00E+00 2.08E+00 3.93E+00 1.36E+00 
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12 4.39E+02 2.51E+02 9.04E-01 7.09E-01 1.84E+00 7.33E+00 1.56E+00 

13 4.37E+02 2.51E+02 9.04E-01 1.00E-01 1.86E+00 7.04E+00 1.81E+00 

14 4.39E+02 2.55E+02 9.04E-01 1.00E+00 1.87E+00 6.80E+00 1.47E+00 

15 4.49E+02 2.55E+02 9.04E-01 4.68E-01 1.84E+00 7.32E+00 1.64E+00 

16 4.33E+02 2.56E+02 9.19E-01 1.00E+00 1.93E+00 5.87E+00 1.45E+00 

17 4.31E+02 2.60E+02 9.54E-01 1.00E-01 2.05E+00 4.21E+00 1.95E+00 

18 4.49E+02 2.50E+02 9.31E-01 6.55E-01 1.85E+00 7.10E+00 1.58E+00 

19 4.35E+02 2.55E+02 9.30E-01 1.00E-01 1.94E+00 5.77E+00 1.87E+00 

20 4.30E+02 2.56E+02 9.36E-01 1.00E+00 1.99E+00 5.09E+00 1.43E+00 

21 4.44E+02 2.53E+02 9.28E-01 1.26E-01 1.88E+00 6.58E+00 1.82E+00 

22 4.34E+02 2.56E+02 9.38E-01 3.33E-01 1.97E+00 5.31E+00 1.75E+00 

23 4.31E+02 2.56E+02 9.23E-01 2.78E-01 1.95E+00 5.60E+00 1.78E+00 

24 4.14E+02 2.64E+02 9.66E-01 1.00E+00 2.22E+00 2.45E+00 1.17E+00 

25 4.24E+02 2.61E+02 9.40E-01 1.00E-01 2.07E+00 4.02E+00 1.97E+00 

26 4.19E+02 2.64E+02 9.66E-01 1.00E+00 2.19E+00 2.75E+00 1.22E+00 

27 4.25E+02 2.60E+02 9.44E-01 1.00E-01 2.06E+00 4.14E+00 1.96E+00 

28 4.27E+02 2.57E+02 9.35E-01 1.00E+00 2.00E+00 4.84E+00 1.42E+00 

29 4.44E+02 2.50E+02 9.09E-01 3.82E-01 1.83E+00 7.69E+00 1.67E+00 

30 4.16E+02 2.65E+02 9.65E-01 1.00E+00 2.22E+00 2.51E+00 1.18E+00 

31 4.44E+02 2.50E+02 9.04E-01 9.79E-01 1.82E+00 7.79E+00 1.48E+00 

32 4.36E+02 2.54E+02 9.45E-01 1.77E-01 1.96E+00 5.34E+00 1.84E+00 

33 4.35E+02 2.57E+02 9.23E-01 3.47E-01 1.94E+00 5.67E+00 1.74E+00 

34 4.32E+02 2.54E+02 9.34E-01 5.61E-01 1.95E+00 5.49E+00 1.63E+00 

35 4.33E+02 2.55E+02 9.16E-01 3.70E-01 1.92E+00 5.98E+00 1.72E+00 

36 4.45E+02 2.53E+02 9.17E-01 8.42E-01 1.86E+00 6.99E+00 1.52E+00 

37 4.44E+02 2.52E+02 9.24E-01 5.53E-01 1.87E+00 6.88E+00 1.62E+00 

38 4.19E+02 2.64E+02 9.66E-01 8.50E-01 2.19E+00 2.70E+00 1.30E+00 

39 4.30E+02 2.56E+02 9.39E-01 1.00E+00 1.99E+00 5.01E+00 1.42E+00 

40 4.41E+02 2.52E+02 9.04E-01 1.18E-01 1.85E+00 7.28E+00 1.79E+00 

41 4.27E+02 2.54E+02 9.24E-01 1.00E-01 1.95E+00 5.46E+00 1.88E+00 

42 4.27E+02 2.60E+02 9.35E-01 4.89E-01 2.02E+00 4.56E+00 1.66E+00 

43 4.45E+02 2.56E+02 9.29E-01 2.08E-01 1.90E+00 6.26E+00 1.79E+00 

44 4.24E+02 2.60E+02 9.54E-01 1.00E-01 2.09E+00 3.82E+00 1.98E+00 

45 4.15E+02 2.66E+02 9.65E-01 1.00E+00 2.23E+00 2.40E+00 1.15E+00 

46 4.19E+02 2.63E+02 9.44E-01 1.00E-01 2.12E+00 3.43E+00 1.99E+00 

47 4.27E+02 2.57E+02 9.47E-01 4.32E-01 2.03E+00 4.42E+00 1.70E+00 

48 4.23E+02 2.62E+02 9.63E-01 6.36E-01 2.14E+00 3.21E+00 1.50E+00 

49 4.40E+02 2.52E+02 9.32E-01 7.03E-01 1.90E+00 6.36E+00 1.57E+00 

50 4.30E+02 2.58E+02 9.38E-01 5.27E-01 2.00E+00 4.88E+00 1.63E+00 

 
Fig. 9 presents the Pareto optimal curve obtained by using 
MO-SAMP Jaya algorithm for multiobjective optimization 
of two-stage irreversible heat pump.  

 
Figure 9.  Pareto optimal curves for two-stage irreversible heat pump. 

Table 6 presents the comparison of results obtained by 
MO-SAMP Jaya algorithm with other methods like 
TOPSIS, LINMAP and fuzzy logic which are based on the 
MO-GA algorithm. It is to be noted that the set of 
nondominated solutions obtained by MO-SAMP Jaya 
algorithm are not found superior with respect to all 
objectives as compared to other methods used by previous 
researchers. Therefore, a well known multi-attribute 
decision making method known as weighted sum method 
[9] is used for selecting the best solution. In this, a 
normalized score is calculated for each method by 
considering equal weights of each objective which are 
same as used by previous researchers. The normalized 

score (Z) is shown in Table 6. 
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TABLE 6 
COMPARISON OF RESULTS FOR IRREVERSIBLE HEAT PUMP 

Method Tx (K) Tz (K) u K COP qh (kW/m2) F Z Rank 
TOPSIS [22] 447.340 251.110 0.911 0.251 1.828 7.640 1.724 0.915 2 

LINMAP [22] 441.754 250.437 0.917 0.202 1.854 7.144 1.762 0.904 3 

Fuzzy logic [22] 428.853 257.901 0.940 0.221 2.011 4.734 1.839 0.836 4 

MO-SAMP Jaya 448.800 249.600 0.904 0.100 1.802 8.168 1.763 0.941 1 

 

It can be observed from Table 6 that the results obtained by 
MO-SAMP Jaya algorithm have obtained highest score 
among all four methods. Hence, MO-SAMP Jaya algorithm 
has given rank 1. Similarly, TOPSIS, LINMAP and Fuzzy 
logic methods get the 2nd, 3rd, and 4th ranks.  It can be 
concluded based on the rank of the solutions that the MO-
SAMP Jaya algorithm has performed better for 
multiobjective optimization of irreversible heat pump as 
compared to the NSGA [22].  

C. PLATE-FIN HEAT EXCHANGER 

In this work conflicting objectives namely minimization of 
the total cost (annual investment cost and operational cost), 
total surface area, total pressure drop and maximization of 
heat exchanger effectiveness are optimized simultaneously. 
The sets of nondominated solutions obtained by MO-SAMP 
Jaya algorithm are given in Table 7.  

TABLE 7 
SETS OF NONDOMINATED SOLUTIONS  FOR PFHE DESIGN 

S.No. Lh (m) Lc (m) b (m) tf (m) n (m
_1

) x (m) Np Ctot ($) Atot (m
2
) O(x) ε 

1 0.99741 1.00000 0.00481 0.00010 395.28 0.00795 141 1139.83 1332.32 0.168 0.884 

2 0.50378 0.32816 0.00481 0.00010 517.53 0.00453 141 1796.29 274.66 0.413 0.821 

3 0.22603 0.19959 0.00481 0.00010 1000.00 0.00227 141 5527.10 132.92 1.489 0.826 

4 0.98774 0.80450 0.00481 0.00010 1000.00 0.00236 141 4550.79 2341.32 1.027 0.943 

5 1.00000 0.86407 0.00481 0.00010 1000.00 0.00685 141 3319.73 2545.88 0.690 0.939 

6 0.69824 0.74735 0.01 0.00010 255.93 0.003382 71 967.84 450.71 0.114 0.821 

7 0.62133 0.82815 0.00481 0.00010 399.20 0.00784 141 999.87 692.70 0.191 0.854 

8 1.00000 0.49223 0.00481 0.00010 1000.00 0.00494 141 5078.42 1450.31 1.134 0.923 

9 0.30413 0.99755 0.00481 0.00010 719.31 0.00572 141 3003.34 667.08 0.920 0.878 

10 0.57734 0.58431 0.00481 0.00010 431.95 0.00458 141 1203.23 483.57 0.257 0.846 

11 0.42559 0.29541 0.00481 0.00010 1000.00 0.00506 141 4299.86 370.43 1.067 0.870 

12 0.49324 0.35620 0.00481 0.00010 1000.00 0.00213 141 5440.86 517.67 1.362 0.893 

13 1.00000 0.91939 0.00481 0.00010 796.21 0.00811 141 2330.52 2209.86 0.442 0.926 

14 0.20532 0.30350 0.00481 0.00010 1000.00 0.00601 141 3543.06 183.60 1.046 0.832 

15 0.25587 0.31076 0.00481 0.00010 1000.00 0.00226 141 4776.57 234.28 1.360 0.858 

16 0.23274 0.32735 0.00481 0.00010 955.29 0.00532 141 3337.08 215.41 0.967 0.840 

17 1.00000 1.00000 0.00481 0.00010 680.17 0.00383 141 2263.06 2094.56 0.438 0.925 

18 0.45315 0.25975 0.00481 0.00010 1000.00 0.00511 141 4938.56 346.80 1.204 0.867 

19 0.99316 0.82509 0.00481 0.00010 1000.00 0.00347 141 4027.88 2414.42 0.884 0.942 

20 1.00000 0.77034 0.00481 0.00010 879.97 0.00693 141 2892.57 2023.47 0.588 0.928 

21 1.00000 0.54828 0.00481 0.00010 663.99 0.00605 141 2485.56 1124.78 0.507 0.897 

22 0.87965 0.34698 0.00481 0.00010 913.15 0.00804 141 4731.81 828.70 1.069 0.895 

23 0.57417 0.88495 0.00481 0.00010 781.11 0.00670 141 2199.24 1200.87 0.526 0.906 

24 0.22423 0.22664 0.00481 0.00010 1000.00 0.00349 141 4430.04 149.74 1.218 0.827 

25 0.52146 0.76799 0.00481 0.00010 1000.00 0.00654 141 3091.34 1179.96 0.799 0.915 

26 0.96373 0.97140 0.00481 0.00010 657.74 0.00653 141 1915.61 1904.93 0.351 0.917 

27 1.00000 0.86825 0.00481 0.00010 874.04 0.00742 141 2709.47 2266.93 0.538 0.931 

28 0.52956 0.83296 0.00481 0.00010 789.10 0.00515 141 2386.10 1051.88 0.600 0.903 

29 1.00000 0.84350 0.00481 0.00010 1000.00 0.00741 141 3280.53 2485.29 0.679 0.938 

30 0.77697 0.88539 0.00481 0.00010 403.31 0.00778 141 1063.88 933.62 0.181 0.869 

31 0.34672 0.84272 0.00481 0.00010 886.51 0.00394 141 3676.11 772.58 1.109 0.898 

32 0.99793 0.35784 0.00481 0.00010 524.88 0.00597 141 2610.14 600.27 0.558 0.860 

33 0.37801 0.32965 0.00481 0.00010 980.02 0.00699 141 3330.76 360.51 0.848 0.865 

34 0.99902 0.95277 0.00481 0.00010 410.82 0.00798 141 1175.90 1310.84 0.177 0.884 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2885823, IEEE Access

 

VOLUME XX, 2017 1 

35 0.43235 0.40993 0.00481 0.00010 1000.00 0.00214 141 4754.30 522.19 1.245 0.894 

36 0.36974 0.49088 0.00481 0.00010 1000.00 0.00411 141 3623.18 534.78 1.000 0.888 

37 1.00000 0.59425 0.00481 0.00010 849.89 0.00534 141 3387.62 1513.33 0.720 0.919 

38 0.94180 1.00000 0.00481 0.00010 675.36 0.00562 141 2021.10 1960.58 0.382 0.920 

39 0.72999 0.83698 0.00481 0.00010 1000.00 0.00275 141 3937.98 1800.22 0.960 0.935 

40 0.99750 0.79486 0.00481 0.00010 1000.00 0.00600 141 3534.46 2336.13 0.748 0.938 

41 0.55683 0.99242 0.00481 0.00010 826.01 0.00527 141 2616.91 1372.13 0.663 0.914 

42 1.00000 0.62081 0.00481 0.00010 839.77 0.00422 141 3457.19 1564.22 0.740 0.921 

43 0.94162 0.89588 0.00481 0.00010 908.39 0.00439 141 3150.49 2279.70 0.671 0.936 

44 0.65537 0.66442 0.00481 0.00010 407.80 0.00649 141 1065.43 596.17 0.207 0.850 

45 1.00000 0.77511 0.00481 0.00010 855.60 0.00669 141 2802.79 1985.69 0.566 0.927 

46 1.00000 0.91225 0.00481 0.00010 518.59 0.00798 141 1460.47 1518.19 0.241 0.898 

47 0.99973 0.95711 0.00481 0.00010 536.00 0.00770 141 1514.69 1636.77 0.251 0.903 

48 0.48928 0.35110 0.00481 0.00010 526.00 0.00489 141 1685.51 289.28 0.389 0.824 

49 0.99782 0.96679 0.00481 0.00010 616.69 0.00805 141 1731.97 1857.49 0.299 0.912 

50 0.42640 0.80374 0.00481 0.00010 1000.00 0.00429 141 3745.47 1009.78 1.067 0.912 

 
As, the multiobjective design optimization is not carried out 
by the previous researchers. Hence, the results cannot be 
compared. The best compromise solution obtained by MO-
SAMP Jaya algorithm is presented in Table 8.  

 
TABLE 8 

MULTIOBJECTIVE OPTIMIZATION RESULTS OF  MO-SAMP JAYA 
ALGORITHM 

Parameters Value 

Lh (m) 0.69824 

Lc (m) 0.74735 

b (m) 0.01 

tf (m) 0.00015387 

n (m_1) 255.93 

x (m) 0.003382 

Np 71 

Dh (mm) 5.2518 

Gc (kg/m2 s) 4.2061 

Reh 433.18 

Rec 657.42 

fh 0.1164 

fc 0.087775 

∆Ph (kPa) 0.53782 

∆Pc (kPa) 0.45855 

jh 0.023993 

hh (W/m2 K) 109.73 

jc 0.019836 

hc (W/m2 K) 114.21 

   ε 0.82055 

Ah (m
2) 223.78 

Ac (m
2) 226.93 

At (m
2) 450.71 

Cin ($/year) 572.91 

Cop ($/year) 394.93 

Ctot ($/year) 967.84 

   O(x) 0.11393 

 
D. TRANSCRITICAL CYCLES 

1. OPTIMIZATION OF A MODIFIED TRANSCRITICAL 

CO2 REFRIGERATION CYCLE 

Table 9 presents the set of nondominated solutions obtained 
by MO-SAMP Jaya algorithm for the multiobjective design 
optimization of modified CO2 refrigeration cycle with the 
objectives of maximization of cooling rate and 
minimization of total cost.  

TABLE 9 
SETS OF NONDOMINATED SOLUTIONS FOR REFRIGERATION CYCLE 

 S.No. Pgc (bar) Tgc (°C) Te (°C) α qcooling (kW)  Cost ($/year)  
1 125.46 35.00 -23.08 0.26 112.83 51211.66 

2 110.65 35.00 -24.25 0.31 112.70 46479.25 

3 131.30 35.00 -20.51 0.35 111.97 39707.91 

4 114.09 35.01 -22.02 0.26 112.73 48899.33 

5 114.15 35.00 -23.38 0.33 112.59 42618.78 

6 108.73 35.00 -22.35 0.50 109.69 24140.80 

7 118.17 35.04 -21.55 0.38 111.96 36751.03 

8 110.87 35.00 -22.38 0.34 112.49 41233.66 

9 117.56 35.00 -21.61 0.38 111.93 36097.51 

10 109.58 35.00 -23.61 0.41 111.65 33992.19 

11 104.34 35.00 -22.31 0.61 105.98 13850.44 

12 104.70 35.09 -20.93 0.47 109.91 25659.26 

13 105.49 35.06 -23.42 0.42 111.24 32246.42 

14 109.26 35.19 -22.08 0.52 108.73 21751.82 

15 106.68 35.01 -19.68 0.58 106.67 16042.56 

16 97.58 35.00 -23.74 0.71 100.24 3772.46 

17 98.19 35.08 -21.45 0.63 104.31 11295.95 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2885823, IEEE Access

 

VOLUME XX, 2017 1 

18 108.53 35.00 -22.41 0.48 110.32 26586.71 

19 114.93 35.00 -24.14 0.44 111.07 31528.47 

20 103.65 35.00 -24.06 0.68 102.46 7332.79 

21 110.08 35.04 -23.25 0.42 111.53 33263.64 

22 103.68 35.00 -24.24 0.57 107.45 17710.43 

23 111.88 35.00 -21.10 0.51 109.25 23013.16 

24 104.67 35.22 -23.75 0.62 104.97 12490.20 

25 105.75 35.08 -21.24 0.42 110.98 30524.66 

26 105.23 35.05 -20.56 0.54 108.05 19220.63 

27 101.92 35.00 -19.21 0.49 108.85 22653.59 

28 104.83 35.00 -21.11 0.54 108.33 19735.26 

29 100.33 35.00 -25.28 0.70 100.67 4271.52 

30 104.93 35.21 -22.29 0.46 110.34 28010.92 

31 99.74 35.00 -18.92 0.60 105.19 13367.37 

32 101.01 35.00 -25.08 0.67 102.78 7766.61 

33 106.78 35.38 -20.88 0.61 105.26 13789.07 

34 104.00 35.19 -20.84 0.59 106.25 15132.49 

35 99.12 35.00 -26.28 0.71 99.92 3168.01 

36 99.63 35.02 -23.78 0.59 106.23 15018.00 

37 101.05 35.00 -25.30 0.64 104.11 10357.47 

38 104.34 35.00 -25.27 0.69 101.40 5823.49 

39 108.12 35.00 -20.50 0.43 110.94 29801.69 

40 107.40 35.00 -21.68 0.48 110.20 26030.15 

41 99.06 35.00 -23.72 0.68 102.14 6646.44 

42 102.91 35.00 -22.26 0.56 107.76 18168.30 

43 97.83 35.00 -24.84 0.73 98.65 1328.48 

44 104.24 35.00 -20.23 0.52 108.57 20694.16 

45 99.23 35.00 -30.00 0.73 98.12 1274.13 

46 104.61 35.00 -24.34 0.46 110.59 29162.56 

47 99.16 35.16 -22.24 0.72 99.21 2956.08 

48 116.34 35.02 -23.31 0.34 112.55 42430.81 

49 97.92 35.03 -27.81 0.69 100.91 5427.68 

50 122.42 35.00 -23.12 0.23 112.79 54204.21 

 
The comparison of results obtained by MO-SAMP Jaya algorithm with multiobjective genetic algorithm (MO-GA) is shown 
in Table 10. 

TABLE 10 
COMPARISON OF MULTIOBJECTIVE OPTIMIZATION RESULTS OF REFRIGERATION CYCLE 

 Design point Algorithm Pgc (bar) Tgc (°C) Te (°C) α qcooling (kW)  Cost ($/year)  

A 
MO-GA [37] 104.73 35.02 -3.43 0.80 87.25 6466.40 

MO-SAMP Jaya 99.23 35.00 -30.00 0.73 98.12 1274.13 

B 
MO-GA [37] 117.56 35.03 -9.23 0.52 102.29 17036.00 

MO-SAMP Jaya 104.34 35.00 -22.31 0.61 105.98 13850.44 

C 
MO-GA [37] 117.95 35.01 -9.61 0.14 104.94 40616.00 

MO-SAMP Jaya 104.61 35.00 -24.34 0.46 110.59 29162.56 
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It can be observed from Table 10 that the results obtained 
by MO-SAMP Jaya algorithm are found better as compared 
to the results of MO-GA with respect to all design points. 
Fig. 10 presents the Pareto optimal curves obtained by Jaya 
algorithm and its improved versions with a priori approach, 
MO-SAMP Jaya algorithm and the comparison with the 
results of MO-GA which show the superiority of design 
obtained by MO-SAMP Jaya as compared to MO-GA [37]. 

 
Fig. 10: Pareto optimal curves for refrigeration TC 
cycle  

2. OPTIMIZATION OF TRANSCRITICAL CO2 HEAT 

PUMP CYCLE  

Table 11 presents the sets of nondominated solutions for 

TC CO2 heat pump cycle for simultaneous heating and 

cooling applications. Fig. 11 presents the Pareto optimal 

curve obtained by MO-SAMP Jaya algorithm for heat 

pump cycle. As the previous researchers did not present any 

multiobjective optimization results, therefore, comparison 

with the previous results cannot be made. 

TABLE 11 

SETS OF NONDOMINATED SOLUTIONS FOR HEAT PUMP CYCLE 

S.No. tev (°C)  t3 (°C) COP  P (bar)  t2 (°C) 
1 10.000 30.000 11.750 72.680 72.330 

2 -10.000 48.500 0.466 120.721 143.758 

3 -10.000 48.500 0.466 120.721 143.758 

4 10.000 30.000 11.750 72.680 72.330 

5 -4.198 41.284 4.278 102.159 119.565 

6 -4.260 42.665 3.793 105.517 122.700 

7 8.325 34.473 9.384 83.631 85.951 

8 -6.962 45.862 2.104 113.754 133.627 

9 2.198 42.144 5.327 103.154 112.140 

10 0.197 38.840 6.045 95.507 107.521 

11 -10.000 47.304 0.931 117.794 141.391 

12 10.000 37.110 8.723 89.674 90.235 

13 10.000 33.064 10.322 79.980 80.280 

14 -3.717 45.023 3.086 111.158 126.905 

15 0.045 39.986 5.614 98.299 110.374 

16 1.174 38.154 6.493 93.687 104.526 

17 -3.091 44.802 3.296 110.514 125.503 

18 -7.220 46.531 1.805 115.431 135.399 

19 -2.862 35.033 6.811 86.876 102.897 

20 -0.449 48.500 2.472 119.097 129.106 

21 -8.874 43.484 2.542 108.290 131.659 

22 1.625 43.888 4.607 107.488 116.719 

23 -9.459 46.639 1.294 116.077 139.179 

24 10.000 48.500 4.666 117.321 114.958 

25 2.433 36.980 7.182 90.648 99.974 

26 10.000 43.106 6.636 104.162 103.857 

27 10.000 30.603 11.451 74.113 73.921 

28 5.896 31.966 9.946 78.057 82.793 

29 -8.893 47.607 1.047 118.347 140.215 

30 -1.559 38.299 5.867 94.502 108.812 

31 10.000 44.051 6.309 106.460 105.882 

32 2.158 34.564 8.052 84.898 94.476 

33 2.724 35.838 7.671 87.857 96.817 

34 10.000 32.383 10.621 78.352 78.542 

35 10.000 34.066 9.901 82.373 82.802 

36 9.628 46.220 5.457 111.807 110.869 

37 -6.170 48.500 1.271 120.069 137.685 

38 -2.994 46.346 2.760 114.261 128.549 

39 -9.403 46.093 1.507 114.735 137.977 

40 -3.595 39.845 4.898 98.577 115.411 

41 2.753 41.199 5.767 100.772 109.276 

42 -2.137 34.778 7.064 86.142 101.190 

43 -2.816 48.500 1.975 119.499 132.584 

44 -2.869 44.163 3.567 108.921 123.826 

45 -2.579 44.587 3.479 109.904 124.289 

46 -4.409 48.500 1.640 119.770 134.982 

47 7.624 31.801 10.384 77.370 80.091 

48 1.497 33.175 8.489 81.689 91.925 

49 -7.590 33.722 6.350 84.541 106.888 

50 0.151 34.976 7.466 86.227 98.344 

A designer may choose any solution as per the 
requirement from Table 11.  

 

E. IRREVERSIBLE CARNOT POWER CYCLE 

Table 12 presents the sets of Pareto optimal solutions 
obtained by using MO-SAMP Jaya algorithm.  

TABLE 12 
SETS OF PARETO OPTIMAL SOLUTIONS GIVEN BY MO-SAMP 

JAYA FOR IRREVERSIBLE CARNOT CYCLE 

S.No. x y z EPC η MAW (kW) 

1 0.6528 1.0000 1.8000 2.8656 0.3146 126.1631 

2 0.4500 1.0000 1.8000 7.2499 0.5275 88.5056 

3 0.4735 1.0000 1.8000 6.1564 0.5028 98.2047 

4 0.4684 1.0000 1.8000 6.3681 0.5082 96.2344 

5 0.4791 1.0000 1.8000 5.9465 0.4970 100.1987 

6 0.4949 1.0000 1.8000 5.4156 0.4804 105.4047 

7 0.4573 1.0000 1.8000 6.8701 0.5198 91.7382 

8 0.4896 1.0000 1.8000 5.5807 0.4859 103.7638 

9 0.6023 1.0000 1.8000 3.3740 0.3676 124.4165 

10 0.4542 1.0000 1.8000 7.0271 0.5231 90.3845 

11 0.4846 1.0000 1.8000 5.7493 0.4912 102.1080 

12 0.5303 1.0000 1.8000 4.5149 0.4432 114.5034 

13 0.5069 1.0000 1.8000 5.0721 0.4677 108.8642 

14 0.4818 1.0000 1.8000 5.8455 0.4941 101.1729 

15 0.5955 1.0000 1.8000 3.4555 0.3747 123.8962 

16 0.4529 1.0000 1.8000 7.0934 0.5244 89.8205 

17 0.4601 1.0000 1.8000 6.7358 0.5169 92.9170 

18 0.5108 1.0000 1.8000 4.9690 0.4636 109.9099 

19 0.5402 1.0000 1.8000 4.3141 0.4328 116.4930 

20 0.5500 1.0000 1.8000 4.1323 0.4225 118.2471 

21 0.4876 1.0000 1.8000 5.6484 0.4880 103.0965 

22 0.5354 1.0000 1.8000 4.4097 0.4379 115.5515 

23 0.5185 1.0000 1.8000 4.7805 0.4556 111.8232 

24 0.5546 1.0000 1.8000 4.0521 0.4177 118.9996 

25 0.4987 1.0000 1.8000 5.3008 0.4763 106.5551 

26 0.5258 1.0000 1.8000 4.6122 0.4479 113.5255 
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27 0.4502 1.0000 1.8000 7.2375 0.5273 88.6094 

28 0.4631 1.0000 1.8000 6.5964 0.5137 94.1586 

29 0.5452 1.0000 1.8000 4.2201 0.4276 117.4074 

30 0.6356 1.0000 1.8000 3.0203 0.3326 125.9721 

31 0.6096 1.0000 1.8000 3.2887 0.3599 124.9054 

32 0.5217 1.0000 1.8000 4.7059 0.4523 112.5794 

33 0.5004 1.0000 1.8000 5.2532 0.4746 107.0339 

34 0.4656 1.0000 1.8000 6.4877 0.5111 95.1406 

35 0.5840 1.0000 1.8000 3.6055 0.3868 122.8215 

36 0.5272 1.0000 1.8000 4.5824 0.4465 113.8255 

37 0.5373 1.0000 1.8000 4.3705 0.4358 115.9385 

38 0.5580 1.0000 1.8000 3.9947 0.4141 119.5293 

39 0.6400 1.0000 1.8000 2.9795 0.3280 126.0573 

40 0.5035 1.0000 1.8000 5.1639 0.4713 107.9350 

 

The results obtained by MO-SAMP Jaya algorithm and 
the comparison with the results obtained by TOPSIS, 
LINMAP, and fuzzy logic methods (these methods have 
used the data obtained by MO-GA) are presented in Table 
13. It can be observed from Table 13 that deviation index of 
the solution obtained by MO-SAMP Jaya algorithm is 
minimum as compared to the other solutions obtained by 
TOPSIS, LINMAP, and fuzzy logic. Hence, MO-SAMP 
Jaya algorithm has obtained 1st rank with 0.1016 deviation 
index value.  

It may be concluded, based on the results of 
multiobjective optimization of selected thermal devices ad 
cycles that the results obtained by MO-SAMP Jaya 
algorithm are better as compared to other algorithms.  

 
TABLE 13 

COMPARISON OF RESULTS FOR IRREVERSIBLE CARNOT POWER CYCLE 

Method x y z EPC η MAW (kW) Deviation index from ideal solution (d) 

Non-ideal solution - - - 2.8656 0.3146 88.5056 1 

TOPSIS [49] 0.4500 0.9960 1.8000 7.2480 0.5270 88.5090 0.895638 

LINMAP [49] 0.4510 0.9970 1.8000 7.1790 0.5260 89.0920 0.894804 

Fuzzy logic [49] 0.5040 0.9910 1.8000 5.1500 0.4700 108.0550 0.480832 

MO-SAMP Jaya 0.6356 1.0000 1.8000 3.0203 0.3326 125.9721 0.101629 

Ideal solution - - - 7.2499 0.5275 126.1631 0 

 
V. CONCLUSIONS 

This paper proposes a posteriori multiobjective version of 
Jaya algorithm named as MO-SAMP Jaya algorithm. The 
proposed algorithm is used for the design optimization of  
three selected thermal devices namely two-stage thermo 
electric cooler, two stage irreversible heat pump, and a 
plate-fin heat exchanger and two basic thermal cycles 
namely transcritical CO2 cycle and irreversible Carnot 
power cycle. The results obtained by using MO-SAMP Jaya 
algorithm are compared with those obtained by using GA, 
PSO, ABC, TLBO, MO-TLBO and CRO algorithms for 
two stage thermo-electric cooler; TOPSIS, LINMAP and 
fuzzy logic (the results of which were based on the results 
of MO-GA) for two stage irreversible heat pump; MO-GA 
for transcritical CO2 refrigeration cycle; and TOPSIS, 
LINMAP and fuzzy logic (the results of which were based 
on the results of MO-GA) for irreversible Carnot power 
cycle. The MO-SAMP Jaya algorithm is proved superior to 
other advanced optimization in terms of quality of 
solutions. Furthermore, the proposed MO-SAMP Jaya 
algorithm a posteriori approach has provided multiple 
Pareto optimal solutions in single simulation run as 
compared to the a priori approach. 

The proposed MO-SAMP Jaya algorithm may be easily 
extended to solve the multiobjective optimization problems 
of other thermal devices and cycles where the problems are 
complex and having a number of design variables.  
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