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Abstract
Objective. Fine touch sensing relies on peripheral-to-central neurotransmission of somesthetic
percepts, as well as on active motion policies shaping tactile exploration. This paper presents a
novel neuroengineering framework for robotic applications based on the multistage processing
of fine tactile information in the closed action–perception loop. Approach. The integrated
system modules focus on (i) neural coding principles of spatiotemporal spiking patterns at the
periphery of the somatosensory pathway, (ii) probabilistic decoding mechanisms mediating
cortical-like tactile recognition and (iii) decision-making and low-level motor adaptation
underlying active touch sensing. We probed the resulting neural architecture through a Braille
reading task. Main results. Our results on the peripheral encoding of primary contact features
are consistent with experimental data on human slow-adapting type I mechanoreceptors. They
also suggest second-order processing by cuneate neurons may resolve perceptual ambiguities,
contributing to a fast and highly performing online discrimination of Braille inputs by a
downstream probabilistic decoder. The implemented multilevel adaptive control provides
robustness to motion inaccuracy, while making the number of finger accelerations covariate
with Braille character complexity. The resulting modulation of fingertip kinematics is coherent
with that observed in human Braille readers. Significance. This work provides a basis for the
design and implementation of modular neuromimetic systems for fine touch discrimination in
robotics.
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1. Introduction

Active tactile perception relies on multistage information
processing and adaptive sensorimotor control (Johansson
and Flanagan 2009). During haptic recognition tasks, fine
touch discrimination is peripherally mediated by fingertip
mechanoreceptor responses, which then propagate along the
ascending somatosensory pathway towards central areas.
Mechanoreceptors densely innervate the dermis of the
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fingertips and encode mechanical skin indentations into spike
patterns. Single-unit recordings of primary afferents in humans
and primates have demonstrated the efficacy (in terms of
reliable and fast neurotransmission) of the mechanoreceptors’
spatiotemporal code (Johansson and Birznieks 2004, Saal
et al 2009, Brasselet et al 2011b, Mackevicius et al 2012).
Peripheral nerve fibres transmit mechanoreceptor responses to
second-order neurons in the cuneate nucleus of the brainstem
according to a somatotopic organization (Whitsel et al 1969,
Fyffe et al 1986b, Leiras et al 2010). Cuneate neurons decode
and re-encode primary signals prior to their transmission
to thalamic and subsequently to cortical areas that mediate
downstream experience-dependent haptic percepts (Fyffe et al
1986a, Marino et al 2001). Ultimately, adaptive control closes
the perception–action loop subserving active haptic sensing,
e.g. for object manipulation and recognition (Johansson and
Flanagan 2009). For this, motor control processes and sensory
systems tightly interact to optimize information acquisition.
Sensory signals are used to modulate movement policies
and generate exploratory behaviours, notably through the
anticipation of future sensory inputs (Lederman and Klatzky
1993, Grant et al 2009). Conversely, motor signals are used
through mechanisms such as efference copy (Blakemore
et al 2000) or more broadly corollary discharge (Crapse
and Sommer 2008) to compensate for misleading re-afferent
information, i.e. sensory signals resulting from the movement
choice.

An extensive body of experimental and theoretical
research has characterized the responses of cutaneous
mechanoreceptors to a variety of tactile stimuli (Phillips et al
1990, Johansson and Birznieks 2004, Saal et al 2009, Brasselet
et al 2011b, Mackevicius et al 2012). In addition, some works
have modelled primary afferent activity in monkeys (Freeman
and Johnson 1982, Bensmaı̈a 2002, Kim et al 2010) and
humans (Bologna et al 2011), and a few neurocomputational
studies have focused on second-order processing at the cuneate
level (Sánchez et al 2006, Brasselet et al 2009).

However, to the best of our knowledge, a unified
framework mirroring the multistage neural coding underlying
peripheral-to-central transmission of fine tactile percepts and
their use for active exploration remains to be proposed.
In an attempt to address this need, we set forth a closed-
loop neurobotic system to perform fine touch discrimination
through active sensing policies. The proposed architecture
accounts for feed-forward neural encoding/decoding processes
occurring at the first- and second-order somatosensory stages
(i.e. mechanoreceptors and cuneate neurons, respectively). It
then emulates a downstream Bayesian probabilistic decoder
allowing fine tactile percepts to be discriminated. Finally, both
a high-level controller and a low-level cerebellar-like network
drive motor adaptation to shape fingertip kinematics.

In this work we employed a Braille reading protocol
as a benchmark task. While scanning a Braille dotted line,
fine texture perception, decision-making, and adaptive motor
control processes cooperate to optimize tactile recognition
(Mousty and Bertelson 1985, Bertelson et al 1985, Millar 1997,
Breidegard et al 2006, Breidegard 2007). Recent experimental
findings have shown that a Braille reader’s fingertip undergoes

a previously unreported number of accelerations during
character scanning (Hughes et al 2011). These changes in
velocity are preserved across subjects and appear to depend on
both unconscious low-level motor control mechanisms and
cognitive (i.e. linguistic) processes (Mousty and Bertelson
1992, Hughes et al 2011, Hughes 2011).

The design and implementation of neuromimetic
architectures based on neural coding principles and active
sensing for fine tactile perception have a two-fold objective.
On the neural engineering side, accounting for optimality
principles behind neural tactile coding may help in
embedding neuroprosthetic devices (Nicolelis and Lebedev
2009, Hochberg et al 2012) with biologically plausible
sensory feedbacks conveyed peripherally (Raspopovic et al
2012) rather than centrally (O’Doherty et al 2011). Also,
the implementation of neuromorphic sensing technologies
(based on spike codes) may foster the development of haptic
robotics for real-world applications (Dahiya et al 2010).
Indeed, although numerous examples of active sensing in
closed-loop robotics exist, they primarily focus on coarse
tactile perception and grasping-related aspects (Howe 1993,
Asfour et al 2008, Saal et al 2010, Chitta et al 2011, Romano
et al 2011, Bekiroglu et al 2011, Yousef et al 2011, Petrovskaya
and Khatib 2011), whereas relatively few of them address
fine touch discrimination (Oddo et al 2011, Fishel and Loeb
2012, Su et al 2012, Spigler et al 2012, Shimojo and
Ishikawa 1993). On the neurobiology side, in the mid-term
the proposed neuroengineering approach might be useful
for testing hypotheses on how primary contact features are
encoded/decoded along the ascending somatosensory pathway
and used for further processing (Diamond and Arabzadeh
2012, Pleger and Villringer 2013). This approach might then
complement neurophysiological investigations through the
generation of experimentally testable predictions, e.g. on the
optimization of tactile information transfer by second-order
cuneate neurons (Bengtsson et al 2013).

2. Methods

2.1. System overview

Figure 1(A) shows the complete closed-loop architecture,
which included (i) an artificial touch sensor providing an
array of analogue responses to mechanical tactile indentations;
(ii) a network of primary neurons responsible for transducing
the analogue output of the touch sensor into spiking,
mechanoreceptor-like, activity; (iii) a network of second-order
neurons that, similarly to cuneate neurons of the brainstem,
processed primary afferent signals to facilitate downstream
tactile discrimination and sensorimotor control; (iv) a
probabilistic classification system for tactile input recognition;
(v) a high-level controller that shaped active sensing based on
optimality classification principles; (vi) a low-level controller
subserving cerebellar-like fine movement adaptation; and (vii)
a robotic arm-hand setup. Implementation-wise, all these
components communicated through user datagram protocol
(UDP) channels and were integrated in a framework whose
system-clock timestep was 4 ms.
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(A)

(B) (C)

Figure 1. Overview of the closed-loop system and the artificial touch sensor. (A) Clockwise, starting at the bottom left: Braille
character-like tactile stimuli indented the artificial touch sensor. A network of first-order neurons mapped the analogue readouts of the touch
sensor onto spiking (mechanoreceptor-like) spatiotemporal patterns. Then, a downstream network of second-order neurons processed those
primary afferent signals (emulating brainstem cuneate neurons’ function) prior to their transmission to a probabilistic classifier. The
estimated posterior probability distribution across Braille characters allowed a high-level controller to optimize the active sensing process
(by modulating the scanning speed of the fingertip). Finally, a cerebellar-like neural controller provided adaptive low-level adjustments of
motor commands before their actual execution by the arm-hand platform. (B) The artificial fingertip consisted of 24 capacitive sensors
distributed according to a 6 × 4 array configuration. A neoprene patch positioned over the touch sensor modulated mechanical indentations.
(C) Size-wise comparison between the artificial fingertip (with individual sensor dimensions and inter-sensor distances) and the scaled
(1 : 1.7) Braille characters employed for the stimulation protocols.

The tactile stimulation protocol involved a set of 26
different probes reproducing a scaled version (1 : 1.7) of
Braille characters (see figure S1 of the supplementary material
(available from stacks.iop.org/JNE/10/046019/mmedia)). The
artificial fingertip scanned a series of Braille lines actively,
which emulated human fingertip deformations exerted by
Braille dots. The feed-forward processing mediated by
first- and second-order neural networks aimed at allowing
rapid and reliable Braille discrimination to be carried out
online, under optimized high-level velocity control strategies.
We performed a series of quantitative analyses to assess
information coding and neurotransmission at both primary
and secondary processing stages, to measure performance in
terms of fine touch classification, and to characterize adaptive
sensorimotor control.

2.2. The artificial touch sensor

The artificial skin prototype7 (Cannata et al 2008, Bologna
et al 2010) consisted of 24 capacitive square sensors disposed
according to a rectangular grid layout (figure 1(B)). A
2.5 mm thick neoprene layer covered the array to protect
the sensors during mechanical indentation and to passively
modulate the exerted pressure. Each sensor had a dimension
of 3 mm and the inter-sensor distance was 1 mm, for a total
sensitive surface of approximately 18 × 23 mm (figure 1(C)).
Given the spatial rescaling applied to the system and Braille
characters (see section 2.1 of methods), the density of sensors
on the artificial skin reached 17 sensor cm−2. A series
of preliminary experiments allowed the response properties
of the artificial touch sensor to be characterized in the
7 Developed at the Italian Institute of Technology (IIT), Genoa, Italy.
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presence of both static and dynamic stimulation protocols
(see supplementary materials, section S2 for more details
(available from stacks.iop.org/JNE/10/046019/mmedia)). The
analogue response of each sensor had an intensity proportional
to the indentation level, with a high signal-to-noise ratio
(50 dB), and a Gaussian-shaped profile with a peak amplitude
of 200 ± 3.3 (mean ± std) femtoFarads (fF) and a width of
2.5 ± 0.044 mm. The acquisition frequency of each capacitive
pad was 20 Hz.

The dataset of analogue responses collected through these
experiments served as a basis for developing a simulated
version of the artificial touch sensor. A family of 24 noisy
Gaussian kernels sampled the input space based on the spatial
location distribution of the real array. Each kernel modelled
the response profile of an individual sensor, with white noise
added to the amplitude and width of the response, 2.5 fF
and 0.1 mm respectively. Also, a Gaussian noise on the
position of each simulated stimulus (std = 0.1 mm) accounted
for possible positional errors during real stimulation
conditions.

2.3. First-order tactile encoding: analogue-to-spike
transduction

The analogue readouts Ai(t), with i ∈ [1, 24], provided by the
artificial touch sensor formed the excitatory inputs to a network
of spiking neurons, based on a one-to-one connection scheme
(figure 2(A)). This network of first-order neurons acted as a
population of cutaneous fingertip mechanoreceptors, which
converted analogue skin deformations following mechanical
indentations onto spiking spatiotemporal patterns.

We implemented the dynamics of each first-order neuron’s
membrane potential Vi(t) according to a leaky integrate-and-
fire model (Lapicque 1907):

C · dVi(t)

dt
= −g · (Vi(t) − V ′) − k · Ai(t) (1)

with C = 0.5 nF denoting the membrane capacitance, g =
25 nS the passive conductance (which gives a membrane time
constant equal to τ = C/g = 20 ms), and V ′ = −70 mV
the resting membrane potential. The term k · Ai(t) denotes
the depolarizing input current, whose intensity was computed
by multiplying the analogue response of the afferent touch
sensor Ai(t) by a gain factor of k = −390 pA/fF, determined
by comparing the output spike trains of simulated first-
order neurons against recorded mechanoreceptor responses
(Johansson and Birznieks 2004).

Each neuron emitted an action potential (spike) whenever
its membrane potential Vi(t) reached a threshold Vth(t).
Immediately after a spike event, the neuron was hyperpolarized
to Vi(t) = Vreset = −100 mV, and the dynamics of its
membrane potential were frozen during a refractory period
�tref = 2 ms. We also modelled the spiking adaptation
phenomenon by means of a ‘threshold fatigue’ (Chacron et al
2003), which consisted of increasing the threshold Vth by
50 mV following each neuron discharge, making it harder
for the neuron to spike again (i.e. bounding its response firing

rate). In the absence of spikes, Vth decreased exponentially
back to its resting value V ′

th:

dVth(t)

dt
= −Vth(t) − V ′

th

τth
(2)

with τth = 100 ms, and V ′
th = −50 mV.

2.4. Second-order processing of tactile primary afferents

Second-order processing along the implemented somatosen-
sory pathway occurred through a downstream network of spik-
ing neurons (figure 2(A)), modelling a population of brainstem
cuneate cells. The latter constitute the first relay mediating
peripheral-to-central transmission of haptic signals (Johans-
son and Flanagan 2009). The neural model used in this study
is derived from a previous work based on neurophysiological
data from cat cuneate neurons (Bengtsson et al 2013).

The excitatory projections from first- to second-order
neurons followed a scheme so as to generate the receptive
fields shown in figure 2(B). Each cuneate neuron received
non-plastic afferents from either one or several adjacent
mechanoreceptors, with on average 1.9 ± 0.6 (mean ± std)
connections per cuneate neuron. This sparse connectivity is
coherent with physiological observations in which only a few
primary afferents (less than ten), out of the hundreds of existing
connections (Jones 2000), functionally contribute to individual
cuneate neuron inputs (Bengtsson et al 2013). The dimension
and shape of the receptive fields and the synaptic weight
distribution of the mechanoreceptor-to-cuneate projections
allowed topographical information to be maintained at the level
of the second-order output space. The adopted connectivity
layout enabled cuneate neurons collecting signals from
larger receptive fields to account for both single primary
neuron activation and coincidence detection of multiple co-
activations, thus enriching their coding dynamics.

We described the activity of each cuneate neuron
according to the spike-response model (Gerstner and Kistler
2002), by incorporating a noise model (i.e. escape noise)
that followed a stochastic process, thereby providing a linear
probabilistic neuronal model (Brasselet et al 2009). Whenever
multiple afferent spikes excited the neuron within a short
time window, they induced a compound membrane potential
depolarization equal to:

V (t) = V ′ +
∑
i, j

wi · �V
(
t − t̂ j

i

)
(3)

�V (t) ∝ √
t · exp(−t/τ ) (4)

with V ′ = −70 mV denoting the resting potential, i the
presynaptic neurons, and j indexing the spikes emitted by
a presynaptic neuron i at times t̂ j

i . The synaptic weight wi

of the projection from the presynaptic unit i was taken so
as to guarantee a reliable transmission of primary afferent
signals and to avoid saturation of second-order neuron activity.
We chose wi = 0.04 and wi = 0.028 for mechanoreceptors
belonging to cuneate units receptive fields populated by one
and two/three units respectively (figure 2(B)). The function
�V (t) represented a unitary excitatory postsynaptic potential
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(A)

(B)

Figure 2. Feed-forward tactile processing mediated by first- and second-order neural populations. (A) The implemented ascending
somatosensory pathway. From left to right: the analogue outputs from the artificial touch sensor fed a network of 24 first-order neurons
according to a one-to-one projection layout. This early processing stage allowed analogue sensory inputs following mechanical indentation
to be converted into spike train patterns, mimicking fingertip mechanoreceptors. Then, a downstream network of 49 spiking neurons
decoded and re-encoded primary afferent signals, acting as a sub-population of second-order cuneate neurons in the brainstem. The
spatiotemporal output of this second-order network served for a probabilistic classification of fine touch stimuli. (B) The many-to-many
connection scheme used to drive second-order neurons gave rise to receptive fields sampling either unitary or multiple primary afferent
activity (up to three adjacent mechanoreceptors).

(EPSP), with τ = 2 ms indicating the decay time constant of
the EPSP profile.

At each time step, the spiking probability p(t) of the
neuron depended on the following functions:

p(t) = 1 − exp(− f (t) · R(t)) (5)

f (t) = r0 · log

(
1 + exp

(
V (t) − Vth

Vf

))
(6)

R(t) = (t − t̂ − τabs)
2

τ 2
rel + (t − t̂ − τabs)2

H(t − t̂ − τabs) (7)

with f (t) denoting the instantaneous firing rate, determined by
the constant r0 = 11 Hz, the threshold potentialVth = −65 mV,
and a gain factor Vf = 0.1 mV. The function R(t) determined
the refractoriness property of the neuron, with t̂ indicating the
time of the last spike emitted, τabs = 3 ms the time constant of
the absolute refractory period, τrel = 9 ms the time constant
of relative refractory period, and H the Heaviside function.

We employed the Event-Driven neural simulator based
on LookUp Tables (EDLUT)8 simulation environment (Ros
et al 2006) to implement the second-order processing stage
mediated by the network of model cuneate neurons. EDLUT
is designed for efficient simulation of complex neural network
models and takes advantage of both time-driven and event-
drive procedures so as to guarantee fast computation and

8 EDLUT is an open source project freely available at http://edlut.
googlecode.com.

updates of neural state variables (Garrido et al 2011). Thanks
to its properties, the EDLUT environment provided our system
with the computational efficiency required for neurobotic
applications.

2.5. Probabilistic classification of tactile percepts

In order to perform online tactile discrimination during Braille
reading tasks, we trained a naı̈ve Bayesian classifier (NBC)
via multinomial distributions (McCallum and Nigam 1998).
The NBC belongs to the family of probabilistic classifiers
relying on Bayes’ rule to compute the posterior probability of
sample classes (Duda et al 2001). Relying on the hypothesis
of independence between features, the NBC provides fast
classification and is suited for applications requiring either
a frequent estimation of class likelihoods or strict execution-
time constraints (e.g. closed-loop systems, real-time robotic
applications).

The spatiotemporal patterns provided by second-order
cuneate neurons worked as class features, whose posterior
probabilities could be incrementally estimated as spikes flew in
the NBC—see supplementary materials, section S3 for details
(available from stacks.iop.org/JNE/10/046019/mmedia), and
Truccolo et al (2008) for a previous application of the NBC
to recorded neural activity. The NBC training procedure
involved a sample base of 100 trials (scans) for each Braille
character. A gradually increasing temporal window allowed

5
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the spatiotemporal readouts from the cuneate network to be
mapped onto a spike count data vector in a cumulative manner
(see figure S3A of the supplementary material (available
from stacks.iop.org/JNE/10/046019/mmedia)). Using these
data vectors, the NBC computed the posterior probability of
a letter being read to correspond to a known character class
every 4 ms timestep. For online classification, we averaged the
resultant probability distribution (across all Braille characters)
over a 40 ms history, and as soon as the mean peak of
the probability distribution exceeded the 90% threshold we
considered the NBC to have classified the currently scanned
Braille character.

2.6. High-level speed controller

The shape of the posterior probability distribution estimated
by the NBC across all Braille letters evolved over time
as the artificial fingertip scanned a given character. The
ongoing degree of peakedness of this probability distribution
provided a simple and effective basis to optimize the scanning
speed control. A decision-making module (algorithmically
implemented) monitored the evolution of the excess Kurtosis
index k(t) of the NBC’s output probability distribution on a
4 ms timestep basis. The fingertip scanning speed v(t) was
then modulated according to:

v̇(t) = k(t) − k(t − 1)

C · v(t)
(8)

with v̇(t) denoting the scanning acceleration (cm s−2), and C
a constant factor tuned to 600 cm2 s−2. An increase of the k(t)
function indicated a narrowing of the distribution, reflecting a
decrease in the uncertainty of the probabilistic classification
of the character being scanned. The high-level controller
consequently increased the scanning speed proportionally to
the gradient value. By contrast, a decrease of k(t) indicated
a broadening of the estimate distribution, which induced a
deceleration of the fingertip.

2.7. Adaptive low-level controller and robotic arm

In order to compensate for movement execution errors, the
closed-loop architecture incorporated a low-level controller
(figure 1(A)) responsible for online sensorimotor adaptation.
The low-level controller consisted of a spiking neural network
mimicking the role of the cerebellum in fine movement control
and coordination (Ito 1974, Thach et al 1992, Miall et al 2001,
Attwell et al 2002).

We modelled the main information processing
stages of the cerebellar microcomplex (see figure
S4 of the supplementary material (available from
stacks.iop.org/JNE/10/046019/mmedia)), and included long-
term plasticity mechanisms to adapt its input–output dynamics
through training. In agreement with Marr–Albus–Ito theory
(Marr 1969, Albus 1971, Ito and Kano 1982), we assumed
that the cerebellum can learn internal representations
of sensorimotor interactions in multiple microcomplexes
(Wolpert et al 1998). We implemented four cerebellar
microcomplexes and trained them to predict the outcomes
of motor commands prior to their actual execution, i.e. the

microcomplexes acted as forward predictor models (Ito 1984,
Miall et al 1993, Wolpert and Miall 1996). These predictions
allowed the motor commands to be finely adjusted online, by
avoiding otherwise inaccurate movement execution (e.g. local
drifts in trajectories). See supplementary materials, section S4
(available from stacks.iop.org/JNE/10/046019/mmedia) for a
more detailed description of the cerebellar model, which we
developed in a previous work (Passot et al 2012).

We simulated a 2-dof robotic arm with noisy dynamics,
taken from Carrillo et al (2008). The arm model included
two joints (shoulder, elbow), with the arm end-point carrying
the simulated touch sensor described in section 2.2. The
four cerebellar forward models learned to predict the future
angular position and velocity of each of the two joints.
During movement control, the predicted joint states were
algorithmically mapped onto the arm end-point position (in
Cartesian coordinates). Then, a trajectory generator (Carrillo
et al 2008) compared the desired and predicted position of the
arm end-point and updated the motor commands consequently.

We also tested the performance of the overall Braille
reading system in a real-world scenario. Section 3.5 of the
results presents a preliminary experiment in which a robotic
arm-hand platform, carrying the real artificial touch sensor,
scanned and classified a Braille line (figure 8).

2.8. Assessing neurotransmission reliability: metrical
information theory

To quantify the information content of first and second-order
neural responses we applied the metrical information theory
(Brasselet et al 2011b). Unlike Shannon mutual information
(Shannon 1948), this measure takes into account the metrical
properties of the spike train space (Victor and Purpura 1996,
Schreiber et al 2003, van Rossum 2001), which proved to be
suited to decode the responses of human mechanoreceptors
obtained via microneurography recordings (Brasselet et al
2011b).

The metrical mutual information I∗(R; S), with R and
S denoting the response and stimulus space, respectively, is
defined as follows:

I∗(R; S) = H∗(R) − H∗(R|S)

=
∑
s,r

p(r, s) log2

(∑
r′ p(r′|s)φ(r, r′)∑
r′ p(r′)φ(r, r′)

)
(9)

where

H∗(R) = −
∑

r

p(r) log2

(∑
r′

p(r′)φ(r, r′)
)

(10)

H∗(R|S) =
∑

s

p(s)H(R|s)

= −
∑
s,r

p(r, s) log2

(∑
r′

p(r′|s)φ(r, r′)
)

(11)

φ(r, r′) = H(Dc − D(r, r′)) (12)

where H∗(R) and H∗(R|S) are the marginal and conditional
metrical entropies, respectively; p(r), with r ∈ R, is the
response marginal probability; p(s), with s ∈ S, the stimulus

6

http://stacks.iop.org/JNE/10/046019/mmedia
http://stacks.iop.org/JNE/10/046019/mmedia
http://stacks.iop.org/JNE/10/046019/mmedia


J. Neural Eng. 10 (2013) 046019 L L Bologna et al

a priori probability; p(r|s) and p(r, s) the conditional and
joint probabilities, respectively. The function φ(r, r′) measures
the similarity between two responses, and it is defined as
the Heaviside function of the Victor–Purpura distance D(r, r′)
between two spike trains r, r′ ∈ R (Victor and Purpura 1996).
The term Dc is the cutoff parameter, and is called the critical
distance. For D(r, r′) < Dc, responses r, r′ are considered
as identical (i.e. φ(r, r′) = 1), otherwise they are considered
as different. If Dc = 0 we recover the Shannon entropy from
equation (10).

Optimal information transmission occurs when the
metrical mutual information I∗(R; S) is maximized and (at
the same time) the conditional entropy H∗(R|S) is minimized.
Under this optimality condition, perfect input discrimination
is reached (Brasselet et al 2011b).

2.9. Quantifying Braille character complexity

Several complexity measures have been established in the
field of psychophysics to describe visual (Alexander and
Carey 1968, Chipman 1977, Yodogawa 1982) and vibro-tactile
stimuli (Horner 1991), attempting to link an objective measure
to perceived complexity (Aksentijevic and Gibson 2012). To
the best of our knowledge, their extension to the study of the
Braille alphabet has concentrated solely around the number
of dots as a complexity estimator (Nolan and Kederis 1969,
Newman et al 1984). In order to study the correlation between
Braille letter complexity and movement policy (see section 3.3
of the results), we considered a linear combination of two
measures, namely the number of dots Dot (Nolan and Kederis
1969) and the number of subsymmetries Sym (Alexander and
Carey 1968):

C = α · Dot + (1 − α) · Sym (13)

where

Sym =
X∑

x=1

Y∑
y=1

⎛
⎝X−x∑

i=1

Y−y∑
j=1

i · j · NSym(x,y)(i, j)

⎞
⎠ (14)

with α = 0.94. The Sym function counted the number
of symmetries of each rectangular sub-grid of the Braille
character matrix and added them in a sum weighted by the
area of the sub-grid; with X and Y referring to the size of
the first and second cell dimensions respectively (i.e. 2 × 3
in the case of Braille cells), and NSym(x,y)(i, j) being the
number of symmetries observed in the rectangle of size i × j
at position (x, y). The symmetries considered consisted of
vertical, horizontal, and central symmetries for all sub-grid
dimensions, as well as both diagonal symmetries when i = j.

3. Results

3.1. Characterization of first-order responses to dynamic
tactile stimulation

We first compared simulated and real human mechanoreceptor
responses to moving Braille probes passively sensed by a
steady fingertip (Bologna et al 2011). To do so, we reproduced
in simulation the experimental protocol used by (Phillips
et al 1990) to characterize primary afferent representations

of dotted spatial patterns. Braille characters were dynamically
swiped at 60 mm s−1 over the receptive field of a recorded
mechanoreceptor while the fingertip was kept still. Once the
stimulus exited the receptive field, its position was shifted
by 0.2 mm along the radial-to-ulnar axis, and the process
repeated. This procedure allowed the so-called spatial event
plot (SEP) (Phillips et al 1988) to be constructed from the
recorded mechanoreceptor spikes (figure 3(A)). Simulated
SEPs, which illustrated the spatiotemporal characteristics of
a first-order response to a moving Braille stimulus, were
qualitatively similar to those of slow adaptive type I (SA-I)
human mechanoreceptors. Receptive field sizes of recorded
and simulated afferents were also comparable at, respectively,
4.8 ± 1.2 mm2 (mean ± std) and 4.7 ± 1.5 mm2 after
correcting for the scale difference. However, due to mechanical
constraints, the modelled receptive fields had little overlap
and consequently covered the artificial fingertip with a
density of 17 units mm−2, one fourth of the 70 units mm−2

reached by their biological counterparts (Phillips et al 1990).
Nonetheless, they showed a topological stimulus-response
mapping, an important property for the encoding of fine spatial
discontinuities (Johansson and Flanagan 2009).

Figure 3(B) shows an example of discharge pattern
recorded from a simulated first-order neuron in response
to a single dot stimulus moving at 30 mm s−1. Responses
are shown as a raster plot of spike times (top) and the
corresponding poststimulus time histogram (PSTH) (centre)
during 150 stimulation trials. The analogue output signal from
the indented touch sensor serves as depolarizing current to
the model neurons (bottom). The spike timing reliability of
the firing pattern was high at the onset of the protraction
stimulation phase and decreased with time, as observed
for human SA-I mechanoreceptors (Johansson and Flanagan
2009) and more generally in central neurons (Mainen and
Sejnowski 1995).

We then compared the first-spike jitter distribution of
simulated mechanoreceptors against experimental SA-I data
(figure 3(C), top). Despite a time lag of about 2 ms, there
was no statistical difference between the two distribution
shapes (Kolmogorov–Smirnov, p > 0.076). Indeed, when
accounting for the 2 ms time lag, we did not observe any
statistical difference between the two distribution medians
(Mann–Whitney U, p > 0.11). A comparison between
the interspike interval (ISI) distributions of simulated and
real mechanoreceptors (figure 3(C), bottom) showed that
the ISI variability of model neurons was smaller than in
recorded SA-I afferents, although the medians of the two
distributions were statistically equivalent (Mann–Whitney U
test, p > 0.16). The difference in ISI variability may reflect the
viscoelastic properties and more complex dynamics of human
skin compared to the artificial finger.

3.2. First and second-order processing of dynamic Braille
stimuli

We studied neurotransmission reliability at the first-
and second-order stages of the simulated somatosensory
pathway. The stimulation protocol consisted in scanning
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(B) (C)

(A)

Figure 3. Characterization of first-order responses to dynamic Braille stimulation. (A) Examples of SEPs of human SA-I mechanoreceptor
responses to scanned Braille characters (adapted with permission from Phillips et al (1990), copyright 1990 Springer), and their simulated
counterparts. (B) Spikegram (top) and corresponding PSTH (centre) of 150 responses of a simulated first-order neuron to a single dot
stimulus moving at 30 mm s−1 (bottom), showing a stronger and better timed activity at the onset of the stimulus. (C) Distributions of
standard deviations of first-spike latencies (top) and interspike intervals (bottom) for both real SA-I (left) and simulated (right)
mechanoreceptor responses.

the entire 26 character Braille alphabet (see figure
S1 of the supplementary material (available from
stacks.iop.org/JNE/10/046019/mmedia)) at a constant speed
of 30 mm s−1 during 200 trials. We performed a metrical
information analysis of simulated mechanoreceptor and
cuneate responses. Figure 4(A) illustrates the evolution
of the information content of first-order and second-
order neural activities over time (i.e. as spikes flew in
during Braille scanning). At the mechanoreceptor level
(figure 4(A), left), a complete discrimination of all Braille
characters occurred within 350 ms of stimulus onset, i.e.
when the optimality condition was verified. Indeed, according
to metrical information theory (Brasselet et al 2011b), after
350 ms the clusters of simulated mechanoreceptor responses
to all Braille characters became completely separated from
each other, allowing perfect context separation to be achieved.
Expectedly, the information curve exhibited a plateau after
about 100 ms and lasting approximately 75 ms. This time
interval corresponded to the stimulation phase during which
the fingertip was only contacting the first column of Braille
dots, whereas the second column did not yet stimulate any
touch sensor. The information value at the plateau was about
half of the total information transmitted. We observed a

similar information content profile at the level of simulated
cuneate responses (figure 4(A), right), for which perfect input
discrimination occurred as rapidly as in first-order neurons.
Yet, the redundancy of second-order responses was slightly
larger, as indicated by the non-zero conditional metrical
entropy after 350 ms.

Even if after 350 ms both mechanoreceptor and cuneate
responses contained enough information to discriminate all
Braille letters theoretically, we wanted to investigate to what
extent the implemented probabilistic decoder would benefit, in
terms of classification, from the processing carried out at the
cuneate level. We extended the above stimulation protocol by
varying the fingertip speed within the range [10, 80] mm s−1,
with a step of 10 mm s−1. For each speed value, the
fingertip scanned all 26 Braille characters for 100 trials. The
performance of the NBC was comparable when decoding
first and second-order responses at movement speeds lower
than 30 mm s−1 (figure 4(B), top). By contrast, processing
at the cuneate level led to a statistically significant increase
of 12% in classification performance at 30 mm s−1 (Mann–
Whitney U, p < 0.01). The improvement in performance was
even larger for higher scanning speeds, showing that cuneate
processing enhanced the generalization and robustness of the
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(A)

(B)

(C)

Figure 4. First- and second-order processing of dynamic Braille stimuli. (A) Time course of metrical mutual information (solid curve) and
conditional entropy (dashed curve) at the output of first-order neurons (left) and cuneate neurons (right), as the fingertip scans the entire
Braille alphabet at 30 mm s−1 during 200 trials. The bottom diagrams display the time course of the s.e.m. for both metrical information and
condition entropy. (B) Mean recognition rate (top) and nonclassification rate (bottom) when using the NBC to decode first-order activity
(left column) and cuneate responses (right column) at different Braille scanning speeds. (C) Principal component analysis on
mechanoreceptor (left) and cuneate (right) responses to Braille character ‘e’ and ‘i’. In both cases, the response clusters are projected onto
the first and third principal component plane (the second component did not contain any information for distinguishing the two responses).

classification process in the presence of speed modulation.
We also quantified the nonclassification rate, i.e. how often,
on average, the system was unable to classify a Braille letter
during a unique scanning (figure 4(B), bottom). This measure
is related to the mean number of reversal movements during
Braille reading, which consist of backtracking the fingertip to

rescan a unrecognized letter. In accordance with the above
results, for scanning speeds higher than 30 mm s−1, the
nonclassification rate was significantly larger when decoding
first-order responses than cuneate activity.

To further address this issue, we focused on some
Braille dot arrangements that were likely to evoke similar
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mechanoreceptor responses due to the homogeneous structure
of the artificial touch sensor. For instance, symmetrical letters
(e.g. ‘e’ and ‘i’, ‘d’ and ‘f’, ‘h’ and ‘j’ and ‘r’ and ‘w’) would
activate the same subset of sensors, increasing the probability
of cross-character interference during scanning. To illustrate
this point we performed a principal component analysis of
both first order and cuneate responses obtained at a scanning
speed of 30 mm s−1. The example of figure 4(C) shows that
the separation between the clusters of first-order responses to
letters ‘e’ and ‘i’ decreased over time, whereas it remained
rather constant at the level of cuneate responses (left and
right diagram, respectively). The reduced interference between
symmetrical letters at the second-order level partially explains
the corresponding better classification performance at higher
speeds (figure 4(B)). In the context of the full Braille alphabet,
an early discrimination was prevented by interference from
letters with identical first dot columns (e.g. ‘a’, ‘c’ and ‘d’
for letter ‘e’). In the case of first-order responses, subsequent
interference by symmetrical characters left only a small time
window available for the classification to occur. For high
scanning speeds, this window shortened and the classification
performance decreased consequently. By contrast, cuneate
processing avoided this effect.

3.3. Online classification of Braille stimuli through
closed-loop active sensing

We then tested the performance of the entire closed-loop
system, including high- and low-level movement control,
in a Braille reading task. The artificial fingertip scanned
multiple Braille lines containing 8 letters each, for a
total of 200 trials (i.e. repetitions) per letter. As scanning
proceeded, feed-forward processing through first and second-
order networks provided the probabilistic classifier with
continuously evolving spike responses. The NBC estimated the
online posterior probability distribution. The latter eventually
converged to a narrow single peaked distribution, allowing
classification of one Braille letter to be achieved. Figure 5(A)
shows the time course of two examples of posterior probability
distributions corresponding to the scanning of the letter ‘r’
(top) and ‘e’ (bottom). In the first example, early cuneate
activity did not allow the probabilistic classifier to distinguish
between ‘r’ and other Braille characters with a similar
dot arrangement (i.e. ‘l’, ‘p’, ‘q’, ‘v’). Nevertheless, as
movement progressed, the probability distribution started to
peak, indicating a decrease of uncertainty, until a correct
classification became possible.

As shown by the confusion matrix in figure 5(B) and by
the distribution in figure 5(C), the overall online classification
performance was characterized by a recognition rate of
95±1.5% (mean ± s.e.m), a nonclassification rate (i.e. reversal
movement rate) of 1 ± 0.4%, and a false positive rate of
4 ± 1.3%.

Adaptive speed modulation was a function of the
evolution of the posterior probability distribution through time,
which determined the active sensing policy. The example
of figure 6(A) displays the time course of the posterior
probability distribution (top) and of the corresponding finger

(A)

(B)

(C)

Figure 5. Online classification of Braille stimuli through
closed-loop active sensing. (A) Time course of the posterior
probability distribution estimated by the NBC when scanning the
Braille letter ‘r’ (top) and ‘e’ (bottom). (B) Confusion matrix
showing the recognition rate and cross-letter interference during
online probabilistic classification of Braille characters. The protocol
involved 200 scanning trials for each of the 26 letters. (C) Mean
recognition rate distribution across the Braille alphabet.

acceleration profile (bottom) while scanning a line with three
letters (‘d’, ‘y’, and ‘n’). Over the entire Braille reading
task, the mean number of finger accelerations (both positive
and negative) per letter was equal to 11.8, which is of
the same order of magnitude as that observed in human
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(B)

(A)

Figure 6. Adaptive modulation of Braille reading speed. (A) Top:
example of time course of the posterior probability distribution
estimated by the NBC while the fingertip was scanning a Braille line
with three letters. Bottom: corresponding online fingertip
acceleration profile. (B) Top: mean number of accelerations (both
positive and negative) per letter, averaged over 200 repetitions (solid
line: mean; grey area: s.e.m.). Accelerations smaller than
0.1 mm s−2 were filtered out for this analysis. Bottom: complexity
value distribution across all Braille characters.

Braille reading experiments (Hughes 2011, Hughes et al
2011). Importantly, the movement policy (and consequently
the number of accelerations) varied significantly depending
on the letter being scanned (figure 6(B), top; Kruskal–
Wallis ANOVA, p < 0.01). In addition, we observed a
significant correlation between the distribution of Braille
character complexity (defined according to equation (13))
and the distribution of the number of accelerations per letter
(figure 6(B), bottom; Spearman’s ρ = 0.66, p < 10−3).

3.4. Robustness of fine touch sensing to position errors

During Braille reading, the low-level cerebellar controller
adjusted the trajectory of the fingertip online. The training

of the cerebellar network involved ten sessions. Each session
consisted of ten trials during which the fingertip (i.e. the end-
point of the 2-dof arm carrying the artificial touch sensor) had
to scan a Braille line containing eight evenly spaced characters,
at a constant command speed of 30 mm s−1. After training, the
output of the cerebellar network provided a good estimator
of the noisy arm dynamics, allowing motor commands to
be tuned online—and, consequently, the movement accuracy
to be improved. The mean position error, computed as the
discrepancy between desired and actual fingertip trajectory,
decreased significantly through cerebellar training, from
0.81 ± 0.04 mm (mean ± s.e.m) to 0.54 ± 0.04 mm (Mann–
Whitney U, p < 0.01).

Figure 7(A) shows a sample of fingertip trajectory (top),
the corresponding PSTH (centre) of the cerebellar output
(i.e. the activity of simulated neurons in the deep cerebellar
nuclei (DCN)), and two examples of DCN spikegrams.
Figure 7(B) shows a fingertip trajectory, averaged over
ten trials, with and without cerebellar-dependent adaptation
(blue and red curve, respectively). The cerebellar online
adjustment proved effective at reducing fingertip oscillation
amplitudes. We quantified the percentage of times that the
fingertip trajectory exceeded a ±1 mm bounded region (dashed
lines in figure 7(B)). The resulting error, averaged over
10 trials, decreased significantly through cerebellar training
(figure 7(C); Mann–Whitney U, p < 10−3). About 82% of
the positions belonging to a finger trajectory fell, on average,
within the ±1 mm boundary by the end of training.

We then studied the influence of position inaccuracy
on the probabilistic classification performance through the
following protocol. A Braille line was swiped at 30 mm s−1

over the immobile artificial fingertip. After 80 repetitions of
each letter, the Braille line was shifted along the distal-to-
proximal axis by 0.5 mm, and the process repeated. This shift
corresponded to a fingertip position change along the Y axis in
the active sensing scenario. Figure 7(D) shows the recognition
rate (mean ± s.e.m.) as a function of the Y position. The mean
classification performance remained high within the ±1 mm
range, whereas it decreased sharply beyond these boundaries.
The best recognition rate of 99% occurred at Y positions
of 0 and −0.5 mm (Mann–Whitney U, p > 0.4). Finally,
figure 7(E) displays the classification performance distribution
across letters depending on theY position. The recognition rate
of individual letters tended to follow an all-or-none pattern,
with few intermediate values.

3.5. Preliminary validation on a real robot performing
real-time Braille reading

In order to test the performance of the system in a real-
world scenario, we ran a preliminary experiment in which a
robotic arm-hand platform had to solve a Braille reading task
(figure 8(A)). We fixed the artificial touch sensor (Cannata
et al 2008) on the index digit of the DLR-HIT hand II (Liu
et al 2008) (figure 8(B)). Then, we mounted the hand on
the DLR light-weight robot III (LWR) (Albu-Schäffer et al
2007a), in order to rub the fingertip over a Braille line at a
constant speed of 30 mm s−1 (figure 8(C)). Both the LWR robot
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(A) (B)

(C)

(D) (E)

Figure 7. Robustness of fine touch sensing to position errors. (A) Example of fingertip trajectory (top), corresponding PSTH (centre) of the
cerebellar output (i.e. activity of simulated deep cerebellar nucleus, DCN, units), and raster plots of DCN spike trains at two different
moments of the trajectory (bottom). (B) Fingertip trajectory samples before and after training of the cerebellar low-level controller (dashed
red and solid blue curve, respectively). Solid lines indicate mean trajectories averaged over 10 trials, whereas shaded areas delimit the
corresponding s.e.m. values. (C) Mean percentage of points of a trajectory exceeding the ±1 mm boundary as a function of cerebellar
training sessions. (D) Left: mean recognition rate, averaged over all Braille characters and 80 repetitions per character, as a function of the Y
position of the finger (the shaded area represents the s.e.m.). Right: distribution of recognition rates across all Braille letters for different Y
positions.

and the DLR-HIT hand were operated in impedance control
mode (Albu-Schäffer et al 2007b), which ensured stability
even in physical contact situations as required in this task.
The calculated adjustments to the reading velocity as well
as the corrections to the movement trajectory were relayed to
the robotic system via an UDP interface. Yet, compared to the
simulated arm, noise in the pitch and roll dynamics of the real
arm-hand platform remained marginally compensated, which
increased the probability of inhomogeneous and discontinuous
contacts between the fingertip and Braille characters.

We selected a subset of representative Braille characters
and recorded 150 trials per character. Again, first and second
order neural networks mediated feed-forward processing
of tactile signals prior to their use for probabilistic
classification. We trained the NBC through the same offline
procedure used for simulated data, which aimed at estimating
the posterior probability distribution through increasing
temporal windows that sampled cuneate responses (see
supplementary materials, section S3 for details (available
from stacks.iop.org/JNE/10/046019/mmedia)). We randomly
selected 100 trials for training and we employed the remaining
50 trials for probing Braille character recognition. The mean

classification rate, averaged over seven characters, was 89 ±
5.3% (mean ± s.e.m.; figure 8(D)), with a false positive
rate of 11 ± 5.3%. This preliminary robotic validation gave
rise to a real-time and online Braille reading demonstrator in
the framework of the European project ‘Sensopac’, no. IST-
028056-IP (see supplementary material videos (available from
stacks.iop.org/JNE/10/046019/mmedia)).

4. Discussion

This paper presents a closed-loop neural architecture for
fine tactile sensing in robotic applications. A Braille reading
scenario was chosen as a case study. The system integrated
neural coding principles with a probabilistic decision-making
framework for input classification and adaptive control.

Tactile processing at the early stages of the somatosensory
pathway was emulated by converting the analog readouts
from an artificial touch sensor into mechanoreceptor responses
(Phillips et al 1990). The modelled mechanoreceptors captured
some characteristics of real SA-I human primary afferents,
in terms of input–output spatial mapping and variability
in spike latencies. We quantified the accuracy of primary
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(B)

(C)

(A)

(D)

Figure 8. Preliminary validation on a real robotic platform performing real-time Braille reading. (A) The arm-hand robotic platform
performing online and real-time Braille reading. The arm was the DLR light-weight robot III (LWR) (Albu-Schäffer et al 2007a). (B) The
artificial touch sensor (Cannata et al 2008) was fixed on the robotic hand DLR-HIT hand II (Liu et al 2008). (C) The robotic arm-hand
sliding over a Braille line. Inset: a scaled Braille character. (D) Mean recognition rate distribution across a subset of Braille letters, and mean
± s.e.m. values.

contact coding via the same information theoretical tools
that we previously used to decode human microneurography
recordings (Brasselet et al 2011b). The results presented in this
paper were consistent with experimental evidence showing that
the spatiotemporal structure of mechanoreceptor responses
provides highly discriminative touch signals (Johansson
and Birznieks 2004). These primary afferent signals were
processed by a second-order neural network that, similar
to a population of neurons in the cuneate nucleus of the
brainstem, mediated peripheral-to-central tactile information
transfer (Jones 2000, Hsiao 2008). Our results corroborated
the hypothesis that, thanks to a sparse first- to second-order
neurons connectivity, cuneate cells might constitute more than
a mere synaptic relay along the somatosensory pathway. They
may indeed increase input separability to minimize destructive
interference and maximize memory capacity in cortical haptic
processes.

Downstream from the simulated cuneate layer, a NBC
performed Braille character recognition. This probabilistic
approach proved to be efficient in discriminating all Braille
characters online. NBCs, though inappropriate for regression
problems (Frank et al 2000), can indeed outperform more
sophisticated algorithms when used in categorization tasks,
even though the independence assumption is seldom verified
in real-world applications. This is mainly due to the fact that

statistical dependences between attributes often cancel each
other out or are evenly distributed among classes (Zhang 2004).
Also, in categorization tasks a data sample is usually classified
according to the highest posterior probability, which often
refers to the correct class regardless of its accuracy (Domingos
and Pazzani 1996, 1997).

In the designed system, a high- and low-level controller
closed the action perception loop by driving active tactile
sensing. We studied the pervasive finger accelerations as done
for human Braille reading (Hughes et al 2011). The origin
of fingertip speed changes resides in several mechanisms
(e.g. sensorimotor, semantic, linguistic), although it is still
unclear which contributions dominate and to what extent
(Hughes 2011). For example, sublexical mechanisms were
shown to influence the number of accelerations only in
specific reading conditions (Hughes 2011). To the best of
our knowledge, no extensive study quantitatively explored
the relationship between pattern complexity and number
of accelerations at the single character resolution. Without
seeking for a comprehensive explanation of the origin of
finger accelerations, we investigated if a simple probabilistic
approach could account for the influence of texture complexity
and local ambiguities on finger kinematics. We assumed
that the posterior probability distributions estimated during
Braille scanning would determine the high-level control of the
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finger speed. Our results showed a number of accelerations
coherent with experimental observations (Hughes 2011) as
well as significantly correlated with the complexity of Braille
dot patterns. The implemented low-level controller consisted
of a spiking neural network capturing the sensorimotor
adaptation function of the cerebellum (Passot et al 2012). It
allowed finger movements to be finely tuned, thus improving
the robustness of the overall closed-loop dynamics during
Braille scanning.

The developed neuroengineering framework can be
extended to further investigate (i) the neural bases of fine touch
processing and active sensing, (ii) neuromorphic-like solutions
for humanoid robotics built on the efficiency principles behind
neural tactile coding, and (iii) biologically plausible sensory
feedbacks for haptic neuroprosthetic applications. At the
peripheral level, we are currently investigating the extent to
which the known irregular and inhomogeneous properties
of mechanoreceptive fields (Phillips et al 1992) may be
relevant to the encoding of primary contact features. Recent
experimental evidence suggests that distinct sub-regions of
each receptive field, named hotspots (Phillips et al 1992),
might increase the spatial resolution of the mechanoreceptors’
code (Pruszynski et al 2011). We are testing the hypothesis
that this increase in encoding resolution may play a role
in the extraction of primitive tactile features—e.g. to serve
as a basis for the known stimulus orientation selectivity of
somatosensory cortical responses (Hsiao et al 2002). To this
effect, more efficient transduction technologies (Maheshwari
and Saraf 2008) will be introduced to replace the current
sensors, whose temporal and spatial resolution limit the
system’s precision. Along the same lines, we are studying
the ability of primary afferents to encode stimulus features
and create an isomorphic representation of the stimulus space
(Brasselet et al 2011a). This capability would permit going
beyond touch discrimination and input recognition, and it may
provide a likely basis for generalization in haptic perception
(i.e. the ability to extrapolate tactile recognition from never
experienced stimuli). At the second-order level, we are further
investigating how unitary and population cuneate activity
can optimally process mechanoreceptive signals (Bengtsson
et al 2013). We are primarily focusing on the possible
role of excitatory/inhibitory dynamics in sparsifying cuneate
representations of haptic percepts. Secondly, we are studying
how spike timing-dependent plasticity (STDP) mechanisms
(Bi and Poo 1998) may shape, during development, or reshape,
following injury, the connectivity layout of mechanoreceptor-
to-cuneate synaptic projections to enhance coding capacity.
STDP-like synaptic adaptation, extensively observed in central
brain regions, could make cuneate neurons respond selectively
to specific spatiotemporal spike patterns and/or extract sub-
patterns of activity from complex primary afferent responses
(e.g. induced by multi-point stimulation delivered at the
fingertip). Finally, taking advantage of the putative sparse
code mediated by cuneate neurons, we will implement a
spike-based downstream probabilistic classifier. Insights from
this ongoing research will further increase the neuromorphic
degree of the closed-loop architecture. They will also
guide the design of plausible sensory feedback patterns for

neuroprosthetic applications, by allowing their efficacy at
multiple somatosensory processing stages to be systematically
assessed.
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