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A B S T R A C T

Quantitative risk assessment of novel Modified Risk Tobacco Products (MRTP) must rest on indirect measure-
ments that are indicative of disease development prior to epidemiological data becoming available. For this
purpose, a Population Health Impact Model (PHIM) has been developed to estimate the reduction in the number
of deaths from smoking-related diseases following the introduction of an MRTP. One key parameter of the
model, the F-factor, describes the effective dose upon switching from cigarette smoking to using an MRTP.

Biomarker data, collected in clinical studies, can be analyzed to estimate the effects of switching to an MRTP
as compared to quitting smoking. Based on transparent assumptions, a link function is formulated that translates
these effects into the F-factor. The concepts of ‘lack of sufficiency’ and ‘necessity’ are introduced, allowing for a
parametrization of a family of link functions. These can be uniformly sampled, thus providing different ‘sce-
narios’ on how biomarker-based evidence can be translated into the F-factor to inform the PHIM.

1. Introduction

Modified Risk Tobacco Products (MRTPs) aim at avoiding to impose
on their users increased risks of chronic disease morbidity and mortality
at levels caused by smoking cigarettes. We have developed a compu-
tational population health impact model (PHIM) to compare smoking-
attributable deaths with and without the introduction of an MRTP (Lee
et al., 2017; Weitkunat et al., 2015). The model requirements include
estimates of the probabilities of switching between various tobacco
product use behaviors (never, current smoking, current MRTP use,
current dual use, former) and of excess risks of smoking versus never
smoking of the major smoking-related diseases, by time quit (Forey
et al., 2011; Fry et al., 2013; Lee et al., 2012a, 2012b, 2014a, 2014b).
When the exposure to harmful and potentially harmful constituents
(HPHCs) is reduced in an MRTP's aerosol compared to the smoke of a
cigarette, it can be assumed that the effective dose of the MRTP is below
that of a cigarette, albeit higher than what results from smokers quitting
the use of tobacco products altogether. The PHIM thus also requires an
excess risk-moderating effective dose factor F, located somewhere be-
tween continued cigarette smoking (F= 1) and cessation (F=0).
Given the lack of epidemiological data for a novel product, the focus of

the present contribution is on deriving an appropriate estimate based
on data obtained in clinical studies. The estimation problem is to
quantify the degree of effective dose reduction that is achieved by ci-
garette smokers switching to an MRTP, based on effects (biomarkers of
exposure and clinical risk endpoints obtained in clinical studies) which
are indicative of, but are not directly measuring, risk reduction.

The evidentiary gap is rooted in the type of evidence available on
any particular MRTP prior to market launch. For the Tobacco Heating
System THS developed by Philip Morris International, a comprehensive
body of nonclinical data is available substantiating profound reductions
in HPHC concentrations compared to cigarettes. Furthermore, clinical
studies in which smokers either continued smoking, switched to THS or
quit all tobacco use have demonstrated substantial favorable changes in
biomarker levels in participants switching to THS compared to con-
tinuing smokers, approaching those observed in the abstinence group
(Roethig et al., 2005, 2007; Haziza et al., 2016a; Haziza et al., 2016b;
Lüdicke et al., 2017, 2017a, 2017b; Tricker et al., 2012a, 2012b, 2012c,
2012d). Most of the effects occurred only a few days after the switch
and were found to be largely sustained or even pronounced after three
months. The observed reductions in biomarker levels mostly exceeded
50 percent, compared to subjects continuing to smoke cigarettes, and
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for some biomarkers were in the 70 to 90 percent range. While such
findings clearly point towards reductions in disease risks incurred by
smokers switching from cigarettes to the new product, they do not
translate in a simple way to levels of disease risk reduction. To know
whether a biomarker level reduction by 70 percent translates into a 70
percent reduction of risk, or rather to less or more, would require to
know the dose-response relationships between the marker reductions
and their impact on health outcome probabilities. These relationships
are, however, unknown to date. The problem is sharpened as multiple
biomarkers are involved, with effect sizes differing across markers.
While the predictive value of the observed biomarker changes with
regard to changes in disease risks can eventually be determined once
health outcomes become available for smokers having switched to the
novel product for years, such epidemiological evidence is currently
lacking. Attempting to estimate the impact of biomarker changes on
disease risks directly would require making assumptions on the shape
and on the parameters of the marker-change vs. risk-change dose-re-
sponse relationships, neither of which appears to be easily justifiable.
To avoid these necessities, the approach presented here reformulates
the estimation problem in terms of assumptions and parameters which
are not directly referring to the unknown dose-response relationship
but to parameters that reflect simpler concepts that have the potential
to be easier substantiated with available evidence and which lend
themselves to a fruitful and transparent scientific discourse. The pro-
posed approach for making the transition from biomarker to risk re-
duction requires assumptions, which are described in detail below, as
well as a modeling based on Monte Carlo simulations.

2. Methods

2.1. Clinical data

Data from four clinical studies conducted in Poland (study A), Japan
(studies B and C) and in the US (study D) were analyzed, all studies
being of randomized, controlled, open-label, 3-arm parallel group de-
sign (Haziza et al., 2016a, 2016b; Lüdicke et al., 2017a; Lüdicke et al.,
2017b). For each study, 160 smokers were enrolled and randomized in
a 2:1:1 ratio to the Switch (from cigarettes to the MRTP), ongoing ci-
garette consumption (CC) and Cessation groups. The Switch group in-
volved the Tobacco Heating System 2.2 (THS) in its regular (studies A
and B) and menthol variants (studies C and D). THS 2.2 is composed of
the THS holder (the tobacco heating device), the THS tobacco stick, and
the charger unit (Smith et al., 2016).

In studies C and D, the 5-day confinement period was followed by a
subsequent 85-day ambulatory period. Biomarkers of exposure to se-
lected harmful and potentially harmful constituents and clinical risk
markers were assessed at baseline and at the end of both periods
(Table 1). While it is not possible to date to quantify all biological ef-
fects of all harmful and potentially harmful cigarette smoke con-
stituents (HPHCs) in humans, due to a lack of accurate methods of
determination or the absence of constituent-specific biomarkers, the US
Food and Drug Administration and the World Health Organization have
established a list of HPHCs recommended to be measured for tobacco
products (FDA (Food and Drug Administration), 2012; WHO Study
Group et al., 2008). These have served as the main reference for se-
lecting the biomarkers assessed in the analyzed clinical studies and pre-
specified in the study protocols. In addition to biomarkers of exposure,
a set of clinical risk markers was measured and included in the present
analysis, the selection based on these markers (a) being representative
of several mechanistic pathways associated with smoking-related dis-
eases, (b) being affected by smoking, and (c) the smoking-induced ef-
fects being reversible in the short to mid-term (i.e. within one week to
one year) upon cessation.

2.2. Statistical methods

In the Population Health Impact Model (Weitkunat et al., 2015) the
F-factor was introduced as an unknown parameter ranging from 0 to 1,
describing a change in effective dose from 1 to F units due to switching
from cigarette consumption (CC) to using THS:

= + − −ER (a, t) ER (a)(F (1 F)e )CC
ln

Switch
t· (2)/H (1)

In Eq. (1), a is the age, t is the time since switching to THS, ERCC is
the excess risk due to sustained cigarette consumption, and H is the
disease-specific time required after smoking cessation for the excess risk

Table 1
Biomarkers of exposure and clinical risk markers assessed in four randomized clinical
studies.

Biomarkers of
Exposure

Harmful and Potentially
Harmful Smoke Constituents

Matrix Study

A B C D

Tobacco Specific
Total NNAL NNK Urine x x x x
Total NNN NNN Urine x x x x
Tobacco Related
MHBMA 1,3-butadiene Urine x x x x
3-HPMA Acrolein Urine x x x x
S-PMA Benzene Urine x x x x
COHb CO Blood x x x x
Exhaled CO CO – x x x x
1-OHP Pyrene Urine x x x x
4-ABP 4-ABP Urine x x x x
1-NA 1-NA Urine x x x x
2-NA 2-NA Urine x x x x
o-tol o-tol Urine x x x x
CEMA Acrylonitrile Urine x x x x
HEMA Ethylene oxide Urine x x x x
3-HMPMA Crotonaldehyde Urine x x x x
3-OH-B[a]P B[a]P Urine x x x x

Clinical Risk Markers Domain

WBC Inflammation Blood x x x x
HDL Lipid metabolism Serum – – x x
LDL Lipid metabolism Serum – – x x
Triglycerides Lipid metabolism Serum x x x x
Total cholesterol Lipid metabolism Serum x x x x
sICAM-1 Endothelial dysfunction Serum – – x x
8-epi-PGF2α Oxidative stress Urine x x x x
11-DTX-B2 Platelet activation Urine x x x x
HbA1C Metabolic syndrome Serum – – x x
Fibrinogen Cardiovascular risk factor Plasma – – x x
hs-CRP Cardiovascular risk factor Serum – – x x
Systolic and diastolic

blood pressure
Cardiovascular risk factor – x x x x

FVC %pred Lung function – x x x x
FEV1 %pred Lung function – x x x x
FEV1/FVC Lung function – x x x x

Abbreviations: 11-DTX-B2: 11-dehydro-thromboxane B2; 1-NA: 1-aminonaphthalene; 1-
OHP: total 1-hydroxypyrene; 2-NA: 2-aminonaphthalene; 3-;HMPMA: 3-hydroxy-1-me-
thylpropylmercapturic acid; 3-HPMA: 3-hydroxypropylmercapturic acid; 3-OH-B[a]P: 3-
hydroxybenzo(a)pyrene; 4-ABP: 4-aminobiphenyl; 8-epi-PGF2α: 8-epi-prostaglandine
F2α; B[a]P: benzo(a)pyrene; BoExp: biomarker of exposure; CEMA: 2-cya-
noethylmercapturic acid; CO: carbon monoxide; COHb: carboxyhemoglobin; CRM: clin-
ical risk marker; FEV1 %pred: percentage of predicted forced expiratory volume in 1 s;
FVC: percentage of predicted forced vital capacity; HbA1C: hemoglobin A1C; HDL: high
density lipoprotein cholesterol; HEMA: 2-hydroxyethyl mercapturic acid; HPHC: harmful
and potentially harmful constituent; hs-CRP: high-sensitive C-reactive protein; LDL: low
density lipoprotein cholesterol; MHBMA: monohydroxybutenyl mercapturic acid; NNK: 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone; NNN: N-nitrosonornicotine; o-tol: o-to-
luidine; sICAM-1: soluble inter-cellular adhesion molecule; S-PMA: S-phenylmercapturic
acid; total NNAL: total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol; WBC: white blood
cells count.
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to be halved. Upon smoking cessation, F is zero and the equation sim-
plifies to = −ER (a, t) ER (a)e ln

Cessation CC
t· (2)/H.

Based on this, F can be expressed as the proportion of the excess risk
reduction achieved by smoking cessation that is retained by switching
to THS:

= −
−

F ER (a, t) ER (a, t)
ER (a) ER (a, t)
Switch Cessation

CC Cessation (2)

Currently, no epidemiological health outcomes data is available
regarding ERSwitch for THS and thus F cannot be directly estimated.

In contrast, clinical biomarker data (including biomarkers of ex-
posure and clinical risk markers) can be analyzed at baseline and after a
period of some days or weeks. For a given set of biomarkers i= 1,…, p,
the baseline-corrected values for each subject, j, can be calculated by
Δij = Xijf – Xij0, where Xijf is the log-transformed follow-up value and
Xij0 is the log-transformed baseline value (the log transformation aims
at ensuring a normal distribution for the Δij). With μi(G) denoting the
mean values of Δij for a given tobacco use behavior group G, the relative
change RCi for a biomarker i represents the “relative position” of Switch
between Cessation and CC (similarly to F in the excess risk equation, Eq.
(1)) for biomarker i:

=
−

−
RC

μ (Switch) μ (Cessation)
μ (CC) μ (Cessation)i
i i

i i (3)

If a clinical study only includes the groups Switch and Cessation and
if the study time frame is relatively short, it might be reasonable to
assume that μi(CC)= 0. In such a case, Eq. (3) simplifies to Eq. (4),
making the CC group unnecessary for estimating F:

= −RC 1
μ (Switch)

μ (Cessation)i
i

i (4)

Deriving F from biomarkers involves the following three critical
steps: Step 1: Computing relative changes (and their uncertainty) for a
set of biomarkers; Step 2: Linking these relative changes to the final F-
factor value, based on a set of reasonable assumptions, and in-
corporating some level of uncertainty regarding the link between re-
lative changes and F through Monte Carlo simulations; Step 3:
Performing sensitivity analysis on the assumptions.

Step 1: Computing relative changes and their uncertainty
To compute the relative change of a given biomarker and its un-

certainty, two assumptions are made for each biomarker:

1. Baseline-corrected values, Δij, are normally distributed within group
G with mean μ (G)i and standard deviation σ (G)i ; the original data
values were log-transformed before calculating baseline-corrected
values to meet the assumption of normality more closely.

2. (a) The group means μ (G)i are ordered: ≥μ (CC)i
≥μ (Switch) μ (Cessation)i i and >μ (CC) μ (Cessation)i i or, alter-

natively, (b) ≤ ≤μ (CC) μ (Switch) μ (Cessation)i i i and μ (CC)i
<μ (Cessation)i , implying that a biomarker is relevant only if it
differentiates the CC group from the Cessation group. Without
loss of generality, it is assumed that all biomarkers fulfill as-
sumption 2(a); otherwise, if a biomarker fulfills assumption 2(b),
it can be simply used with its sign inverted. Using Eq. (4), as-
sumption 2 simplifies to: ≥ ≥0 μ (Switch) μ (Cessation)i i and

 >0 μ (Cessation)i or, alternatively, ≤ ≤0 μ (Switch) μ (Cessation)i i
and <0 μ (Cessation)i .

The probability distribution of μ (G)i is considered following a
Student distribution described as

�⎜ ⎟
⎛
⎝

− ⎞
⎠

−
Δμ (G) (G)

S / n
~ti

Δ

i

(G)
n 1

i (5)

where      Δ (G), S , and ni Δ (G)i denote the mean, standard deviation, and
size of group G, respectively, and −tn 1 refers to the t-distribution with n-
1 degrees of freedom (cf. section 1 of the Supplementary Material for a

formal justification).
Given the theoretical distribution of μ (G)i , relative changes can be

obtained by using Eq. (3) or Eq. (4) with values sampled from it. By
repeating this multiple times, a posterior distribution of relative
changes for biomarker i is derived, quantifying not only its average
value but also its entire probability distribution.

To only select biomarkers responding to smoking cessation (as-
sumption 2a), only those with a positive 5%-quantile of the empirical

−μ (CC) μ (Cessation)i i posterior distribution are included in the ana-
lysis. If the Switch group shows a more favorable effect than the
Cessation group for a given biomarker, i.e.,

> >μ (CC) μ (Cessation) μ (Switch)i i i , the biomarker is not excluded
from the analysis but rather the support of the distribution for the
Switch group is restricted by imposing the assumption

≥ ≥μ (CC) μ (Switch) μ (Cessation)i i i during the Monte Carlo procedure.
In case of equivalence of the Switch and Cessation distributions this
results in a distribution with a mode close to zero.

Step 2: Identification of link functions between relative changes and the
F-factor

The key assumption made is the existence, in principle, of a set of
biomarkers being fully predictive of the disease risk and an unknown
increasing function that links the relative changes of those biomarkers
to the F-factor (typically thought of as a multidimensional sigmoid-type
relationship). As the measured biomarkers and clinical risk endpoints
may not be fully predictive of disease risk, this lack of predictive ability
(“lack of sufficiency”, LOS) must be accounted for. To make this pro-
blem tractable, it is assumed that the link function can be written as a
weighted sum of increasing functions of single RCi’s (one for each
measured biomarker) plus a function that represents this ‘missing in-
formation’. Consequently, F can be written in the form:

 
    

⏟∑ ∑= + =
=

′ ′
′ ′ =

F α ψ α ψ α ψ
i

p

i i

Measured biomarkers
Missing information i

p

i i
1

0 0
0

(6)

where the  αi’s are positive numbers that sum up to 1, the ψi’s range
from 0 to 1, ensuring that F ranges from 0 to 1, and each ψi (i > 0)
being an increasing function of RCi. To study this functional relation-
ship between the F-value and the relative changes, a Monte Carlo ap-
proach is used, consisting of sampling the  αiweights and the ψi’s.

Sampling the αi weights: The parameter α0 represents the lack of
sufficiency and is the weight of missing information due to unmeasured
(or unknown) biomarkers that, combined with the measured bio-
markers, would be fully predictive of disease risk. The parameters  αi,
i = 1, …, p, represent the weight of each (measured) biomarker for
predicting disease risk. The αi's (i = 1, …, p) can all be equal or they
can be informed by expert judgments based on their relative im-
portance (with the constraint that they sum up to 1). Given the diffi-
culty of defining values for  αi (including LOS), scenarios are drawn to
incorporate uncertainty around these parameters by sampling a

Fig. 1. Shape of the sigmoid type ψ response function. RCi, βi, and RCΨ ( )ii denote the
relative change, the threshold, and the relative contribution to the F-factor of biomarker i,
respectively. The plateau at 1 for any RCi>βi implies that a relative change maximally
contributes to the F-value if it exceeds the βi threshold.
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Table 2
Biomarker changes (mean ± standard deviation) 5 or 90 days after baseline. The results are based on log-transformed data and are pooled across studies.

Biomarker Assessment Day Cigarettes Smoking Abstinence THS

N Mean ± SD N Mean ± SD N Mean ± SD

Biomarkers of Exposure
MHBMA Day 5 156 −0.09 ± 0.43 138 −2.11 ± 1.13 306 −2.1 ± 0.99
(pg/mg creat) Day 90 73 0.07 ± 0.5 46 −1.38 ± 1.04 117 −1.61 ± 0.99
3-HPMA Day 5 157 −0.06 ± 0.33 138 −1.29 ± 0.51 308 −0.8 ± 0.4
(ng/mg creat) Day 90 73 −0.02 ± 0.47 46 −0.92 ± 0.69 117 −0.68 ± 0.47
S-PMA Day 5 156 −0.03 ± 0.48 138 −2.36 ± 0.7 306 −2.28 ± 0.75
(pg/mg creat) Day 90 73 −0.04 ± 0.54 46 −1.9 ± 1.1 117 −1.86 ± 0.99
COHb Day 5 157 −0.01 ± 0.19 139 −1.04 ± 0.48 309 −1.01 ± 0.45
(%) Day 90 73 0.01 ± 0.27 46 −0.54 ± 0.43 117 −0.69 ± 0.4
Exhaled CO Day 5 158 −0.03 ± 0.43 140 −1.9 ± 0.75 310 −1.85 ± 0.68
(ppm) Day 90 73 −0.14 ± 0.79 46 −1.62 ± 0.98 117 −1.63 ± 0.82
Total NNAL Day 5 157 −0.02 ± 0.35 138 −1.01 ± 0.38 308 −0.83 ± 0.32
(pg/mg creat) Day 90 73 0.12 ± 0.45 46 −1.55 ± 1.34 117 −1.31 ± 0.76
Total NNN Day 5 157 0.1 ± 0.51 138 −3.41 ± 1 307 −1.37 ± 0.87
(pg/mg creat) Day 90 73 −0.04 ± 0.64 46 −2.76 ± 1.31 117 −1.54 ± 0.94
Total 1-OHP Day 5 156 −0.19 ± 0.24 138 −1.03 ± 0.39 306 −1 ± 0.39
(pg/mg creat) Day 90 73 0.09 ± 0.34 46 −0.45 ± 0.47 117 −0.48 ± 0.56
1-NA Day 5 157 0.03 ± 0.35 138 −3.15 ± 0.63 308 −3.05 ± 0.66
(pg/mg creat) Day 90 73 0 ± 0.44 46 −2.43 ± 1.13 117 −2.52 ± 1.02
2-NA Day 5 157 −0.03 ± 0.34 138 −2 ± 0.63 308 −1.99 ± 0.69
(pg/mg creat) Day 90 73 0 ± 0.38 46 −1.58 ± 0.79 117 −1.88 ± 0.74
4-ABP Day 5 157 −0.02 ± 0.37 138 −1.73 ± 0.69 308 −1.73 ± 0.7
(pg/mg creat) Day 90 73 0.1 ± 0.47 46 −1.17 ± 0.96 117 −1.39 ± 0.82
o-tol Day 5 155 −0.12 ± 0.46 138 −0.94 ± 0.64 308 −0.88 ± 0.68
(pg/mg creat) Day 90 72 −0.06 ± 0.56 46 −0.52 ± 0.83 117 −0.67 ± 0.96
CEMA Day 5 157 −0.09 ± 0.31 138 −1.94 ± 0.43 308 −1.84 ± 0.41
(ng/mg creat) Day 90 73 0.04 ± 0.42 46 −2.09 ± 1.13 117 −2.16 ± 0.88
HEMA Day 5 157 −0.17 ± 0.41 138 −1.09 ± 0.53 308 −1.04 ± 0.56
(pg/mg creat) Day 90 73 0.12 ± 0.44 46 −0.63 ± 0.76 117 −0.77 ± 0.67
3-OH-B[a]P Day 5 157 −0.11 ± 0.35 138 −1.53 ± 0.68 308 −1.41 ± 0.71
(fg/mg creat) Day 90 73 0.04 ± 0.54 46 −0.87 ± 0.74 117 −1.04 ± 0.81
HMPMA Day 5 157 −0.16 ± 0.35 138 −1.4 ± 0.67 307 −1.24 ± 0.64
(ng/mg creat) Day 90 73 −0.11 ± 0.48 46 −0.68 ± 0.77 117 −0.83 ± 0.73
Clinical Risk Markers
WBC

(GI/L)
Day 90 73 −0.04 ± 0.21 46 −0.1 ± 0.29 117 −0.09 ± 0.21

Total cholesterol
(mg/dL)

Day 90 73 −0.02 ± 0.12 46 0.02 ± 0.1 117 −0.03 ± 0.12

HDL
(mg/dL)

Day 90 73 −0.01 ± 0.14 46 0.07 ± 0.14 117 0.06 ± 0.14

LDL
(mg/dL)

Day 90 73 −0.06 ± 0.16 46 −0.01 ± 0.17 117 −0.07 ± 0.18

Triglycerides
(mg/dL)

Day 90 73 0.04 ± 0.24 46 0.08 ± 0.27 117 −0.01 ± 0.26

sICAM-1
(ng/mL)

Day 90 73 −0.01 ± 0.16 46 −0.15 ± 0.23 117 −0.13 ± 0.19

8-epi-PGF2α
(pg/mg creat)

Day 90 73 0.11 ± 0.26 46 0.04 ± 0.42 117 −0.01 ± 0.26

11-DTX-B2
(pg/mg creat)

Day 90 73 −0.14 ± 0.4 46 −0.3 ± 0.33 117 −0.23 ± 0.49

HbA1C
(%)

Day 90 73 0 ± 0.04 46 −0.01 ± 0.04 117 0 ± 0.04

Fibrinogen
(mg/dL)

Day 90 73 0 ± 0.22 46 −0.03 ± 0.18 117 −0.04 ± 0.19

hs-CRP
(mg/L)

Day 90 73 0.3 ± 1.12 46 0.05 ± 1.13 117 0.14 ± 1.05

Systolic BP
(mmHg)

Day 90 73 −0.04 ± 0.1 46 −0.02 ± 0.08 117 −0.04 ± 0.08

Diastolic BP
(mmHg)

Day 90 73 −0.05 ± 0.12 46 −0.03 ± 0.1 117 −0.05 ± 0.12

FEV1

(%pred)
Day 90 41 −0.01 ± 0.07 37 0.01 ± 0.06 70 0.02 ± 0.05

FVC
(%pred)

Day 90 41 0 ± 0.06 37 0.01 ± 0.06 70 0.01 ± 0.05

FEV1/FVC
(Derived)

Day 90 72 −0.01 ± 0.04 46 0 ± 0.06 117 0 ± 0.03

Abbreviations: 11-DTX-B2: 11-dehydro-thromboxane B2; 1-NA: 1-aminonaphthalene; 1-OHP: 1-hydroxypyrene; 2-NA: 2-aminonaphthalene; 3-HPMA: 3-hydroxypropylmercapturic acid;
3-OH-B[a]P: 3-hydroxybenzo(a)pyrene; 4-ABP: 4-aminobiphenyl; 8-epi-PGF2α: 8-epi-prostaglandine F2α; BP: blood pressure; CEMA: 2-cyanoethylmercapturic acid; CO: carbon mon-
oxide; COHb: carboxyhemoglobin; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; HbA1C: hemoglobin A1c; HDL: high density lipoprotein cholesterol; HEMA: 2-
hydroxyethyl mercapturic acid; HMPMA: 3-hydroxy-1-methylpropylmercapturic acid; hs-CRP: high sensitive C-reactive protein; LDL: low density lipoprotein cholesterol; MHBMA:
monohydroxybutenyl mercapturic acid; N: number of subjects analyzed; NNAL: 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol; NNN: N-nitrosonornicotine; o-tol: o-toluidine; SD:
standard deviation; sICAM-1: soluble inter-cellular adhesion molecule; S-PMA: S-phenylmercapturic acid; WBC: white blood cells.
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Fig. 2. Boxplots of biomarker changes 5 or 90 days after baseline (log-transformation was applied to biomarker measurements before computing the change between day 5/90 and
baseline) for each group (left: continued cigarette consumption, CC; middle: switching to THS; right: smoking abstinence, SA). The boxes represent quartiles of the distribution and the
line its median.
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‘uniform’ Dirichlet distribution with parameters   …(LOS, α , ,α )1 p , where
 ∑ = −= α 1 LOSi 1

p
i . This ensures that the average set of weights over all

scenarios is close to   …(LOS, α , ,α )1 p , the Dirichlet distribution being the
most uniform distribution for parameters constrained to sum up to 1.

Sampling the ψi’s: The ψi’s translate the relative change of bio-
marker i to their impact on the unknown effective dose change ∈F [0,1].
ψ0 is being dealt with by sampling the uniform distribution for every set
of  αi’s. Assuming that LOS (= α0) is equal to 1, i.e., the measured
biomarkers conveying no information on disease risk, the sampled
scenarios are thus leading, on average, to a set of weights
{     = = … =α 1, α 0, , α 0p0 1 } and to a distribution of ψ0 close to uniform
over [0,1], and thus to a distribution of F also close to uniform over
[0,1], implying that no information was obtained by measuring non-
informative biomarkers. This is consistent with the assumption that F-
values between 0 and 1 are equally likely (uniform distribution) when
no prior information is considered or available.

For          = …ψ (i 1, , p)i a single parameter piecewise linear approx-
imation of a sigmoid is used:

= ⎧
⎨⎩

<if

otherwise
ψ (RC )

RC β

1
i i

RC
β i i

i

i

(7)

where ∈β (0,1)i . The sigmoid type response function has a plateau at 1

for any RCi>βi, implying that a relative change contributes to the F-
factor if it is below the βi threshold. Rather than defining individual βi’s,
the necessity parameter NEC ∈ (0,1] is introduced. It specifies the lower
bound for the sampled βi’s, defining the minimal biomarker change
required for a disease risk reduction. If a relative change for any bio-
marker is less than NEC the F-factor is reduced to below 1. To in-
corporate the uncertainty about the βi’s they are uniformly sampled
over the interval (NEC, 1].

As shown in Fig. 1, if =β 1i the ψifunction is linear with slope 1, any
relative change then contributing to a reduction of the F-factor, which
would be a non-conservative approach. The contribution to F is max-
imal when the effect of Switch is similar to continued cigarette con-
sumption (CC) for a given biomarker i, as then both the corresponding
relative change and, due to Eq. (7), RCψ ( )ii are 1. If, on the other hand,
the effect of Switch is similar to Cessation the corresponding relative
change, and consequently RCψ ( )ii , are both close to 0, thus decreasing
the F-factor.

Each sampling of a set of αi's and a set of βi’s leads to the creation of
one link function between the relative changes and F. By sampling the
posterior distributions of the relative changes many times, a distribu-
tion of F is obtained, accounting for all sources of uncertainties.

The described approach is summarized by the following algorithm:

Table 3
Relative change posterior distributions (original units of biomarkers retained, although relative changes are unitless; abbreviations specified in footnote of Table 2).

Biomarker Assessment Day Mean ± SD Quantiles

Q1 Median Q3 [5%,95%]

Biomarkers of Exposure
MHBMA Day 5 0.04 ± 0.03 0.02 0.04 0.06 [0,0.1]
(pg/mg creat) Day 90 0.05 ± 0.04 0.02 0.04 0.08 [0,0.14]
3-HPMA Day 5 0.38 ± 0.03 0.36 0.38 0.39 [0.33,0.42]
(ng/mg creat) Day 90 0.26 ± 0.09 0.21 0.27 0.33 [0.1,0.41]
S-PMA Day 5 0.04 ± 0.02 0.02 0.04 0.06 [0.01,0.09]
(pg/mg creat) Day 90 0.08 ± 0.06 0.04 0.07 0.11 [0.01,0.19]
COHb Day 5 0.05 ± 0.03 0.02 0.05 0.07 [0.01,0.11]
(%) Day 90 0.04 ± 0.04 0.01 0.03 0.06 [0,0.12]
Exhaled CO Day 5 0.04 ± 0.03 0.02 0.04 0.06 [0.01,0.1]
(ppm) Day 90 0.07 ± 0.05 0.03 0.07 0.11 [0.01,0.18]
Total NNAL Day 5 0.18 ± 0.03 0.16 0.18 0.2 [0.12,0.23]
(pg/mg creat) Day 90 0.18 ± 0.09 0.11 0.18 0.24 [0.03,0.33]
Total NNN Day 5 0.6 ± 0.02 0.59 0.6 0.61 [0.57,0.63]
(pg/mg creat) Day 90 0.44 ± 0.05 0.41 0.44 0.48 [0.35,0.52]
1-OHP Day 5 0.04 ± 0.03 0.02 0.04 0.06 [0,0.09]
(pg/mg creat) Day 90 0.12 ± 0.08 0.05 0.1 0.17 [0.01,0.28]
1-NA Day 5 0.03 ± 0.02 0.02 0.03 0.05 [0.01,0.07]
(pg/mg creat) Day 90 0.05 ± 0.04 0.02 0.04 0.07 [0,0.12]
2-NA Day 5 0.03 ± 0.02 0.01 0.02 0.04 [0,0.07]
(pg/mg creat) Day 90 0.03 ± 0.03 0.01 0.02 0.04 [0,0.08]
4-ABP Day 5 0.03 ± 0.02 0.02 0.03 0.05 [0,0.08]
(pg/mg creat) Day 90 0.05 ± 0.04 0.02 0.04 0.08 [0,0.14]
o-tol Day 5 0.09 ± 0.05 0.04 0.08 0.12 [0.01,0.18]
(pg/mg creat) Day 90 0.12 ± 0.09 0.05 0.1 0.17 [0.01,0.28]
CEMA Day 5 0.05 ± 0.02 0.04 0.05 0.06 [0.01,0.09]
(ng/mg creat) Day 90 0.06 ± 0.04 0.02 0.05 0.08 [0,0.14]
HEMA Day 5 0.06 ± 0.04 0.03 0.06 0.08 [0.01,0.13]
(pg/mg creat) Day 90 0.08 ± 0.06 0.03 0.07 0.12 [0.01,0.21]
3-OH-B[a]P Day 5 0.08 ± 0.04 0.05 0.08 0.11 [0.02,0.15]
(fg/mg creat) Day 90 0.06 ± 0.05 0.02 0.05 0.09 [0,0.16]
HMPMA Day 5 0.12 ± 0.04 0.09 0.12 0.15 [0.04,0.19]
(ng/mg creat) Day 90 0.08 ± 0.06 0.03 0.07 0.12 [0.01,0.2]

Clinical Risk Markers
WBC (GI/L) Day 90 0.29 ± 0.17 0.16 0.28 0.41 [0.04,0.58]
HDL (mg/dL) Day 90 0.29 ± 0.17 0.16 0.29 0.41 [0.04,0.58]
Triglycerides (mg/dL) Day 90 0.79 ± 0.19 0.71 0.85 0.93 [0.4,0.98]
sICAM-1 (ng/mL) Day 90 0.22 ± 0.13 0.12 0.21 0.31 [0.03,0.45]
11-DTX-B2 (pg/mg creat) Day 90 0.28 ± 0.15 0.18 0.28 0.39 [0.05,0.54]
HbA1C (%) Day 90 0.77 ± 0.2 0.68 0.83 0.92 [0.35,0.98]
Systolic BP (mmHg) Day 90 0.15 ± 0.11 0.05 0.12 0.21 [0.01,0.35]
Diastolic BP (mmHg) Day 90 0.19 ± 0.15 0.07 0.16 0.27 [0.02,0.46]
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• Using the means, standard deviations, and samples sizes of the
various groups G (CC, Switch, and Cessation) and Eq. (5) and Eq. (3)
(or Eq. (4)), samples of relative changes are obtained for each bio-
marker i.

• If the distribution of the relative changes for a given biomarker does
not exhibit a positive 5%-quantile for the posterior

−μ (CC) μ (Cessation)i i distribution, the biomarker is excluded from
further analysis.

• LOS and NEC values are adopted, based on available knowledge and
expert judgement.

• The following is repeated many times:
o Sample a set of  αi’s from a Dirichlet distribution with parameters

  …(LOS, α , ,α )1 p
o For each (p+1)-tuple obtained in the previous step, sample a set
of βi’s from a uniform distribution over (NEC, 1]

o Combine the sampled relative changes with every sample of βi’s
using Eq. (7) and with the sampled set of  αi’s using Eq. (6)

• Generate the F-values obtained under all plausible link functions
and relative changes sampled in the first step.

Fig. 3. Posterior probability distributions of the biomarker-specific relative changes.
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For the present analysis, with LOS = 0.5 and =NEC 0.5, 1000
samples were drawn to estimate the posterior RCi distributions, for each
of which 10,000 scenarios were generated by sampling the αi's and βi’s.

Step 3: Sensitivity analysis
To assess the impact of the assumptions required for transforming

biomarker data to the F-factor, sensitivity analyses were conducted by
(i) varying the lack of sufficiency and necessity; (ii) omitting one bio-
marker at a time.

3. Results

The data collected in the four clinical studies were pooled for the
present analyses. To account for the different pathogenetically relevant
levels of evidence between biomarkers of exposure on the one hand,
and clinical risk markers (e.g., COHb and HDL) on the other, the sum of
the hyper-parameters αi for the latter was weighted 1.5-fold relative to
the sum of the hyper-parameters of the former. The sum of all hyper-
parameters was constrained to 1-LOS.

Table 2 provides descriptive statistics of the changes in the log-
transformed values of the analyzed biomarkers between day 5 (day 90)
and baseline. The observed patterns of change from baseline were
generally similar across biomarkers, those in the CC group being close
to 0 and clear reductions visible for the Switch and Cessation groups
(Fig. 2). For some biomarkers (e.g., 1-NA at day 5, 1-OHP at day 5, S-
PMA at day 90), the changes seen in the Switch group were similar to
those in the Cessation group. For other biomarkers (e.g., 3-HPMA at day
5, Total NNN at day 5, Total NNN at day 90), the changes observed in
the Switch group were between those in the CC and Cessation groups.
As can be seen there are biomarkers for which the Switch effect appears
to be more favorable than the Cessation effect. Based on the above
assumptions, these effects were ‘truncated’ not to exceed the Cessation
effects.

Assumption 2 of an effect of Cessation was not met at day 90 for
total cholesterol, high sensitive C-reactive protein, fibrinogen, LDL
cholesterol, percent of predicted FEV1 value, percent of predicted FVC
value, prostaglandin F2α and the derived FEV1/FVC ratio.

The posterior distributions of the relative changes of all biomarkers
included in the analysis are summarized in Table 3 and shown in Fig. 3.

While the mode of the posterior probability (i.e., the point at which the
distribution curve is maximal) of the relative changes was close to 0 for
some biomarkers, it was above 0.5 for others and for some even close to
1 (e.g., triglycerides). As expected, modes close to 0 were found for
biomarkers for which the reductions found in the Switch group were
similar to those in the Cessation group (e.g., 1-NA at day 5, 1-OHP at
day 5, S-PMA at day 90). Modes close to 0.5 were found for biomarkers
for which the changes in the Switch group were between those in the
CC and Cessation groups (e.g., 3-HPMA at day 5, Total NNN at day 5,
Total NNN at day 90). The uncertainty of the posterior distribution of
the relative changes was found to vary considerably across biomarkers.
Clinical risk markers tended towards larger modes compared to bio-
marker of exposure, as well as towards higher uncertainty. This is re-
lated to the difference between the CC and Cessation groups being
smaller for clinical risk markers than for biomarkers of exposure, and
clinical risk markers tending to require more time for cessation effects
to manifest.

Fig. 4 depicts the distribution of 10,000,000 F-factor values ob-
tained through 10,000 scenarios sampling the αi's and βi’s for each of
the 1000 relative changes calculated per biomarker. The median is lo-
cated at about 0.33 and 50% of the values are between 0.17 and 0.53.
The mode of the F-factor distribution is at about 0.15, deviating from
the median due to the positive skew of the distribution. The uncertainty
around the F-factor is relatively large and values as small as 0.1 or as
large as 0.9 still have some probability mass, and thus cannot be fully
excluded. Nevertheless, the probability mass of the F-factor distribution
is clearly shifted to the left compared to the uniform prior distribution
before any biomarker data had been analyzed. While Eq. (4) was used
to obtain the above results, using Eq. (3) resulted in a very similar F-
factor distribution (cf. Supplementary Material).

Sensitivity analysis results regarding lack of sufficiency and ne-
cessity are shown in Fig. 5. While small modifications of the parameters
resulted only in limited changes of the F-factor distribution, including
extreme parameter values in the population health impact modeling
can inform about the effects of the choice of these parameters on the
model predictions.

To assess the impact of individual biomarkers on the F-factor dis-
tribution, analyses were conducted with each individual biomarker left
out from one run (Fig. 6). As can be seen, removing one biomarker at a
time did not substantially modify the posterior distribution of plausible
F-factor values.

Additionally, the F-factor distribution was estimated by analyzing
each study individually. For the short-term effects studies (5 days in
confinement) a LOS of 2/3 was chosen, as the assessment period is
shorter and only biomarkers of exposure were measured. This resulted
in F-factor distributions consistent with that of the main analysis,
confirming the robustness of the approach with respect to inter-study
variability. Consistency with the F-factor distribution described above
was also found after analyzing separately the two studies with a 85-day
ambulatory period (LOS=0.5). The corresponding results are con-
tained in the Supplementary Material.

4. Discussion

Smoking-related disease risks are well understood, due to cigarette
smoking being prevalent for many decades and epidemiological data
being available. This is different for novel nicotine and tobacco pro-
ducts, including products with the potential to reduce health risks
compared to smoking cigarettes. The reason is that novel products ei-
ther have not yet been marketed or have not been used by a sufficient
number of users for a long enough period of time; typically ten or more
years for chronic disease risk to become measureable in epidemiolo-
gical studies (although the effects of quitting can be demonstrated in a
much shorter period for heart disease and stroke). Unfortunately, other
than with for example exposure to specific infectious agents, the me-
chanistic understanding of the pathogenesis of chronic smoking-related

Fig. 4. Posterior F-value distribution from the sampled link functions with parameters
LOS and NEC equal to 0.5 on top of the uniform distribution (grey). The interval bounds
are the 2.5% and 97.5% quantiles, an alternative representation of the distribution is
given by the boxplot under the distribution plot (the box represent the quartiles of the
distribution and the line its median).
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diseases does not so far allow firm conclusions on health risks from
exposure characteristics. In spite of this uncertainty, not making po-
tentially reduced risk products available to smokers that would other-
wise continue smoking would imply restricting these smokers to con-
tinue using cigarettes and so imposing health risks and doing harm.
Thus, attempting to estimate risks and potentials of risk reduction is
mandatory in order to provide the best possible evidence for health
policies.

The required risk assessment has to reach beyond individual risks
and needs to comprise the risks of the population as a whole. This is due
to the fact that even with a truly reduced risk product and thus risk
reduction in individual smokers who switch to this product, adverse
population health impacts cannot be excluded. The reason is that

subgroups outside the target group, including former and never smo-
kers or smokers who would otherwise have quit, might be attracted to
using the product and some eventually transitioning to (or continuing
to use) cigarettes, thus potentially offsetting, at the level of the popu-
lation as a whole, the beneficial effects obtained in the target group.
The population health impact model that has been developed to address
these questions (Weitkunat et al., 2015) does, however, require esti-
mation of the reduction of the effective dose (F-factor) that is achieved
by switching from cigarette smoking to an MRTP. Short of measured
health outcomes, exposure effects and clinically relevant biological
changes can be quantified in clinical studies by means of biomarkers of
exposure and clinical risk markers. The challenge of estimating the
effective dose based on such data has been addressed in the present

Fig. 5. Sensitivity analysis for combinations of necessity (N) and lack of sufficiency (LOS), showing the posterior distribution densities (ordinate) and F-factor values (abscissa).
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methodological development.
The empirical basis for estimating F is related to the quantitative

change observed in a set of biomarkers upon switching from cigarette
smoking to the new product. The posterior distributions of the relative
changes are estimated using a non-informative prior distribution,
minimizing the amount of subjective information entering the estima-
tion.

Rather than attempting to directly estimate F from available data, a

re-parametrization of the estimation problem was undertaken so that
instead assumptions on two more objectively justifiable parameters are
required. The first, lack of sufficiency, quantifies the informativeness of
the set of biomarkers and clinical risk markers analyzed to characterize
exposure-specific disease risks, a value of 1 indicating no information
and a value of 0 indicating the set fully characterizing the risks. In spite
of the extensive set of biomarkers of exposure and clinical risk markers,
the conservative assumption of the total set of these endpoints

Fig. 6. Posterior density (ordinates) of the F-values for all, and all minus one, biomarkers. The yellow area indicates the posterior distribution when all biomarkers are analyzed, the
purple area the posterior distribution when the indicated marker is omitted from the analysis.
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characterizing the smoking exposure-related disease risks by no more
than half was made by assuming the value of the lack of sufficiency
parameter to be 0.5. The assumed value for the second parameter,
necessity, was also set to 0.5, the parameter again having a theoretical
range from 0 to 1. By setting the necessity parameter to 0.5, the
minimal effect required to be observed in the biomarker or clinical risk
endpoint upon switching from smoking to the novel product had to be
at least half of that observed upon smoking cessation to reduce the
effective dose. Based on the set of biomarkers and clinical risk markers
analyzed, as well as given the conservative assumptions regarding the
lack of sufficiency and necessity parameters, it appears very unlikely
that the posterior distribution of the F-factor so derived would over-
estimate the reduction of the effective dose achieved by switching from
cigarette smoking to THS use. As the sensitivity analysis results in-
dicate, the posterior distribution was found to be robust with regard to
small changes in the sufficiency and necessity parameters. Generally,
and in line with the theoretical expectations, the narrowness of the
posterior distribution and thus the credibility of the F-factor estimation
increased as the parameter values increased. Omission of any single
biomarker did not materially change the results, which points at the
robustness of the information provided by the set of biomarkers of
exposure and clinical risk markers.

With the present methodological development a practical method of
estimating the disease risk potential of a novel modified risk tobacco
product has become available. The necessary assumptions are justifi-
able and, when parameters are set conservatively and a comprehensive
set of biomarkers and clinical risk marker data is available, the resulting
evidence-based approach appears to provide a solution for bridging the
gap to health impact assessment, until eventually epidemiological data
become available.

In addition to data from clinical studies, in-vivo and in-vitro data
could be integrated. Further sensitivity analyses can include factors like
sex, age, and variables related to smoking history, including smoking
duration and intensity. At present, it appears important to note that the
methodology is probabilistic and results in a posterior distribution ra-
ther than in a point estimate. This uncertainty should be considered
whenever the results are used, as for example in estimating disease-
specific population health impacts upon introducing a novel tobacco
product on the market.

5. Conclusion

A methodology is described that allows for translating biomarker
measurements into excess risks by estimating a product-specific risk-
modulating effective dose (F-factor). In a first step, relative changes for
the biomarkers of exposure and clinical risk markers and related un-
certainties are derived. Based on parsimonious and justified assump-
tions the set of biomarkers is linked to the F-factor by introducing the
parameters lack of sufficiency and necessity, to account for the lack of
knowledge regarding the “true” link function. This allows for updating
non-informative “prior” beliefs regarding F by data obtained in clinical
studies. Sensitivity analyses support the robustness of the results with
regard to variations of the lack of sufficiency and necessity parameters
and to the omission of individual biomarkers. The methodology bridges
the gap between the need for quantitative disease- and product-specific
health impact assessment on the one hand, and the lack of epidemio-
logical data on the other, for novel tobacco products.
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