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Much effort has recently been devoted to the analysis of continuous movements with the aim of promoting EMG
signal acceptance in several fields of application. Moreover, several studies have been performed to optimize the
temporal and spatial parameters in order to obtain a robust interpretation of EMG signals. Resulting from these
perspectives, the investigation of the contribution of EMG temporal and spatial information has become a relevant
aspect for signal interpretation. This paper aims to evaluate the effects of the two types of information on
continuous motions analysis. In order to achieve this goal, the spatial and temporal information of EMG signals
were separated and applied as input for an offline Template Making and Matching algorithm. Movement
recognition was performed testing three different methods. In the first case (the Temporal approach) the RMS
time series generated during movements was the only information employed. In the second case (the Spatial
approach) the mean RMS amplitude measured on each channel was considered. Finally, in the third case (the
Spatio-Temporal approach) a combination of the information from both the previous approaches was applied. The
experimental protocol included 14 movements, which were different from each other in the muscular activation
and the execution timing. Results show that the recognition of continuous movements cannot disregard the
temporal information. Moreover, the temporal patterns seem to be relevant also for distinguishing movements
which differ only in the muscular areas they activate.
1. Introduction

A muscle is controlled by a large number of motor neurons, whose
axons exit the spinal cord and progressively traverse smaller branches of
peripheral nerves until they enter the muscle they control. Because a
single action potential in a motor neuron can activate hundreds of
muscles fibers, the sum of the resulting currents generates an electrical
signal that is readily detectable outside the muscle itself using electrodes
on the surface of the overlying skin [1]. Furthermore, when more than
minimal force is required, many motor neurons generate an asynchro-
nous barrage of action potentials with overlapping action potentials
arising in each muscle unit. The result is a complex pattern of electrical
potentials (typically in the order of 100 μV in amplitude) that can be
recorded as a surface electromyogram (sEMG) [2].

Despite its complex nature, the EMG signal contains a large amount of
information related to limb movements and functionality, so it can be
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usefully applied as a control signal for prosthesis [3,4] and exoskeletons
[5], as a biofeedback in rehabilitation systems [6], or in clinical and sport
medicine for gait and posture analysis and diagnosis of neuromotor
disorders [7].

Many studies have been performed in order to optimize all the aspects
that influence the signal, such as those related to the complex nature of
the EMG signal, the practical limitations of data acquisition and the
signal processing techniques [8–11].

Important efforts have been devoted in recent years to fill the gap
between academia and industry in order to meet important criteria
needed to develop ideal devices for the final users (e.g. patients, thera-
pists). One of these criteria is related to proportional control. The design
of algorithms able to determine this type of control implies the control of
continuous motions [12,13]. Zhang et al. [14] successfully applied a
hidden Markov model (HMM) to decode continuous motions of the
shoulder and the elbow. Other studies have used neural networks in
Distribution Function; GCA, Global Classification Accuracy; LCA, Local Classification Ac-
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traditional classification and regression applications, employing a
time-domain feature set for finger movements [15] or for forearm and
wrist motions [16]. Highly accurate continuous prediction of finger
endpoint position during a series of reaches has been obtained with a
mixture of Kalman filters [17].

It is well known that the parameters calculated in the time-domain
could be very relevant. A variety of time-domain features have been
proposed and applied to various motion recognition approaches. Phi-
nyomark et al. [18] recently investigated the performance of sets
including 38 time-domain (TD) features, demonstrating their better
performances if compared with frequency-domain (FD) features for
robust EMG pattern classification. Moreover, a variety of approaches
have been studied to determine the temporal parameters in order to
obtain the highest motion classification rate.

TD features are mathematical instruments that highlight a specific
characteristic of a portion of the signal, called window. In literature the
temporal information is mainly related to the length of the windows and
their overlap. Phinyomark et al. [19] compared eight combinations of
window lengths and increments, and demonstrated that the best result in
terms of robustness was obtained with a length of 500 ms and an
increment of 125 ms when four electrode-pairs were positioned on the
forearm. Zardoshti-Kermani et al. [20] experimentally determined that a
window length equal to 100 ms is sufficient to classify 5 elbow joint
movements using 2 pairs of electrodes. The elbow-joint angle prediction
of Triwiyanto et al. [21] shows that a 250 window length yielded the best
performance prediction with the same electrode number. Moreover, the
relationship betweenwindow length and classification accuracy has been
investigated in formal studies [22], also considering the aspect of the
controllability of a prosthetic device [23]. In fact, the temporal param-
eters in EMG analysis have to be carefully evaluated in order to reduce
the delay and guarantee good controllability in real-time applica-
tions [24].

Another fundamental class of parameters which has been widely
investigated is related to the spatial information. The spatial information
refers to the effect of electrode number, orientation, configuration and
geometry on the analysis of sEMG signal. Yanjuan et al. proposed a
channel selection method, independent both from EMG features and
from classifiers [25]. They tested it on a set including four TD features
calculated on a shifting window with a time length of 150 ms and an
increment of 100 ms. A high recognition rate was reached with 7 chan-
nels on a set of 18 hand motions applying a subject dependent selection
method [26]. Five EMG TD features have been calculated on a 250 ms
overlapping sliding window and applied to determine the best channels
subset [27]. Muceli et al. [28] proposed a method based on the spatial
correlation between RMS values, which is robust with respect to the
channel configuration. Some recent studies have also investigated the
interaction between spatial and temporal information to try to determine
the best combination between window length, overlap and number of
electrodes in order to obtain the lowest error rate during offline move-
ment recognition [23,29]. Menon et al. [29] have conducted a formal
investigation of the relationship between temporal and spatial parame-
ters to find the best combination between window length, overlap and
number of electrodes. Performance of temporal parameters have been
evaluated for each electrode set and spatial information has been related
to the number of electrodes in the electrode set that has been selected
from an HD-EMG matrix. Recent focus on the analysis of continuous
motions and on the interaction between sEMG temporal and spatial in-
formation reveals the importance of quantifying their respective
discriminant powers in the analysis of continuous movements.

The aim of the present work is to investigate the separate contribu-
tions of spatial and temporal information and quantitatively evaluate
their relevance in the interpretation of the sEMG. With respect to the
previously cited works, the present work investigated temporal and
spatial information of the EMG signal in a different way. In particular, to
assess temporal information, the evolution of the EMG signal provided by
each channel was preserved, while the spatial localization of those
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channels was removed. Moreover, to evaluate spatial information, the
mean EMG activity was calculated across time for each channel during
movement execution. Thus, the spatial information was represented by
the mean RMS signals recorded on different electrodes, while the tem-
poral information was expressed by the behavior of the EMG signal over
time through RMS time series. An RMS time series is a series of RMS data
points indexed in time order, thus the temporal information, as intended
in the present study, is associated to the timing of muscular activation. In
particular, it can be supposed that temporal information, may success-
fully discriminate motions performed with different timings, providing
only a small contribution to discerning movements performed with
different muscles. Vice-versa, an interpretation based only on space in-
formation should behave in the opposite manner.

To this purpose, an offline movement recognition method based on
template matching was designed and proposed and its performance was
calculated in three different cases. In the first case (the Temporal
approach) only the RMS time series generated during movements was
employed in the classification. In the second case (the Spatial approach)
only themean RMS amplitude produced on each channel was considered.
Finally, in the third case (the Spatio-Temporal approach) a combination
of the information from both the previous approaches.

Khushaba et al. [30] have recently proposed a feature extraction
framework that aimed to consider both the temporal evolution of the
EMG patterns and the spatial coherence. Spatial-Temporal Descriptors
(STD) have been calculated with this framework and compared with
some well-known EMG feature sets in terms of movement classification
performance. The EMG data that has been used to evaluate the frame-
work, has been recorded during isometric movements. In the present
work, the concept of using a combination of temporal and spatial infor-
mation of the EMG signal was extended by performing tests with only one
source of information, either temporal or spatial. Furthermore, move-
ments were analyzed during their entire execution and not only during
the isometric phase.

Template matching, applied in the present study, is a pattern classi-
ficationmethod applied in EMG signal analysis. In 2010 Huang et al. [31]
developed a system for handwriting recognition, which was improved in
a different study in 2013 [32], based on the smoothed and down-sampled
absolute value of sEMG templates. The template matching was performed
after Dynamic Time Warping. Another application to handwriting
recognition [33] calculated templates using the sEMG compound signal
and averaging training epochs. The results obtained by applying template
matching to handwriting recognition demonstrated its suitability for this
type of purpose. Another application of template matching is the
decomposition of sEMG into their constitutive motor unit action poten-
tials with the aim of collecting valuable information about motor unit
recruitment and firing rates [34–37]. The template matching approach
was selected for the present study due to the possibility of managing
input data and explicitly selecting the type of information provided to the
classification algorithm.

The experimental protocol included continuous movements [17]
which were different in both the muscular activation areas and temporal
profiles. By means of the implemented algorithm it was possible to
manage the type of information used for discriminating movements
without the need to modify the classification criterion, which could in-
fluence results according to the method applied. Hence, it is possible to
quantify the discriminant power of RMS time series, of muscular acti-
vation areas or of a combination of both.

2. Materials and methods

2.1. Experimental setup

The EMG signals were recorded using a portable EMG device (Istituto
Italiano di Tecnologia, Morecognition Srl, Turin, Italy). The device in-
tegrated an elaboration module where signals were band-pass filtered
(bandwidth 10–500 Hz), sampled at 2 kHz and digitally converted (24 bit



Table 1
Movements included in the experimental protocol and labels.

Movement Label Variants Labels

Rest Re
Flexion F Single, double, maintained S,D,M
Extension E Single, double, maintained S,D,M
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A/D converter). The Root Mean Square (RMS) of the digitalized signals
was computed using a window of 64 ms and transmitted to a host PC via
Bluetooth. The signals were recorded connecting the elaboration module
to eight bipolar dry circular electrodes (10 mm diameter, interelectrode
distance 20 mm) integrated in a stretchable array. The electrode array
covered a circumference that ranged between 17 and 27 cm.
Supination S Single, double, maintained S,D,M
Pronation P Single, double, maintained S,D,M
Rotation R Single, double S,D
2.2. Experimental protocol

A group of 10 volunteers (seven males and three females) aged be-
tween 26 and 35 years participated in the experiment and signed
informed consent form. The study was in accordance with the Helsinki
Declaration [38] and participant data have been treated according to the
Organic Law of Protection of Personal Data.

The electrode array was positioned in correspondence of the 25% of
the forearm length measured from the elbow crease, no skin preparation
was required. Preliminary experiments showed that the level of crosstalk
was acceptable. This electrode configuration allowed the recording of
signals from extensor and flexor muscles of the hand (See Fig. 1).

Subjects comfortably sat in front of a PC screen, with their elbow
laying on the table, the forearm was perpendicular to the table to guar-
antee a comfortable rest position with no relevant muscular activity.
Furthermore, the rest position allowed the execution of free
wrist movements.

The experimental protocol comprised 14 wrist movements and the
rest position. Specifically, the protocol included 4 movements (named
singlemovements) activating different muscular areas: flexion, extension,
supination and pronation. Each of the 4 movements were also performed
in 2 temporal variants; in the first one (named double movement) the
subject performed the same movement twice, returning in the rest po-
sition between two motion repetitions, in the second one (named main-
tained movement) the subject had to perform the movement and then
maintain an isometric contraction in the target position. Finally, a rota-
tion of the wrist (i.e. a continuous sequence of abduction, flexion,
adduction, extension), was included. The wrist rotation was performed as
a single movement and as a double movement (See Table 1).

The experimental protocol was selected to record a heterogeneous
dataset about movements which differ both from a spatial and from a
temporal point of view. For example, single flexion and single extension
induce different activation maps for forearm muscles, but they have
similar temporal profiles. On the contrary, single flexion and double
flexion, involve the same muscles but the single flexion shows a single
peak in the RMS signal, whereas the double flexion induces two peaks.
The rotation of the wrist was introduced because its complex patterns
Fig. 1. Scheme of electrode positioning on the forearm with reference to extensor
(Anterior view) and flexor (Posterior view) muscles of the hand.
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involve a specific evolution of the muscular areas on the entire circum-
ference covered by the electrode array over time.

A graphical interface (GUI) helped subjects to perform the protocol in
the correct way and with the correct timing. The training phase was
composed by 10 repetitions of all the movements. The testing phase
consisted of 5 repetitions of a randomized sequence of the trained mo-
tions; the randomization was applied in order to avoid any adaptation
effects. The GUI reproduced sounds in order to indicate timing and
duration of the tasks; every repetition of a motion was performed with a
predefined timing. Single movements lasted 1.5 s while double and
maintained movements lasted 2.25 s. Rest periods were introduced every
10 movements and additionally whenever the subject needed to avoid
fatigue. The entire protocol lasted about 40 min.

2.3. Template making and matching (TMM)

Training repetitions were automatically segmented during the tem-
plate making (training phase); the muscular activity was considered only
when the RMS signal of at least 2 channels was higher than a threshold
Sth equal to the 66� quantile of the signal. The quantile based threshold
improved the algorithm robustness to noise and its value was empirically
determined for the experimental protocol. By applying the threshold on
at least 2 channels it was possible to prevent the segmentation when an
inadvertent signal peak was recorded on only one electrode. Whenever
the threshold crossing was detected, the signal was segmented for W
samples. The optimal value of W equal to 100 samples was empirically
determined as the minimum time interval that guaranteed a uniform
segmentation (W equal for all the movements), avoiding the overlap
between two consecutive tasks. The window length W equal to 100
samples was applied to the entire protocol. The RMS signal on each
channel was then normalized with respect to the maximum RMS value
measured inside the window. Each template sample was then modelled
as a Gaussian variable X of parameters μ and σ using segmented data.
Therefore, for each recording channel, each movement was represented
as a series of W Gaussian variables.

Fig. 2 (A and B) shows an example template made for channels 3 and
6 respectively. The last row of each figure (orange line on blue back-
ground) shows the time series of Gaussian mean values that model the
template shape. The average over the training repetitions (Rep. NR,
1 � NR � 10) results in a smoother signal and some details in waveform
are neglected, nevertheless the information about the standard deviation
of samples was preserved in order to prevent information losses during
the template matching process.

For template matching (testing phase), a similarity measure between
the templates and RMS signals recorded was calculated. The normalized
RMS signals of the testing dataset were evaluated over a sliding window
(the testing window) of length W. To establish the equivalence between
the testing window and the motion templates, the probability that every
sample of the testing window belonged to each template was computed.
To this purpose, for every sample of the testing window, the Comple-
mentary Cumulative Distribution Function (CCDF) was calculated with
Equation (1).

FXðxÞ ¼ PðX > xÞ ¼ ∫ þ∞
x fXðtÞdt (1)

where fXðtÞ was the density function of X , X was the Gaussian variable



Fig. 2. Examples of template making for 2 channels (3 and 6). Signals were segmented to
locate training repetitions, the last row (orange line on blue background) shows the time
series obtained averaging over repetitions.

Fig. 3. TMM Work Flow. During the training phase, RMS signals were segmented to
identify movement repetitions and define templates. During the testing phase, signals
were evaluated over a sliding window of length W. If the amplitude of the window signal
was lower that the threshold Sth it was classified as Rest position. If it exceeded Sth, the
linear combination of the Complementary Cumulative Distribution Function (CCDF) of all
the window samples was calculated and compared with the threshold Pth. If the global
CCDF didn't exceed Pth the window was classified as Rest Position, otherwise the template
matching was performed and the window was classified as the template associated with
the highest CCDF.
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that model a template sample and x was the value of the testing sample.
All the Gaussian distributions were normalized to the standard normal
(μ¼ 0, σ¼ 1) to reduce the computational power. CCDF values were then
weighted according to the normalized RMS signal amplitude. The linear
combination of the CCDF values (global CCDF) of all samples of the
testing window was calculated for every movement.

The classification was performed in 2 steps:

1. Rest position vs. all: if the entire signal in the testing window was
lower than Sth, the window was assigned to the rest position class.

2. Movement classification: windows that were not assigned to the rest
position class were analyzed and classified. The testing window was
assigned to the template that generated the highest global CCDF.
However, if all the global CCDF values were lower than a minimum
probability threshold Pth, the testing window was rejected and asso-
ciated to the rest position. The Pth threshold, was optimized over the
training data of each subject in order to maximize the recognition
performance.

Finally, the testing window was shifted by one sample and the new
testing window was evaluated on the base of the its global CCDF value.
This procedure was repeated until the entire testing dataset was
258
analyzed. Fig. 3 shows the flow chart of the template making and
matching process.

3. Calculation

3.1. TMM algorithm implementation

Since the aim of this work was to separately quantify the discriminant
powers of the EMG temporal and spatial information for continuous
motions, two different approaches to movement classification were
considered and compared: the temporal approach and the spatial
approach. Moreover, an additional approach was tested as a combination
of both: the spatio-temporal approach. The spatio-temporal approach
allowed the validation of the algorithm implemented and an evaluation
of performance improvement when signals recorded on different elec-
trodes were associated to RMS time series and vice-versa. Template
making and matching was performed as described in Section 2.3, but the
data used to build templates and testing windows were different
depending on the applied approach.

3.1.1. Temporal approach
In this technique the information of muscular activation areas was

removed, thus a single signal calculated from all electrodes was applied
as the input of the algorithm. Data window were averaged over the 4
channels with the highest average RMS value. The information related to
the temporal variation of the RMS value was preserved, while the
localization of the electrodes that contributed to the time series was
neglected. Every time the segmentation window for template making
moved or the testing window for template matching shifted, the selection
of active channels was renewed and the averaging process was repeated.
Thus, the input signal described the RMS time series generated when a



Fig. 5. Radargraphs corresponding to templates for wrist flexion (Fig. 5A) and extension
(Fig. 5B) in single, double and maintained variants. Each spoke represents a recording
channel and the data length of each spoke is proportional to the normalized RMS
amplitude.
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specific movement was performed. Fig. 4 details an example of training
signals (red line) and template mean values (blue line) for wrist flexion
(Fig. 4A) and extension (Fig. 4B) in the 3 temporal variants. It can be seen
that RMS time series for movements performedwith the same timings are
not distinguishable.

This test was performed in order to analyze the protocol while
neglecting the muscles that were involved in the movements and to test
the discriminant power of the only temporal information through the
RMS time series. It could be expected that this method would completely
fail in discriminating movements with same timings (see Fig. 4) even if
they differed in the muscles they activated (e.g. single flexion and single
extension should induce the same temporal profile on different muscles).

3.1.2. Spatial approach
For this approach, the classification was solely based on spatial

localization of muscular activation areas. The temporal information was
removed calculating the mean value of the RMS signal samples included
in the observation window. A subset of consecutive samples (from 20
samples to 50 samples, according to the movement duration) that
exceeded the threshold Sth was identified separately for each channel.
The RMS mean value of active samples was then calculated. The tem-
plates and the testing windows described the level of activation of each
channel in terms of mean RMS amplitude for a specific movement. Radar
graphs in Fig. 5 represent training signals (red line) and template mean
values (blue line) calculated with the spatial approach for wrist flexion
and extension. The data length of each spoke is proportional to the
normalized RMS amplitude on each channel (radar graph rays). In this
case the 3 temporal variants are very similar while movements activating
different muscles produce highly different templates.

This test should highlight that it was difficult to distinguish when a
movement was performed once, twice or if it was maintained for a long
time. On the contrary, this method should discriminate movements
performed with different muscles (e.g. flexions from extensions) but
confuse when the same motion was performed with different timings
(e.g. single flexion vs. double flexion etc.).

3.1.3. Spatio-temporal approach
Considering the information from both the spatial and the temporal

approaches, the input of the spatio-temporal approach was a matrix of
size N⋅W, where N is the electrodes number equal to 8 and W is the
window length equal to 100 samples. Thus, a template was represented
by the RMS time series on every channel. This approach was tested to
validate the algorithmwith a complete set of information and to compare
recognition performance when the partial set was applied. The expec-
tation was that this method discriminated both movements where
different muscles were involved (i.e. flexion vs. extension vs. supination
vs. pronation) and motions with different temporal profiles (e.g. single
Fig. 4. Examples of templates for wrist flexion (Fig. 4A) and extension (Fig. 4B) in single,
double and maintained variants.
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flexion from double flexion from maintained flexion). Moreover, high
accuracy was expected for the recognition of wrist rotation, since this
approach should be able to take into consideration both the dynamic
spatial pattern, and timings of activation of all the muscles involved in
the movement.
3.2. Evaluation of recognition performance

To evaluate classification performance, the Confusion Matrix (CM)
was computed. The CM is a matrix that easily allows the visualization of
an algorithm performance. Each column of the matrix represents in-
stances in an actual class (true class), while each row represents instances
in a predicted class (output class).

Three parameters were calculated from the CM: the Global Classifi-
cation Accuracy for all approaches, the Local Classification Accuracy and
the Output Percentage only for temporal and spatial approaches.

3.2.1. Global Classification Accuracy (GCA)
The GCA is a CM based measure of the classification performance of

an algorithm. It is calculated as the ratio between the sum of instances in
the principal diagonal and the sum of all instances. The expectation was
that the CM of the spatio-temporal approach had a high GCA. The GCA of
the spatio-temporal approach has been calculated in order to validate the
TMM algorithm implemented. The temporal and the spatial approaches
should have lower GCA values since they are not suitable to recognize
respectively, spatial or temporal patterns.

3.2.2. Local Classification Accuracy (LCA)
According to previous considerations, it could be supposed that the

spatial and the temporal approaches revealed some classification clus-
ters. Therefore, in the CM calculated for the temporal approach the
movements were ordered in the following way: all the single movements,
then all the movements repeated twice and finally all the maintained
movements. In fact, this approach should fail in discriminating motions
that only differed in themuscles activated. In this way, instances of all the
movements with the same temporal profile were visualized as consecu-
tive in the CM. On the contrary, the CM computed for the spatial
approach was organized depending on the muscles activated: firstly, all
flexion movements, then all extension movements et cetera.

The submatrix represented by each cluster was individuated. The LCA
was calculated as the GCA of each submatrix. The LCA is a relevant
parameter since it allows the quantification of the discriminant power of
the type of information expressed by the input data on a specific subset of



CM 1. Confusion Matrix [%] of the temporal approach, LCA (dashed line) and OP
(continuous line) of submatrices grouping movements with similar timings.

CM 2. Confusion Matrix [%] of the spatial approach, LCA (dashed line) and OP
(continuous line) of submatrix grouping movements involving same muscular areas.

M. Di Girolamo et al. Informatics in Medicine Unlocked 9 (2017) 255–263
movements. The LCA was evaluated in comparison with the random
guessing. In the case of the temporal approach, the expectation was a
homogeneous classification rate of 20% for submatrices including 5
movements (single and double variations) and of 25% for the submatrix
including 4 movements (maintained variation). For the spatial approach
the expectation was that the recognition and the confusion of single,
double and maintained versions of every movement should be homoge-
neously distributed with a rate of internal confusion comparable to the
random guessing; 33% for submatrix of size 3 � 3 (submatrix for all the
movements but the rotation) and 50% for the submatrix of size 2 � 2
(submatrix for the rotation).

3.2.3. Output Percentage (OP)
The OP was evaluated on the submatrices and calculated in 2 steps.

Firstly, the sums of instances in each column of the submatrix (true
classes) were calculated and normalized with respect to the number of
actual instances pertaining each class. Then, the mean value of the sums
was calculated. The OP value allowed the quantification of the correct
instances in a specific submatrix. The ideal OP of all the submatrices for
both the spatial and temporal approach is 100%. In fact, with the tem-
poral approach the temporal variants should be clearly recognized from
each other. On the contrary, the spatial approach should correctly
discriminate the movements which generate different activation maps.

To assess the statistically significant difference between the ap-
proaches, the Friedman test was applied. If the Friedman test determined
the difference, the conditions were compared pairwise using the Wil-
coxon signed-rank tests. A level of p < 0.05 was selected as the threshold
for the statistical significance.

4. Results and discussion

For each approach, the movements in the CMs were ordered to
highlight classification clusters (See Section 3.2.2). Different clusters are
highlighted with different colors. See Table 1 for labels used in CM.

4.1. Temporal approach

In the case of the CM for the temporal approach, the movements are
grouped according to the temporal profile.

CM 1 represents the CM obtained for this approach, the GCA is
44 ± 26%. It can be seen that the mean OP is 87%, it means that mis-
classifications mostly occurred between movements with the same var-
iations. Moreover, LCA values were calculated: 41% for single
movements, 51% for double movements and 45% for maintained
movements. The GCA was in line with expectations and revealed that the
only temporal patterns were not sufficient to correctly discriminate the
set that included movements which differ only in the muscles they acti-
vate. Nevertheless, the LCA of the temporal submatrices overtook the
expectations. The LCA were about twofold (χ2 ¼ 30, p ≪0.001) with
respect to 20% (single and double variations) and 25% (maintained
variation). It suggests that the RMS time series contributed to discrimi-
nate movements even when they were performed with similar temporal
profiles. In fact, all movements belonging to a temporal cluster, were
performedwith the same timings, thus they should not be distinguishable
if only the RMS time series were considered. Klein Breteler et al. [39]
applied Principal Components of the rectified and downsampled EMG to
assess EMG temporal waveform generated during 27 American Sign
Language (ASL) fingerspelling. They revealed that a particular temporal
waveform can be observed for each channel and movement using 8
channels. The temporal patterns of muscle activation have been revealed
by Flander et al. [40] for arm movement in three-dimensional space with
an analogous procedure based on best covariance values. Thus, the LCA
values were in line with previous works that investigated the specificity
of EMG temporal patterns when different movements were performed.
However, in the present study the concept was applied to a feature time
series of the EMG averaged across all the active channels. This suggest
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that a specific temporal waveform in muscular activation could be
revealed also when an EMG feature is applied and if the signals are not
analyzed on each single channel.

4.2. Spatial approach

In the case of the spatial approach, movements are ordered according
to activation areas they generate (see CM 2).

The results revealed a mean GCA value of 29 ± 22%. The mean LCA
expected was 41.5% and the actual mean value of 38% was few lower,
with a minimum of 23% for the supination and a maximum of 48% for
the rotation. In fact, the spatial approach showed no statistical
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differences with random guessing (χ2¼ 0.08, p¼ 0.8). This approach was
inefficient to discriminate movements that differed only from a temporal
point of view (e.g. single flexion vs maintained flexion, etc.). Moreover, a
mean OP value of 64% was calculated, which was considerably lower
than the ideal value of 100%. In fact, it could be observed that the pro-
nation and the maintained pronation, were often wrongly recognized and
confused with the 3 temporal variants of the extension, while the flexion
was often misclassified as supination and pronation movements. These
results suggested that, the selection of the spatial information induced a
degree of confusion also between the movements which should be
separable for muscular areas they activate. This could be because the
movements that have been confused had close activation areas and the
only spatial approach was not sufficient to discriminate them in this case.
It indicated that the contribution of the temporal information for the
recognition of movements of the protocol was not limited to the capa-
bility to distinguish temporal variants of the same movement, but also
helped to more accurately discriminate different movements with close
activation areas.

4.3. Spatio-temporal approach

The confusion matrix related to the spatio-temporal approach was
ordered as the latter one (see CM 3).

It can be seen that the matrix is highly diagonal with a GCA of
90 ± 10.5%, this suggests that the algorithm implemented was efficient
when applied to the experimental protocol. This result was comparable
with the results obtained with the TMM applied to handwriting recog-
nition with a maximum of 6 pair of electrodes positioned on the forearm
muscles [33,41]. This approach allowed the discrimination of both the
movements that were different for muscles involved and movements that
were performed with same muscles but with different timings. Moreover,
the wrist rotation (single and double variations) has classification accu-
racy values comparable with the other movements of the protocol.

Summarizing key results, the CMs obtained for the tested approaches
allowed the evaluation of the discriminant powers separately for the
spatial and the temporal information. The spatio-temporal approach
CM 3. Confusion Matrix [%] of the spatio-temporal approach.
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allowed the validation of the algorithm implemented. Moreover, the LCA
of the temporal approach on each cluster of movement with the same
profile was at least twofold with respect to the random guessing. This
revealed that the movements of the protocol performed with similar
timings but activating different muscles, had specific RMS temporal
patterns which contributed to distinguish one from each other. This was
in line with previous studies [39,40] and suggested that the specificity of
temporal patterns was also relevant for EMG feature time series regard-
less the position of the recording electrodes. The statistical difference
between the tested approaches was verified (p≪0.01). Comparing the
spatial approach with the spatio-temporal approach, it was shown that
the contribution of the time information to the wrist movement recog-
nition was not limited to the discrimination of different temporal pro-
files, but also allowed a more accurate discrimination between different
movements with close activation areas. In fact, the OP values for this
approach were 23% higher than the OP calculated with the
spatial approach.

These results revealed the efficacy of the present method of separately
evaluating the EMG temporal and spatial information of the performed
experimental protocol. Moreover, the relevance of the EMG temporal
information in the analysis of continuous movements was revealed. The
specificity of this type of information went beyond the discrimination of
the movements of the protocol performed with different temporal pro-
files and suggested that temporal patterns were movement-specific even
when they were applied to averaged RMS time series.

Findings of the present study are promising and suggest that the EMG
temporal information for continuous motions analysis should have a
major attention. Several fields of sEMG analysis could take advantage of
the improvement of continuous motion decoding.

Latest requests in the rehabilitation field include task-oriented
(instead of impairment-oriented) therapies and tools to quantitative
monitor the recovery progress of patients [42]. This goal demands in-
struments that enhance information related to the kinematics of the
movement and approaches that allow the analysis of muscular patterns.
An approach that track the temporal relation between the activation of
the muscles involved in the movement could provide an important sup-
port to this study. Concerning Sign Language, the EMG signals are
recently widely adopted in the field of gesture recognition techniques,
often in combination with accelerometers [43,44] and/or gyroscopes
[45]. Sign Language gestures are inherently continuous and character-
ized by specific patterns both in space and time so an approach that
contemporary monitor the both aspects appears promising. In sport field,
many studies have been performed to correlate muscle coordination and
performance. The control of muscle recruiting and related timings has a
relevant influence on athlete performance [46] and on the recovery
mechanism in case of sport injuries [47].

The spatio-temporal approach proposed in the present study appears
suitable for these applications, since it provides an activation map of the
muscular areas and information about their evolution during the move-
ment execution.

5. Conclusion

This study provided a TMM algorithm and an experimental protocol
with the aim of fully separating the contributions of spatial and temporal
information for continuous movement analysis. The proposed algorithm
showed congruent results for the three approaches tested and demon-
strated the significance of the temporal information of the EMG signal for
discriminating continuous movements, both when they only differ in the
muscular areas they activate and when they are performed with different
timings. Moreover, the results for the spatio-temporal approach could
also have relevance in other fields such as rehabilitation, sports and
recognition of Sign Language gestures.

Further work will be done to test the algorithm on a more challenging
experimental protocol including a set of complex movements. Dynamic
Time Warping could be introduced as a preprocessing step to find an
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optimal alignment between time series and improve results. Finally, the
robustness of the method will be tested using other features (e.g. MAV,
IEMG, WL, AAC) and other distance measures between the templates and
testing sample sequences.
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