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Abstract— This work introduces a randomized method for
the design of an approximate abstraction of a stochastic system
and the assessment of its quality. The proposed approach
relies on the formulation of the problem as a semi-infinite
chance-constrained optimization program and on its solution
via randomization. The method has quite general applicability,
since it only requires to be able to run multiple executions of
the candidate abstract model and of the original system and to
compute their distance. Two variants of the notion of distance
are considered in view of a possible use of the approximate
abstraction for probabilistic safety verification. The approach
is tested on a numerical example.

I. INTRODUCTION

This work is concerned with the design of an approximate
abstraction of a stochastic system and the assessment of its
quality. The goal is to obtain a simpler abstracted model
that is accurate enough so that system verification can be
performed on the model in place of the actual system.

An abstraction M of a system S is characterized by two
properties: first, it has to resemble the behavior of the original
system; second, it has to abstract the original system by being
structurally simpler. The quantification of how M is close
to S is clearly a key aspect of any procedure for designing
an abstraction.

For deterministic, discrete-state models, abstractions can
be precisely defined through the notion of bisimulation,
which effectively equates to trace equivalence between S and
M, [3]. As intuitive, a relation based on trace equivalence
becomes rather conservative when moving to models with
continuous state spaces. Indeed, exact notions of bisimulation
[2] for deterministic systems have recently given way to
approximate versions [10], where the quality of the approx-
imation between S and M is quantified via metrics that
specify how close the trajectories of S and M are. This
approach has led to the study of approximate abstractions
for nonlinear [14] and switched systems [11].

Probabilistic, continuous-space models add another level
of complexity to the study of abstractions, since realizations
of S andM should not only be close, but also have the same
likelihood. While the notion of bisimilarity for discrete-space
probabilistic systems is well-studied [13], the attempts to
extend it to continuous-space systems are confined either to
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specific classes of systems, [9], [15], or too restrictive, [5].
Thus, heading for some notion of approximate abstraction
appears as a promising alternative also in a stochastic setting.

In [12], the notion of approximate probabilistic bisimu-
lation between two stochastic hybrid systems S and M is
introduced, which hinges on the computation of a bisim-
ulation function via Lyapunov techniques. Along similar
lines, [1] benefits from contractivity assumptions on the
dynamics of S and M to extend the results in [12]. These
contributions, however, present some limitations, in that, 1)
they may lead to quite conservative bounds on the quality
of M as an approximate abstraction of S, 2) restrictive
assumptions on the dynamics of the systems are required, and
3) a computational procedure to determine the approximate
bisimulation function is given only for certain classes of
systems, [12].

In this paper, we put forward a randomized approach to
determine an approximate abstraction M of a stochastic
system S, which is as well applicable to a hybrid setting.
The proposed approach relies on the formulation of the
problem as a semi-infinite chance-constrained optimization
program and on its solution via randomization. The method
is inspired by [8], where model reduction is briefly discussed
as a possible application to systems and control design of the
so-called “scenario approach,” which was first introduced for
solving uncertain convex programs via randomization [6] and
then extended to stochastic semi-infinite chance-constrained
optimization programs [7].

Unlike [1], [12], we focus on finite time-horizon proper-
ties. Our approach is applicable to any stochastic system S
and candidate abstract model M with no a-priori assump-
tions on their dynamics, the only requirement being to be
able to run multiple executions of both S and M. When
evaluating the quality of the approximate abstraction, we
consider two variants of the distance between the executions
ofM and S, which are both effective for probabilistic safety
analysis. Given that the solution is obtained via randomiza-
tion and, hence, is a random quantity, results are valid with
a certain degree of confidence that, however, is a design
parameter and can be chosen as close to 1 as desired. An
additional aspect that differentiates this work from previous
ones in the literature is that design – and not only the analysis
– of an approximate abstraction is addressed. The approach
is tested on a numerical example. Proofs are omitted due to
space limitations.

II. NOTION OF APPROXIMATE ABSTRACTION

Given a system S with a stochastic input w(t), suppose
that we are interested in verifying a finite time-horizon
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property of S that depends on the behavior of its output
yS(t) over some time-horizon T = [0, tf ], with tf > 0. Let
the output signal yS(t) take values in Y := <p.

Consider now a simplified modelM of S, fed by the same
input w(t) and with output yM(t) taking values in Y . Let the
approximation error introduced by abstracting S with model
M be expressed through some function dT : YT×YT → <+

that maps each pair of executions yS(t), t ∈ T , and yM(t),
t ∈ T , into a positive real number dT (yS , yM) and that
quantifies the extent to which the execution of S differs from
that of M.

Note that dT (yS , yM) is a random quantity that depends
on the realization of the input w(t) and the possibly stochas-
tic initialization (xS(0), xM(0)) of S and M. In order to
avoid excessive conservativeness due, for instance, to the
fact that some really unlikely realizations of the stochastic
input w(t) can cause a large discrepancy between the outputs
yS(t) and yM(t), we require M to accurately describe S
for all realizations of w(t) and (xS(0), xM(0)) except for a
violation set of (small) probability ε ∈ (0, 1).

This motivates the following definition of approximate
abstraction. (see Figure 1 for a pictorial representation).

Definition 1 (approximate abstraction): ModelM is a γ-
approximate abstraction of S up to level 1−ε if the following
condition is satisfied:

P
(
dT (yS , yM) ≤ γ

)
≥ 1− ε, (1)

where P (·) denotes the probability measure induced over the
executions of S and M by the stochastic process w(t) and
the initial conditions (xS(0), xM(0)). ut
Here, we assume that the probability in (1) is well-defined,
which is quite straightforward to show for general functions
dT (·, ·) in the case of discrete-time systems. Technical issues
may instead arise in a continuous-time setting as discussed
in [4] with reference to reachability analysis of stochastic
hybrid systems.

Remark 1: The smaller is γ in (1), the better is the
approximation quality of model M. As ε grows to 1, γ
decreases towards zero, but, at the same time, the quality of
the approximation as measured by γ becomes meaningless
since it is guaranteed over a set of uncertainty instances
whose probability 1− ε tends to zero. ut

Remark 2: If dT (yS , yM) is symmetric, i.e.,
dT (yS , yM) = dT (yM, yS) then, the role of S and
M in Definition 1 can be exchanged, [12], hence S is a
γ-approximate abstraction of M, up to level 1− ε. ut

In the rest of the paper we consider the following two
possible definitions of dT (yS , yM):

dT (yS , yM) = sup
t∈T
‖yS(t)− yM(t)‖; (2)

dT (yS , yM) = sup
t∈T

inf
τ∈T
‖yS(t)− yM(τ)‖. (3)

The latter one is known as directional Hausdorff distance
and, intuitively, quantifies how distant a point in the exe-
cution of S can be from any point in the execution of M,
without taking the timing aspect into account. Notice that
the directional Hausdorff distance is not symmetric.

w(t) yS (t) 

yM (t) 

dT( yS , yM )       ! 

! 

P " #

! 

"

Fig. 1. Pictorial view of modelM as an approximate abstraction of system
S, up to level 1− ε.

Given that

sup
t∈T

inf
τ∈T
‖yS(t)− yM(τ)‖ ≤ sup

t∈T
‖yS(t)− yM(t)‖, (4)

the notion of approximate abstraction based on (2) is stronger
than that based on (3), i.e, if M is a γ-approximate ab-
straction of S up to level 1 − ε according to (2), then, this
implies that M is also a γ-approximate abstraction of S up
to level 1−ε according to (3), but not vice-versa. Also, given
some model M, its quality γ as approximate abstraction of
S according to (3) would be typically better (lower) than that
according to (2).

Next, we argue that both notions of approximate abstrac-
tion can be used for performing safety verification on S.
For the verification of more complex reachability properties,
such as that of reaching some set only after passing through
some region within a given finite time interval, however, the
weaker notion of approximate abstraction is not adequate
since the timing information is lost.

Suppose that we are interested in estimating the probability
that the output yS(t) of system S will enter some unsafe set
A within the time horizon T . Let M be a γ-approximate
abstraction of S up to level 1 − ε. Then, as suggested in
[12], we can obtain an estimate of the probability of interest
by expanding A as follows:

Aγ̃ = {y| ∃y′ ∈ A such that ‖y − y′‖ ≤ γ̃},

with γ̃ > γ, and computing the probability that the output
yM(t) of the approximate abstractionM will enter Aγ̃ . This
is particularly convenient when it is easier to analyze the
reachability properties of the (simpler) abstracted model M
than those of system S.

Proposition 1: If M is a γ-approximate abstraction of S
up to level 1− ε, then,

P (∃t ∈ T such that yS(t) ∈ A)

≤ P (∃t ∈ T such that yM(t) ∈ Aγ̃) + ε. �

III. ASSESSMENT OF THE QUALITY OF A MODEL AS AN
APPROXIMATE ABSTRACTION

The quality γ of a modelM as an approximate abstraction
of S up to level 1−ε can be assessed by solving the following
chance-constrained optimization program:

min
γ∈<

γ subject to: (5)

P
(
dT (yS , yM) ≤ γ

)
≥ 1− ε.
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This is a semi-infinite program since the number of
optimization variables (γ) is finite, whereas the number
of constraints is typically infinite (it is in fact given by
dT (yS , yM) ≤ γ for all executions yS , yM in a set of
probability at least 1− ε).

Let γε denote the solution of (5). Then, model M is a
γε-approximate abstraction of S up to level 1− ε.

Computing γε is generally difficult since it involves deter-
mining, among all the sets of executions of probability 1−ε,
the one that provides the best (lowest) value for dT (yS , yM).
Interestingly, this computational issue can be solved using a
randomized approach, as in Algorithm 1, which provides an
estimate of γε with provable approximation guarantees.

Algorithm 1 Randomized quality assessment

1: extract N realizations of the stochastic input w(i)(t),
t ∈ T , i = 1, 2, . . . , N , and N samples of the initial
condition (xS(0), xM(0))(i), i = 1, 2, . . . , N ;

2: run the corresponding N executions of M and S, thus
obtaining N realizations of the output signals y(i)

S (t) and
y

(i)
M(t), t ∈ T , i = 1, 2, . . . , N ;

2: discard the k(< N) largest values of

γ̂(i) := dT (y
(i)
S , y

(i)
M), i = 1, 2, . . . , N ;

3: set
γ̂ε := max

i∈{1,2,...,N}\{h1,h2,...,hk}
γ̂(i),

where {h1, h2, . . . hk} ⊂ {1, 2, . . . , N} denote the in-
dices of the discarded values of the γ̂(i)’s.

By extracting at random N possible executions ofM and
S and a-posteriori discarding the fraction k/N(< ε) that
corresponds to the largest discrepancy between them, one
can improve the quality bound γ while guaranteeing that the
violation set has size smaller than or equal to the prescribed
ε value. This intuition can be posed on solid theoretical
grounds and the following result on the quality of the
estimate γ̂ε can be proven by a straightforward application
of [7, Theorem 2].

Proposition 2: Select a confidence parameter β ∈ (0, 1)
and a performance degradation parameter ν ∈ (0, ε). If N
and k are such that

k∑
i=0

(
N

i

)
εi(1− ε)N−i

+

N∑
i=k+1

(
N

i

)
(ε− ν)i(1− ε+ ν)N−i ≤ β, (6)

then, with probability at least 1 − β, the solution γ̂ε to
Algorithm 1 satisfies the following feasibility and optimality
conditions:

1) P
(
dT (yS , yM) ≤ γ̂ε

)
≥ 1− ε,

2) γε ≤ γ̂ε ≤ γε−ν ,
where γε−ν denotes the optimal chance-constrained solution
when the size of the violation set is ε− ν. ut

If we discard the confidence parameter β for a mo-
ment, this proposition states that the randomized solution
γ̂ε obtained through Algorithm 1 is feasible for the chance-
constrained program (5) (condition 1) and is at least as good
as the chance-constrained solution when the size of violation
set is reduced to ε− ν (condition 2). As ν tends to zero, γ̂ε
approaches the desired optimal chance constrained solution
γε. In turn, the simulation effort grows unbounded since N
and k depends on 1/ν [7].

As for the confidence parameter β, one should note that γ̂ε
is a random quantity that depends on the randomly extracted
input realizations and initial conditions. It may happen that
the extracted samples are not representative enough, in which
case the size of the violation set will be larger than ε.
Parameter β controls the probability that this happens and the
final result holds with probability 1− β. N and k satisfying
(6) depend logarithmically on 1/β [7], so that β can be
pushed down to small values such as 10−10, to make 1− β
be so close to 1 to lose any practical importance.

IV. DESIGN OF AN APPROXIMATE ABSTRACTION

Suppose that one has to select the best approximate
abstraction of S up to level 1 − ε in a given class C. This
design problem can be formulated as the following chance-
constrained program:

min
γ∈<,M∈C

γ subject to: (7)

P
(
dT (yS , yM) ≤ γ

)
≥ 1− ε,

which is even more challenging to solve than (5) since the
optimization variables are nowM and γ. Let us denote with
γ?ε and M?

ε the solution to (7). We distinguish between two
different cases.

A. Case 1: The model class is finite

If the family C is finite, i.e., C = {Mj : j = 1, 2, . . . ,m},
one can resort to Algorithm 2, for which Proposition 3 holds.

Proposition 3: Select a confidence parameter β ∈ (0, 1)
and a performance degradation parameter ν ∈ (0, ε). If N
and k satisfy (6), then, with probability at least 1−mβ, the
quality estimate γ̂?ε of M̂?

ε obtained through Algorithm 2
satisfies both the conditions:

1) max
M∈C

P
(
dT (yS , yM) ≤ γ̂?ε

)
≥ 1− ε,

2) γε,j? ≤ γ̂?ε ≤ γε−ν,j? ,
where γα,j denotes the solution to the optimal chance-
constrained program (5) for model Mj when the size of
the violation set is α. ut

According to condition 1) in Proposition 3, the approxima-
tion quality γ̂?ε is guaranteed with level 1−ε within the model
family C. This result holds with a confidence parameter value
that is deteriorated of a factor m (the cardinality of C) with
respect to β.

B. Case 2: The model class is finitely parameterized

Suppose that one has to choose the best approximate
abstraction of S up to level 1 − ε within some finitely
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Algorithm 2 Randomized solution to model selection

1: extract N realizations of the stochastic input w(i)(t),
t ∈ T , i = 1, 2, . . . , N , and N samples of the initial
condition (xS(0), xM(0))(i), i = 1, 2, . . . , N ;

2: run the corresponding N executions of S , thus obtaining
N realizations of the output signal y(i)

S (t), t ∈ T , i =
1, 2, . . . , N ;

3: for each model Mj , j = 1, 2, . . . ,m do the following:
• run the N executions of Mj , thus obtaining N

realizations of the output signal y(i)
Mj

(t), t ∈ T ,
i = 1, 2, . . . , N ;

• discard the k(< N) largest values of

γ̂
(i)
j := dT (y

(i)
S , y

(i)
Mj

), i = 1, 2, . . . , N ;

• set
γ̂j := max

i∈{1,2,...,N}\{h1,h2,...,hk}
γ̂

(i)
j ,

where {h1, h2, . . . hk} ⊂ {1, 2, . . . , N} denote the
indices of the discarded values of the γ̂(i)

j ’s.

4: set M̂?
ε = Mj? and γ̂?ε = γ̂j? , where j? :=

arg minj=1,2,...,m γ̂j .

parameterized model class {M(θ), θ ∈ Θ ⊆ <d}. Then,
the chance-constrained program (7) can be rewritten as

min
γ∈<, θ∈Θ

γ subject to: (8)

P
(
dT (yS , yM(θ)) ≤ γ

)
≥ 1− ε,

and a randomized solution to (8) can be found through
Algorithm 3.

Algorithm 3 Randomized design of an abstraction

1: extract N realizations of the stochastic input w(i)(t),
t ∈ T , i = 1, 2, . . . , N , and N samples of the initial
condition (xS(0), xM(0))(i), i = 1, 2, . . . , N ;

2: run the corresponding N executions of S and M, thus
obtaining N realizations of the output signals y(i)

S (t) and
y

(i)
M(t), t ∈ T , i = 1, 2, . . . , N ;

3: select the k(< N) executions to discard such that the
value for γ obtained through

min
γ∈<, θ∈Θ

γ subject to: (9)

dT (y
(i)
S , y

(i)
M(θ)) ≤ γ, i ∈ {1, . . . , N} \ {h1, h2, . . . hk}

is minimal;
4: let γ̂ε, θ̂ε be the solution to (9) with {h1, h2, . . . hk}

denoting the indices of the executions to be discarded.

If dT (yS , yM(θ)) is convex as a function of θ and Θ is a
closed and convex set, then, by [7, Theorem 2] the following
result holds.

Proposition 4: Select a confidence parameter β ∈ (0, 1)
and a performance degradation parameter ν ∈ (0, ε). If N

and k are such that(
k + d

k

) k+d∑
i=0

(
N

i

)
εi(1− ε)N−i

+

N∑
i=k+1

(
N

i

)
(ε− ν)i(1− ε+ ν)N−i ≤ β, (10)

where d is the dimension of the optimization parameter θ,
then, with probability at least 1−β, the solution γ̂ε, θ̂ε to Al-
gorithm 3 satisfies the feasibility and optimality conditions:

1) P
(
dT (yS , yM(θ̂ε)

) ≤ γ̂ε
)
≥ 1− ε,

2) γε ≤ γ̂ε ≤ γε−ν . ut
The optimal removal procedure involved in the third step

of Algorithm 3 requires to solve
(
N
k

)
finite convex optimiza-

tion problems, which makes the problem computationally
unfeasible for sensible values of ε and β. However, if one
resorts to a suboptimal removal procedure (e.g. a greedy
approach where the k executions to be discarded are chosen
one after the other by progressively improving the solution
γ instead of all k executions in a single shot), the feasibility
condition 1 in Proposition 4 still holds. Moreover, the bound(

k + d

k

) k+d∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

can be used in place of (10), with a significant reduction of
the values for N and k (see [7, Theorem 1]).

Remark 3: Note that Proposition 4 requires the distance
between executions to be convex as a function of the
candidate abstracted model parametrization. This can be
enforced by adopting a convex over-approximation, at the
price of introducing conservativeness in the optimality of
the randomized solution. ut

V. A NUMERICAL EXAMPLE

We test the randomized approach proposed in this paper
on a numerical example inspired by that reported in [12].

Let S be a stochastic system whose state x(t) ∈ <6

evolves according to a stochastic differential equation (SDE)
and, from time to time, is subject to some deterministic reset.
More precisely, x(t) is governed by

dx(t) = Ax(t)dt+ Σx(t)dB(t),

where B(t) is a standard Brownian motion, A =
diag(a1, a2, a3) is a block-diagonal matrix with

a1 =

[
−1 −10
10 −1

]
, a2 =

[
−2 −20
20 −1

]
, a3 =

[
−2 0
0 −2.5

]
,

and

Σ = 0.5


1 0 0 0 1 1
0 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 1
0 0 1 0 1 0

 .

At the jump times {tn}n≥0, the continuous state x(t) is reset
to x(tn) = R limt↑tn x(t), where R = 0.7 · I6×6.
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The jump times are determined by a Poisson process p(t)
with rate λ = 0.5 that is independent of the Brownian motion
B(t). The initial condition x(0) of S is a Gaussian random
variable with mean µ = [1 1 1 1 0 0]′ and variance

V =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01

 ,
that is independent of the stochastic input to the system
w(t) := (B(t), p(t)). The output of the system is given by

yS(t) = Cx(t),

where

C =

[
0.84 −1.03 1.07 −0.88 0.5 0
−0.60 −1.35 −0.26 −0.27 0 −0.5

]
.

We next consider 3 different models, and apply Algorithm
1 to assess their quality as an approximate abstraction of S
over T up to level 1 − ε, with T = [0, 6] and ε = 0.1. A
step ∆t = 6 · 10−3 was used for the numerical integration
(first-order Euler-Maruyama scheme) of the involved SDEs.
Algorithm 2 allows assessing the overall outcome.

The results reported refer to the case when the confidence
parameter and the performance degradation parameter are set
equal to β = 10−6 and ν = 0.05 respectively, corresponding
to N = 2573 and k = 186 based on the bound (6) in
Proposition 2. Since β = 10−6, the results obtained through
Algorithm 1 hold with probability at least 1− 10−6.

A. Description of the candidate models
Model M1 is characterized by a lower-dimensional state

x1(t) governed by the SDE

dx1(t) = A1x1(t)dt+ Σ1 x1(t)dB(t),

where A1 = diag(a1, a2) and Σ1 = 0.5 ·I4, with I4 denoting
the identity matrix of dimension 4. The discrete transitions
are determined by the Poisson process p(t), and the reset
matrix of state x1(t) is R1 = 0.7 · I4. The output of M1 is
yM1(t) = C1x1(t), where

C1 =

[
0.84 −1.03 1.07 −0.88
−0.60 −1.35 −0.26 −0.27

]
.

Model M1 is initialized by setting x1(0) equal to the first
four components of x(0).

Model M2 is identical to system S except for matrix
Σ that is set equal to zero so as to exclude the influence
of the Brownian motion: dx2(t) = Ax2(t)dt. The discrete
transitions are determined by the Poisson process p(t) of
rate λ = 0.5 and the reset matrix of state x2(t) is R. The
output of M2 is given by yM2(t) = Cx2(t). Model M2 is
initialized at x2(0) = x(0).

Model M3 is a stochastic system described by:{
dx3(t) = Ax3(t)dt+ Σx3(t)dB(t)
yM3(t) = Cx3(t),

with no jumps, and is initialized at x3(0) = x(0).

B. Results obtained with dT (yS , yM) given by (2)

As for model M1, the outcome of Algorithm 1 was γ̂ε =
1.21, hence, by Proposition 2, we can state that

P ( sup
t∈[0,6]

‖yS(t)− yM1
(t)‖ ≤ 1.21) ≥ 0.90.

In Figure 2, we report a realization of the output sig-
nals yS(t) (solid line) and yM1

(t) (dashed line) over the
time horizon [0, 6] and the corresponding distance ‖yS(t)−
yM1

(t)‖. The values of supt∈[0,6] ‖yS(t)−yM1
(t)‖ obtained

in 1000 experiments are drawn and compared with the
threshold 1.21. Since 938 out of 1000 values were found to
be smaller than or equal to 1.21, then, 1 − ε̂ = 0.938. This
last finding agrees with condition 2 in Proposition 2 that
γ̂ε = 1.21 ≤ γε−ν , since the estimated size of the violation
set ε̂ = 0.062 satisfies ε− ν = 0.05 < ε̂ < ε = 0.10.
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Fig. 2. Application of Algorithm 1 to modelM1: phase plot of a realization
of yS(t) (solid line) and yM1

(t) (dashed line) over the time horizon T
(on the left) and corresponding realization of ‖yS(t)− yM1

(t)‖ (top plot
on the right); outcomes dT (yS , yM1 ) of 1000 Monte Carlo experiments
to estimate the actual level 1− ε (bottom plot on the right).

As for model M2, the outcome of Algorithm 1 was γ̂ε =
4.14, hence, by Proposition 2, we can state that

P ( sup
t∈[0,6]

‖yS(t)− yM2
(t)‖ ≤ 4.14) ≥ 0.90.

In Figure 3, we report a realization of the output sig-
nals yS(t) (solid line) and yM2

(t) (dashed line) over the
time horizon [0, 6] and the corresponding distance ‖yS(t)−
yM2

(t)‖. The values of supt∈[0,6] ‖yS(t)−yM2
(t)‖ obtained

in 1000 experiments are drawn and compared with the
threshold 4.14. In this case, 932 out of 1000 values were
smaller than or equal to 4.14, which corresponds to an
estimated level 1 − ε̂ = 0.932. Thus, ε̂ = 0.68 satisfies
ε− ν < ε̂ < ε.

As for M3, we obtained

P ( sup
t∈[0,6]

‖yS(t)− yM3
(t)‖ ≤ 2.74) ≥ 0.90.

In Figure 4, we report a realization of the output sig-
nals yS(t) (solid line) and yM3

(t) (dashed line) over the
time horizon [0, 6] and the corresponding distance ‖yS(t)−
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Fig. 3. Application of Algorithm 1 to modelM2: phase plot of a realization
of yS(t) (solid line) and yM2 (t) (dashed line) over the time horizon T
(on the left) and corresponding realization of ‖yS(t)− yM2

(t)‖ (top plot
on the right); outcomes dT (yS , yM2

) of 1000 Monte Carlo experiments
to estimate the actual level 1− ε (bottom plot on the right).

yM3
(t)‖. The values of supt∈[0,6] ‖yS(t)−yM3

(t)‖ obtained
in 1000 experiments are drawn and compared with the
threshold 2.74. It was found that 926 out of 1000 values were
smaller than or equal to 2.74, hence, the estimated level is
1− ε̂ = 0.926 and ε̂ = 0.074 satisfies ε− ν < ε̂ < ε.
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Fig. 4. Application of Algorithm 1 to modelM3: phase plot of a realization
of yS(t) (solid line) and yM3 (t) (dashed line) over the time horizon T
(on the left) and corresponding realization of ‖yS(t)− yM3

(t)‖ (top plot
on the right); outcomes dT (yS , yM3

) of 1000 Monte Carlo experiments
to estimate the actual level 1− ε (bottom plot on the right).

C. Results obtained with dT (yS , yM) given by (3)

The result of Algorithm 1 for M1 was γ̂ε = 0.93, hence

P ( sup
t∈[0,6]

inf
τ∈[0,6]

‖yS(t)− yM1
(τ)‖ ≤ 0.93) ≥ 0.90.

The level associated with γ̂ε = 0.93 was estimated through
1000 Monte Carlo experiments and was found to be 1 −
ε̂ = 0.932. The estimates of the quality of M2 and M3

obtained by Algorithm 1 were 3.03 and 0.87, respectively,

which entails that

P ( sup
t∈[0,6]

inf
τ∈[0,6]

‖yS(t)− yM2
(τ)‖ ≤ 3.03) ≥ 0.90,

P ( sup
t∈[0,6]

inf
τ∈[0,6]

‖yS(t)− yM3
(τ)‖ ≤ 0.87) ≥ 0.90.

The estimated levels 1−ε̂ were respectively 0.929 and 0.909.

D. Selection of the best approximate model

As expected, the approximation quality γε of any model
Mj is better (lower) when evaluated based on (3) than on
(2). In particular, the improvement is significant in the case
of model M3, where the state jumps are neglected.

By Proposition 3, we can state with a confidence at least
equal to 1−3β = 1−3 · 10−6 that the model that guarantees
the best quality (2) as an approximate abstraction of S is
M1. As for the best approximate abstraction according to
(3), models M1 and M3 are comparable.
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