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Abstract
Elderly care is becoming a relevant issue with the increase of population ageing. Fall injuries, with their
impact on social and healthcare cost, represent one of the biggest concerns over the years. Researchers are
focusing their attention on several fall-detection algorithms. In this paper, we present a deep-learning
solution for automatic fall detection from RGB videos. The proposed approach achieved a mean recall of
0.916, prompting the possibility of translating this approach in the actual monitoring practice. Moreover to
enable the scientific community making research on the topic the dataset used for our experiments will be
released. This could enhance elderly people safety and quality of life, attenuating risks during elderly
activities of daily living with reduced healthcare costs as a final result.
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Introduction

Fall-related injury represents a major social issue. Fall frequency drastically increases among elderly: the
28–35% of people over 65 fall each year (World Health Organization, Ageing and Life Course Unit,
2008). This percentage reaches the 32–42% for people over 70. As a consequence, automatic fall detection
is becoming a crucial task to increase safety of elderly people, especially when they live alone.

According to (Mubashir, Shao, & Seed, 2013), fall detection approaches are based on: wearable,
ambience and vision devices (Mehmood, Nadeem, Ashraf, Alghamdi, & Siddiqui, 2019; Liciotti,
Bernardini, Romeo, & Frontoni, in press; Shojaei-Hashemi, Nasiopolous, Little, & Pourazad, 2018;
Wang, Chen, Zhou, Sun, & Dong, 2016). Regarding wearable devices, elderly often forget or refuse to
wear them (Mubashir et al., 2013) and approaches that use ambient devices suffer from high sensitivity to
noise (Delahoz & Labrador, 2014). A possible solution would be tomonitor, through RGB camera, home
environment and develop a fall-detection algorithm that could alert caregivers once falls occur.

Objective

The goal of this work is to develop an automatic solution to perform fall detection from RGB video
sequences (the code is available on request on GitHub1). The proposed approach exploits VGG16
(Simonyan & Zisserman, 2014), a convolutional neural network (CNN), as feature extractor and a
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Bidirectional Long Short Term Memory (Graves & Schmidhuber, 2005) (Bi-LSTM), a recurrent neural
network (RNN), as feature classifier. Due to the lack of large and annotated publicly available datasets in
the field, we used VGG16 pretrained on the ImageNet dataset and Bi-LSTM pretrained on the UCF-101
action recognition dataset.2We then fine-tuned the Bi-LSTM for the fall-detection task on a custom-built
dataset (the fall dataset) publicly available for the scientific community.3 Figure 1 shows an overview of
the workflow of the proposed method.

Methods

To exploit temporal information,we processed stacks of 7 consecutive frames (inter-frame distancewas1 s).
To extract features from UCF-101 videos, we used two pretrained VGG16 configurations: with (Top) and
without (No Top) fully connected layers, resulting in a vector of 4096 × 7 and 25088× 7 features, respec-
tively. These features were used to train twoBi-LSTMs (one per VGG16 configuration).VGG16was used as
feature extractor since, unlike other deeper networks (e.g., ResNet50), with its few layers it can extract more
general features from images improving the generalization power of the Bi-LSTM classifiers.

We selected the configuration giving the highest macro recall (Rec) on UCF-101, and fine tuned it on
the fall dataset (without freezing any layers (No Freeze) and freezing the first layer (Freeze)) to perform
fall detection. To fine tune the selected configuration we added two dense layers (32 and 2 neurons,
respectively) on top of the original Bi-LSTM architecture. We initialized these last two layers with the
standard Glorot initialization, while the other layers with the weights resulting from the training on
UCF-101. The fall dataset is composed of 216 videos (108 falls and 108 activities of daily living) collected
from different sources. From each video, the first 7 frames were extracted (inter-frame distance = 225
ms). The Bi-LSTMwas fine tuned for 150 epochs using Adam to minimize the categorical cross entropy.
The best Bi-LSTM model was retrieved as the one that maximised Rec on the validation set.

Figure. 1. Workflow of the proposed approach for fall detection from RGB video sequences.

2https://www.crcv.ucf.edu/data/UCF101.php
3http://192.168.2.30/owncloud/index.php/s/1FmsIiKWrO9APVw
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Figure 2. Boxplots of the Rec for classification on UCF-101 achieved with the Top and the No Top configurations.Mean (green)
and Median (orange) of the Rec are showed too.

Figure 3. ROC curves for the five folds of the No Freeze (up) and the Freeze (down) approaches. Mean AUC (� standard
deviation) is reported, too.
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Results

Figure 2 shows the descriptive statistics forRec for the twoBi-LSTMtested onUCF-101using the (left)Top and
(right) No Top configuration.The best result was achieved by the No Top configuration (mean Rec =0.836).

For robust result evaluation, performance on the fall dataset was assessed with 5-fold cross validation.
For each fold, the 30% of the training set was used as validation. Results were evaluated with the area
under the ROC curves (AUC) and the confusion matrices (one per fold). Figure 3 shows the ROC curves
for the (left) No Freeze and (right) Freeze configuration. The best result was achieved with No Freeze
(AUC =0.93� 0.04).

Figure 4 shows the confusionmatrices for the five folds, achieved on fine tuned Bi-LSTMwithout freezing
any layers. The mean Rec for all the folds was 0.916 and 0.860 for the fall and no fall class, respectively.

Discussions

The proposed approach implemented fine tuning to overcome challenges related to the small size of the
fall dataset. The No Top approach achieved higher macro Rec (Fig. 2:). Indeed, the Bi-LSTM is fed with
features from the last VGG16 convolutional layer, which are less specific than those from the fully
connected one (used in the Top configuration).

Figure 3 shows that the No Freeze approach achieved the highest performance, which may be
attributed to the considerable difference between videos in UCF-101 and in fall dataset. Confusion
matrices in Fig. 4 show comparable values among the two classes, pointing out the stability on the
proposed approach.

Conclusions

In this paper, we proposed a deep-learning method for automatic fall detection from RGB videos. The
proposedmethod showed promising results (meanRec=0.916 for the fall class), which could be eventually

Figure 4. Confusion matrices for 5-fold cross-validation with the No Freeze configuration. The colorbar indicates the number
of test samples.
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enhanced by enlarging the training dataset and testing more advanced architectures based on spatio-
temporal features (Colleoni, Moccia, Du, DeMomi, & Stoyanov, 2019). As future work we will investigate
longer frame sequences to exploit the full potential of Bi-LSTM. Moreover, we plan to implement a CNN
with 3D convolutions (able to process features both in space and time) to accomplish fall-detection task.
This model could be used for comparison against the approach proposed in this contribution.

To account for privacy issues, future work could also deal with depth-video processing, which has
already shown promising results for movement analysis (Moccia, Migliorelli, Pietrini, & Frontoni, 2019).
This work, in integration with an alert system, could have a positive impact on elderly people safety and
quality of life by ensuring prompt implementation of first aid.
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