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Abstract—Cloud availability is an important parameter present
in a typical Service Level Agreement (SLA). In order to check
compliance with SLA commitments, a third party availability
measurement is strongly needed. An availability estimation meth-
ods is evaluated here, based on the periodic repetition of sequence
of probing packets in ICMP. Majority Voting, which declares a
cloud to be available only if a majority of probing packets gets an
echo from the cloud, appears to provide an accurate estimation
even when the packet loss probability is rather high.
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I. INTRODUCTION

Cloud availability is a major performance parameter for
cloud platforms. When an individual or a company switch to
the cloud, they wish the platform to be at least as available
as their in-house infrastructure. For that reason, availability
is always present among the parameters to be monitored in
cloud monitoring systems [1] and to be considered in cloud
platform assessment systems [2], [3]. All major commercial
cloud platforms typically include it in SLAs [4], [5], and boast
of their values: in the survey reported in [6], 15 providers out
of 17 declared at least 99.9% availability, with 12 providers
declaring 100% availability.

In order to check such performance claims, third-party
availability measurements are strongly desired. While a model
to predict cloud reliability has been proposed in [7], and the
availability of single servers has been analysed in [8], not
many efforts are present in the literature to investigate the
overall availability actually offered on commercial platforms.
For example, availability is not considered in the comparison
carried out in [9]. In the description of a major commercial
platform, Microsoft Azure, provided in [10], though a high
availability is claimed right in the title, no figures are provided
for the expected availability. Notable exceptions are repre-
sented by [11] and [12], where a probing method based on
ICMP (Internet Control Message Protocol), suitable for third-
party measurements, is adopted, though exhibiting several
criticalities [13]. A different approach relies on reported data
rather than actual measurements: data from cloud provider
status dashboards and press releases have been collected and
analysed in [14] and [15].

In this paper we investigate the accuracy of the ICMP-
bsaed approach to measure the availability of a cloud, after
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the early analysis reported in [16]. Building on the impact
of networking failures on the estimation of availability as
evaluated in [16], we provide a MonteCarlo simulation-based
estimation of the availability achieved under concurrent true
cloud outages and networking failures. Three different criteria
to output an availability statement are compared: Majority
voting, Unanimous Positive voting, and Unanimous Negative
voting. We find that Majority Voting provides an accurate
availability estimation in a wide range of cases, while the other
criteria err on either side, with heavy underestimation when
the packet loss probability exceeds 10−3.

The paper is organized as follows. In Section II we describe
the testing arrangement based on ICMP, while its performances
are analysed in Sections III, IV, and V on three different
timescales.

II. TESTING METHODOLOGY

The way we measure availability has a great impact on the
numeric value we get. In this section, we clarify what is meant
by availability in this context and how we measure it by using
ICMP.

The availability A of a system, which undergoes phases of
normal working separated by outages, is defined as the ratio
of the uptime and the total time:

A =
Uptime

Total Time
=

Uptime
Uptime + Downtime

. (1)

In the context of a cloud, since the service provided by
a cloud is to respond to service demands, such as for some
content stored in the cloud (cloud storage) or for the result
of some processing task carried out on the cloud (cloud
computing), we can consider as uptime the time during which
the cloud responds, and as downtime the time during which it
stops doing so.

It is therefore natural to see the cloud as oscillating between
two states: UP and DOWN. This is called the Dual State
model in [17], where transitions between the two states are
triggered by failures and service demands are not satisfied
throughout the downtime period. Several real world examples
of Service Level Agreements in clouds are amenable to being
formulated according to this model, e.g., Amazon EC2, HP
Cloud Compute, and Google Apps SLA, again as observed
in [17]. It is implicit that this model considers no graceful
degradation: either the cloud responds to the service demand
or not.

In order to check whether the cloud is up or down, the
method we analyse here, proposed in [12], employs the ping
command of the Internet Control Message Protocol (ICMP)
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Fig. 1. Sequence of up and down states
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Fig. 2. Testing arrangement

[18]. A ping-based approach to measure availability had al-
ready been employed in [19] to analyse cloud storage facilities
and in [20] to analyse the reliability of internet sites. The
method operates by sending echo request packets (pings) to
the target cloud (the front-end server, e.g., the hostname in
the URL of the stored object for cloud storage) and counting
the echoes as a measure of success. A ping response indicates
that the target host is connected to the network, is reachable
from the query agent, and is in a sufficiently functional state
to respond to the ping packet. After waiting for ICMP echo
replies, the protocol reports packet loss and round-trip-time
statistics. Though it is recognized that failure to respond is
not so informative because it cannot be reliably inferred that
the target host is not available, the foremost causes of failed
response are related to the network (and are accounted for in
our analysis later), excepting the presence of some form of
firewall in the end-to-end path that blocks the ICMP packet
being delivered [21].

Under this approach, the cloud is seen as a black box (see
Fig. 2). Though the resource may be located elsewhere, so that
queries are actually served by a server in a different location,
the availability of the cloud is embodied by the responsiveness
of the front-end server. Therefore, this scheme serves equally
well as a model to analyse configurations where contents or
processing resources are distributed over several geographical
areas, as long as the service access point is one.

Each ping allows therefore to see if the front-end server
is up and running. Pings are not shot in isolation, but are
sent off in bursts to achieve a better accuracy in the face of
temporary glitches. As shown in Fig. 3, the tester sends off a
burst of k pings (in [12] a repetition period of 2 seconds was
envisaged), and the whole sequence is periodically repeated
every T seconds (which, again in [12], was set at 10 or 11
minutes). If the aim is to compare the observed availability
against the Service Level Agreement commitments over any
period of length C, we consider an observation window of
length C for contractual purposes.

At the end of each probing sequence made of k pings,
the tester outputs an availability statement concerning the
cloud, declaring the cloud service either available or not.
That statement is kept as valid till the next probing sequence,
when a new availability statement is emitted. The observation
window can therefore be considered as made of B = bC/T c

…
1 2 k

…
1 2 k

…
1 2 k

0 T 2T
…

Fig. 3. Test sequence

time blocks, so that we can have a number of availability
statements in the [0, B] range, where the lowest value (0)
represents a service considered as totally unavailable over the
observation window, while the largest value (B) represents a
100% availability. If we use the symbol Nout to indicate the
number of blocks for which a NOT AVAILABLE statement is
output, the availability estimate is:

Â = 1− Nout

B
= 1− Nout

bC/T c
. (2)

In order to correctly estimate large availability figures, the
number of blocks must be correspondingly large, otherwise
the granularity due to the blocks will mask short unavailability
periods. For example, if B = 100, the next largest availability
figure to 100% that we can estimate is 99/100 = 0.99, i.e.
just a 2-nine availability. If we wish to measure availability
figures as large as four nines (A = 0.9999), the minimum
number of blocks must be 10000. In order to achieve that
number, if we set T = 10 minutes, the observation window
must be at least 10 · 10000 = 100000 minutes long, which
corresponds to slightly more than 69 days. In general, to
measure an availability A, the observation window must be

C ≥ T

1−A
. (3)

In order to arrive at an availability statement for any single
sequence of k pings, we consider three alternative criteria, by
adding a Unanimous Positive voting to the two listed in [16]:

• Majority voting
• Unanimous Positive voting
• Unanimous Negative voting

In Majority Voting an outage is declared if a majority of
pings get no echoes. In Unanimous Positive voting, all echoes
must be received to declare the cloud available. In Unanimous
Negative voting, an outage is instead declared if no ping gets
an echo. What we get in an example for sequences made
of k = 5 pings is shown in Table I. As can be seen, the
Unanimous Positive voting criterion will lead to the most
severe availability statements, while the Unanimous Negative
voting criterion will output a NOT AVAILABLE statement just
when there is a persistent string of missing echoes.

III. MISSING ECHOES OVER A SINGLE PING

Before examining the compliance of cloud services with the
committed availability (i.e., over an observation window), we
analyse the behaviour of the cloud over a single ping.

The actual outcome of the testing process is impacted by
both network and cloud failures, so that an outage may be
declared even when the cloud is perfectly running, thus leading
to a false outage declaration. In this section, we examine the
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TABLE I
OUTCOMES OF CRITERIA FOR AVAILABILITY STATEMENTS

Ping outcome Statement
Replies Missing echoes Majority Un. positive Un. negative

0 5 NOT AVAIL. NOT AVAIL. NOT AVAIL.
1 4 NOT AVAIL. NOT AVAIL. AVAIL.
2 3 NOT AVAIL. NOT AVAIL. AVAIL.
3 2 AVAIL. NOT AVAIL. AVAIL.
4 1 AVAIL. NOT AVAIL. AVAIL.
5 0 AVAIL. AVAIL. AVAIL.

Probing request1− pp

1− rr Cloud response

1− pp Echo

Fig. 4. Sequence of events and pertaining probabilities

testing process in the general case when the cloud may be
available, but network failures are also present, and in the two
alternative cases when the cloud is either perfectly working
(and responding to pings) or not working.

If the cloud is available, we expect to receive a positive echo
response for each request, but probing packets routinely get
lost due to network failures. If p is the packet loss probability
on the testing-station to/from cloud path (we assume that it
is the same in either way, and the failures on the two trips
are uncorrelated due to time spacing), the resulting sequence
for a single probing instance is shown in Fig. 4. There we see
how the various path sections contribute to the outcome of the
testing process in a single ping, when there is the possibility
that the cloud is not working.

If the true cloud outage probability is r, the probability of
missing an echo (on a single probing instance) is equal to the
sum of the probabilities of the three left branches in the tree
of Fig. 4:

Pme = p+ (1− p)r + (1− p)(1− r)p
= p(2− p) + r(1− p)2 ' 2p+ r,

(4)

where we see clearly the contribution due to network failures
(first term of the sum) and that due to the cloud (second term).
In Fig. 5 (showing the true, rather than approximate, Pme)
we see that the probability of declaring an outage is a linear
function of r and biased approximately by a 2p term.

The biasing factor Pme/r may indeed be very large, as
shown in Fig. 6, especially when p > r.

This general case may be simplified if we look at the two
cases where the cloud is either working or not working.

If we focus on the former case, the response tree reduces
to that shown in Fig. 7: two leaves of the binary tree give rise
to a negative outcome, and just one (both trips occurring with
no packet loss) is reported as successful.

Since the cloud is available, what is reported as a failure
is actually a false outage. If we mark by a flag variable X
the status of the cloud (X = 1 if the cloud is working and
0 otherwise), and by another flag variable Y the outcome of
the ping test (Y = 1 if we get an echo and 0 otherwise), the
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Fig. 5. Probability of missing echo
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Fig. 6. Biasing factor

probability of a missing echo conditional to the cloud working
in a single probing instance is therefore:

Pmecw = P [Y = 0|X = 1] = p+ (1− p)p = p(2− p) ' 2p.
(5)

In the case that the cloud is not working, of course we will
never receive an echo, though the network may be operating
correctly.

IV. FALSE OUTAGES OVER A PROBING BURST

If we move from a single ping to a sequence of pings, we
have several alternative criteria to declare an outage (a false
outage), among which the most relevant have been described
in Section II:

• Majority voting;
• Unanimous Positive voting;
• Unanimous Negative voting.
We now evaluate the probability of declaring a false outage

under the three criteria when the cloud is perfectly working.

Request1− pp

1− pp ResponseFalse outage

False outage

Fig. 7. Sequence of events under no cloud failure
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TABLE II
FALSE OUTAGE PROBABILITY OVER A PROBING BURST

Criterion False outage probability

Majority voting
∑k

i=kmin

(i
k

)
P i

mecw(1− Pmecw)k−i

Unanimous Positive voting 1− (1− Pmecw)k

Unanimous Negative voting Pk
mecw

According to Majority Voting, we declare a cloud outage
after a sequence of k echo requests when we have at least
kmin = dk+1

2 e negative responses (no echoes). We assume
that the outcomes of successive probing instances in the
case of networking failures are uncorrelated. The number of
missing echoes in a burst of k requests follows therefore
a binomial distribution with parameters p and k. The false
outage probability with k probing instances is therefore:

Pfo(k) =
k∑

i=kmin

(
i

k

)
P imecw(1− Pmecw)

k−i (6)

Under the second criterion (Unanimous Positive voting), we
must instead receive all echoes in a sequence of k requests to
declare the cloud available, or, alternatively, we declare the
cloud down in all but one case (all echoes present). Therefore
the false outage probability is:

Pfo(k) = 1− (1− Pmecw)
k (7)

Finally, the Unanimous Negative voting criterion requires
instead that no echoes are received to declare an outage, so
that the probability of an outage declaration over k pings is:

Pfo(k) = P kmecw (8)

The three cases are summed up in Table II.
The aim of the close repetition of probing instances is

anyway to knock down the probability of false outages. In
Fig. 8, we see that, for the choice k = 9 adopted in [12],
the repetition mechanism is highly effective: even when the
packet loss probability is quite high (p = 0.05), the probability
of false outage is as low as 8 · 10−10 when the Unanimous
Negative voting criterion is chosen and 8 ·10−4 with Majority
Voting. However, the Unanimous Positive voting is quite more
severe in declaring outages, leading to a high false outage
probability (0.6 when the packet loss probability is 0.05). As
expected, the Unanimous Negative voting criterion is much
more effective than Majority Voting in ruling out false outages,
while the Unanimous Positive voting criterion is not at all.

The number of pings in the elementary testing sequence
has of course a significant impact. In Fig. 9, plotted for the
same packet loss probability p = 0.01, we see the exponential
fall of the probability of false outages under the Unanimous
Negative voting criterion; Majority Voting exhibits a softer
descent, whose staircase-like appearance is an artifact due to
the majority rule (e.g., when passing from 4 to 5 pings the
useful cases are respectively 3 or 4 out of 4, but 3, 4, or 5 out
of 5). Instead, the Unanimous Positive voting criterion leads
to a false outage probability increasing with the number of
pings. This rule proves therefore ineffective in reducing the
number of false outages.
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Fig. 8. Probability of false outage (k=9)
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Fig. 9. Impact of the number of retries on false outage probability (p=0.01)

V. AVAILABILITY ESTIMATION OVER A CONTRACT
PERIOD

In Sections III and IV we have examined the impact of
networking failures on the observed outage probability over
two different timescales: a single probing instance and a
probing burst. However, the presence of outages is typically
assessed to check compliance with Service Level Agreements
(SLA). In that case, the check is conducted by comparison with
committed availability goals within a (relatively long) obser-
vation window . In this section, we examine the availability
estimate resulting from the previously described ICMP-based
testing approach when an adequately long observation window
is considered.

We adopt the testing sequence depicted in Fig. 3. We
perform that testing sequence continuously and collect statis-
tics over successive periods of length C, so that C is the
observation window prescribed in the SLA. This window
must be significantly larger than the testing period T so as
to have a large number of testing sequences to perform a
statistical estimation of availability. Over any testing period,
after sending a burst of k pings, a decision is taken as to
the presence of an outage through one of the three criteria
described in Section IV. The cloud status resulting from this
decision is maintained till the next testing period. If the number
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TABLE III
OUTAGE DURATION STATISTICS [MIN]

Company Average Standard deviation CV

Google 506.64 872.58 1.72
Amazon 473.56 1093.18 2.31
Rackspace 607.03 1210.30 1.99
Salesforce 95.2 84.35 0.89
Windows Azure 224.3 165.78 0.74

TABLE IV
ESTIMATED PARAMETERS OF THE GENERALIZED PARETO DISTRIBUTION

Company scale parameter shape parameter
β ξ

Google 405.29 0.39
Amazon 276.43 -0.12
Rackspace 381.19 0.3
Salesforce 192.47 -0.64
Windows Azure 312.32 -0.35

of testing periods for which an outage has been declared is
Nout, the availability is estimated as:

Â = 1− Nout

bC/T c
, (9)

the quantity in the denominator representing the number of
testing periods contained in the observation window.

In order to assess the capability of this ICMP-based ap-
proach to correctly estimate the availability, we perform a
MonteCarlo simulation, where the observed availability is
averaged over 1000 simulation instances.

The model of cloud outages is based on the findings of
the empirical analysis reported in [15]. The statistics collected
over several prominent cloud storage providers are reported in
Table III. For each provider a best-fit search was conducted
to model the outage durations. It turned out that the outage
duration (represented here by the random variable D) is
best modelled by a Generalized Pareto distribution, whose
cumulative distribution function is [22]:

P[D < x] = Gξ,β(x) =

{
1− (1 + ξx/β)1/ξ if ξ 6= 0
1− e−x/β if ξ = 0

,

(10)
where β is the scale parameter and ξ is the shape parameter.
The average duration is related to the scale and shape param-
eters by the expression

D =
β

1− ξ
. (11)

The optimal values for β and ξ found during that analysis are
shown in Table IV.

Here, in order to account for the variety of performances
shown in Table IV, we consider a fixed shape parameter
ξ = 0.39 (the value pertaining to Google) and a scale
parameter dictated by the average outage duration D through
the expression obtained by inverting Equation (11):

β = D(1− ξ). (12)

TABLE V
REFERENCE CASE

Parameter Value

Observation window C 30 days
Testing Period T 10 minutes

Average Outage Duration D 500 minutes
No. of pings k 9

In the simulation procedure the durations were generated
through the inverse method [23].

The occurrence of outages was instead simulated using a
Poisson process with rate λ dictated by the true availability and
the average outage duration, following the approach in [24].
By resorting to Wald’s identities (see, e.g., Section 34.14.2.11
of [25] or Section 1.7.3 of [26]), we can write the availability
as evaluated over the observation window C as:

A = 1−
E[
∑N
i=1Di]

C
= 1− N ·D

C
= 1− λCD

C
= 1− λD,

(13)
where N is the number of outages occurring within the period
C, and Di is the duration of the i-th outage. The use of Wald’s
identities is valid since there is only a weak correlation among
the number of summands in the sum in Equation (13) and
each of the summands. In fact, the duration of an outage is
independent of the number of outages, while the number of
outages has a very weak correlation with outage durations,
as long as we consider cloud services with high availability.
Equation (13) can be easily inverted to find the rate of the
Poisson process:

λ =
1−A
D

. (14)

In order to assess the estimation capabilities of the three
decision criteria described in Section IV, we have considered
a range of values for the parameters involved in the testing
method:

• Observation window length C;
• Testing period length T ;
• Number k of pings in each probing burst.

As to the observation window C, we have considered values
from 1 to 12 months. A testing period of 10 minutes was
adopted in [12], which we mostly maintained, though we have
experimented with values from 5 to 15 minutes. As to the
number of pings, again in [12] a sequence made of 9 pings
was recommended, and we sticked to that choice, though we
also considered values as low as 5. However, unless stated
otherwise, here we report the results using the reference case
described in Table V since we found negligible differences for
parameter values outside the reference case.

Finally, the impact of networking failures was accounted for
by considering a packet loss probability ranging from 10−4 to
10−2.

The range of availability values for which we tested the
measurement scheme was [0.95,0.999], which is consistent
with what has been reported in several attempts to provide
third-party measurements of availability (see, e.g., [15]).
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TABLE VI
IMPACT OF THE OBSERVATION WINDOW LENGTH

Observation window [days] Availability Estimate
Majority Voting Unanimous Positive voting

30 0.9898 0.9981
60 0.9885 0.9982
90 0.9900 0.9982
180 0.9902 0.9982
360 0.9899 0.9982

TABLE VII
IMPACT OF THE TESTING PERIOD

Testing Period [minutes] Availability Estimate
Majority voting Unanimous Positive voting

5 0.9898 0.9981
10 0.9885 0.9981
15 0.9900 0.9982

We now examine the impact of each of the testing method
parameters on the availability estimate by adopting either the
Majority Voting criterion or the Unanimous Positive voting
one. We rule out the Unanimous Negative voting criterion
since in all the experiments it always produced an availability
estimate equal to 1, i.e., it never produced an outage statement.

We start with the length of the observation window, for
which we observe that it has a negligible influence on the
accuracy of the estimation (the accuracy was not tested for
lengths shorter than a month). We report in Table VI the results
for the reference case (the true availability was set at 0.99): the
range of estimates is always below 0.07% of the central value
for Majority Voting and 0.01% for Unanimous Positive voting.
We note that Majority Voting provides a very good estimate of
the true value, while the Unanimous Positive voting criterion
always overestimates the actual availability, turning the true
2-nine availability into a nearly 3-nine one.

The impact of the testing period can likewise be considered
as negligible, as shown in Table VII, which reports some
values obtained for the reference case (where the true avail-
ability is 0.99). A similar situation occurred for parameter
combinations different from the reference case. Again, we
notice the very good estimate delivered by Majority voting,
and the overestimate due to Unanimous Positive voting.

This can be considered as valid as long as the testing period
does not become comparable with the duration of an outage.
If we mark the occurrence of the measurement timepoint
preceding the outage as time 0, so that the next measurement
takes place at the time T (e.g., 10 minutes as in the reference
case), the outage will take place at a random time O such that
0 ≤ O ≤ T . If we consider O to be uniformly distributed, the
failure will not be detected if the recovery from the outage is
achieved before the next measurement interval. If the outage
duration is L, that condition can be expressed as O+L < T .
The probability that the outage goes undetected is then

Pnodet = P[O + L < T ]

= P
[
O

T
< 1− L

T

]
=

{
0 if T ≤ L
1− L

T if T > L

(15)
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Fig. 10. Probability of an outage going undetected

TABLE VIII
IMPACT OF THE TESTING SEQUENCE LENGTH

No. of pings Availability Estimate
Majority Voting Unanimous Positive voting

5 0.9893 0.9990
6 0.9902 0.9988
7 0.9905 0.9986
8 0.9899 0.9984
9 0.9898 0.9981

The resulting no-detection probability is shown in Fig. 10.
In that case, it could become difficult to compute the extent

of SLA violations and the amount of possible compensations
or insurance claims [27][28][29]. In fact, of the three measures
(Number of failures; Number of long outages; Cumulative
outage duration.) envisaged to be used in an insurance policy
for network failures in [24] (but applicable straightforwardly
to the case of clouds), just one is considered in [12]. The cu-
mulative outage duration is equal to the overall unavailability,
but the number of failures is heavily distorted since short-lived
outages may go undetected, and the number of long outages
may be underestimated as well, unless the threshold is longer
than the measurement interval.

If we now turn to the length of testing sequence, i.e., the
number of pings in a probing burst, again we see in Table
VIII (which refers to the reference case, with A = 0.99, but
similar results are obtained for other cases as well) that the
impact of the actual number of pings is very small, though for
the Unanimous Positive voting criterion the estimate can be
seen to decrease as the number of pings grows, providing a
better estimate. The choice of k = 9 seems therefore the best
one in the range examined.

After examining the set of choices for the testing scheme
parameters, and having found out that the accuracy is not
significantly affected within the range of values considered
(with the single exception of the number of pings in a probing
burst, for which the highest value is to be preferred), we can
now see the impact of networking failures, which is the major
source of concern.

In Fig.11, plotted for two values of the true availability
(A = 0.95, 0.99) and the reference case, we see that the
outcome of the Majority Voting criterion is negligibly im-
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Fig. 11. Availability Estimate

pacted, while the availability estimate is significantly altered
under the Unanimous Positive voting criterion. As expected,
the situation turns critical as the packet loss probability grows.
The turning point can be located around p = 10−3, where the
estimate starts decreasing, turning from an overestimate into
an underestimate as more and more false outages enter the
picture. When the packet loss probability is as bad as 10−2,
the availability estimate would be so bad as to consider the
cloud very unreliable though it actually keeps providing the
usual good performance.

The analyses conducted so far, over a wide set of experi-
ments than those reported here, show therefore that significant
differences have emerged among the decision criteria we may
adopt to declare an outage at each testing period. Precisely,
the Majority Voting criterion has always provided a correct
estimate, while the Unanimous Positive voting criterion typ-
ically errs on the plus side (overestimating the availability)
when the packet loss probability is small enough, but instead
grossly underestimates the availability when the packet loss
probability exceeds 10−3.

VI. CONCLUSION

We have evaluated the accuracy of a cloud availability esti-
mation method based on the periodic repetition of sequences
of probing packets (the pings made available in the ICMP
protocol) by MonteCarlo simulation. Three different criteria

(Majority voting, Unanimous Positive voting, and Unanimous
Negative voting) have been compared to output an availability
statement. Majority Voting provides an accurate statement over
a wide range of testing parameters and context scenarios,
even when the packet loss probability, a major source of
false outages, is rather high. Instead, the Unanimous Positive
voting criterion, outputting an availability statement just after
all the pings in a sequence have received an echo, can lead
to gross underestimation when the packet loss probability
exceeds 10−3. The Unanimous Negative voting criterion,
always outputting an availability statement unless no echoes
are received in a probing sequence, is completely unreliable,
providing a statement of 100% availability in all the cases
examined. The Majority Voting is therefore the criterion of
choice in the ICMP-based method to estimate the availability
of a cloud.
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