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Abstract 

Operational management of water distribution networks (WDNs) requires assimilating observations such as pressures at junction 
nodes, flows in pipes and, whenever available, monitored demand. 
Although several data assimilation techniques are today available, ranging from 1-2-3-4 DVAR to Kalman Filters, a problem is 
posed by the need of preserving the structural relations among state variables in a WDN, such as for instance pressure head, 
discharge and demand. 
Ensemble Kalman Filters certainly can be used to account for non-linearities but, for example, if one tries to assimilate pressure 
heads and pipe flows at the same time, nothing guarantees that the resulting variables after the data assimilation step, will still 
obey to the hydraulic structural relations mathematically describing a WDN. 
In this work an EnKF based procedure has been implemented, which allows to assimilate three types of observations, namely 
pressures at junction nodes, flows in pipes and monitored demand. 
The procedure allows to assimilating all the observations in three successive steps, while guaranteeing the full satisfaction of the 
structural relations. 
 The results, demonstrated over an operational network, show the high performance of the chosen approach. 
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1. Introduction 
 

The operational management of a water distribution network requires the availability of a reliable and properly 
calibrated hydraulic model of the network. It is thus necessary to set up a measurement network that allows to 
assimilate nodal pressures, pipe flows and, whenever available, demand measures. 

 
Nomenclature 

 nodal pressure heads vector  
 known nodal pressure heads vector 

  pipe flows vector  
 nodal demands vector  
 nodal demands ensemble based on prior assumptions 

  the value of  state vectors   and  given  

  the value of  state vectors  ,  and  given  and measures  

  the value of  state vectors  ,  and  given  and measures  and  

  the value of  state vectors  ,  and  given  and measures ,  and  

A11 diagonal matrix defined as in [1] 

A12, A21, A10 (0,1) topological incidence matrices defined as in [1] 
 vectors of means of   estimation errors 

 variance-covariance matrices of   estimation errors 

 Kalman Gain matrices for state vectors  

 vectors of measurements relevant to state vectors ,  and  
 (0,1) topological matrices relating   to ,  to  and  to  

 vectors of means of measurement errors for state vectors ,  and  
 variance-covariance matrices of measurement errors for state vectors  ,  

and  

 
Among the established techniques for assimilating observations [2], the Ensemble Kalman Filter (EnKF) [3], 

allows taking into account the non-linearity of the structural models in state extrapolation, but when using state 
vectors comprising simultaneously flows and pressures, the fulfillment of the structural hydraulic relations among 
the state variables cannot be guaranteed at the end of the data assimilation phase. In this work, it is instead presented 
a technique of successive conditionings, in a cascade of three EnKFs, which allows assimilating the various types of 
observations (pressures, flow rates and demands) while ensuring the preservation of the structural links among the 
resulting variables [4]. 

 

2. The proposed data assimilation procedure 

To start the assimilation process using an EnKF, as in any Bayesian inferential process [5], prior knowledge is 
described via an appropriate probability distribution. Therefore, our prior knowledge on demands, which are scarcely 
known in a WDN, is assumed to be described for all the nodes by a log-normal probability distribution with mean 

 and variance  where , with , represents the demand at node , while  is the number of nodes 
of the network. Demands at all nodes can be set into a state vector  of size . 

The assimilation process then begins with the generation an "ensemble" of  members of nodal demands, namely 
, with , using the assumed prior distributions. The size of the ensemble must be large enough to 

ensure that the matrices involved in the assimilation phase, and defined below, are invertible. Each ensemble 
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member is subsequently transformed by means of a hydraulic network model (in this case we used EPANET-2 [6]) 
in the corresponding ensembles of pressures  and discharges .  

As extensively described in [4], data assimilation proceeds in three successive steps. In the first step, using the 
nodal pressures  as the state vector for the Ensemble Kalman Filter (EnKF), each member of the ensemble  is 

assimilated with the nodal pressure measurements , assumed to be affected by measurement errors characterized 
by mean and variance . Posterior estimates are then obtained by combining the prior pressure heads estimates 

 with the nodal pressure measurements , using the classical EnKF correction equation: 

 

                                                       (1) 

 
In these equations,  is the measurement topological matrix, relating the state vectors of the ensemble  to 

the measurements , while  is the prior variance matrix of the pressures, estimated as: 
  

                 (2) 

 

with   the prior ensemble mean. 

Conditionally to the resulting posterior estimate  one can then update the other state variables. The pipe 

flows ensemble   can be estimated using one of the many equations, such as the Hazen-Williams equation, 

relating pressure grade to discharge, while demand  estimates  are obtained by summing-up confluent pipe 

flows  at nodes. This conditional approach allows all the updated state variables ( ,  and ) 

to match the hydraulics structural equations describing a WDN. 
The second step in the proposed data assimilation process, is performed using pipe flows  as state vector and the 

relevant  measures, assumed to be affected by measurement errors characterized by mean and variance , 
using the ensemble  to describe the prior knowledge on pipe flows. The posterior estimates can be obtained, 

by combining the prior ensemble with the measurements, as: 
 

              (3) 

 
In these equations,  is the topological measurement matrix, which relates the state vectors of the ensemble 

 to the measurements , while   is the prior variance matrix of the pressures, estimated as: 

 

                        (4) 

 

with   the prior ensemble mean. 

Once the posterior estimates of the pipe flows  are known, using one of the many available equations 

relating pressure grade to discharge, such as for instance the Hazen-Williams equation, one can estimate the grades 
for all the pipes on the basis of which one can update nodal pressures  starting from known pressure head 

H0 at one (or more) fixed head nodes. Demands , are also easily obtained by summing-up confluent pipe 

flows at nodes. Again, by this procedure all the posterior state variables ,  and  will be 

constrained to match the hydraulic structural equations describing a WDN.  
At this point, whenever demand measurements  are also available one can proceed to their assimilation. 

Demand measurements  are also assumed to be affected by measurement errors characterized by mean  and 
variance . To overcome the problems related to the non-Gaussian behavior of the demand state variables, which 
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do not admit negative values, the data assimilation can be carried out using an "inverted" filter, which projects back 
on pipe flows, the innovation calculated in terms of demand. This was made possible by extending to the EnKF the 
works of Chou [7] and Basseville et al. [8], who, using a standard KF, adapted the "smoothing" algorithm of [9] to 
assimilate observations recorded at different scales. 

Then, using the linear relationship between the flow and demand  where  indicates 

the nodes-pipes incidence matrix as defined in [1], one can write the following relation using once again pipe flows 
as the state vector: 

 

                        (5) 

 
Equation (5) can also be rewritten in the following form:  
 

                 (6)  

 
In Equations (5) and (6) ,  is the topological measurement matrix, relating the state vectors of the ensemble 

 with the measurements , while  is the prior variance matrix of pipe flows , given by: 

 

         (7)

 
with  the prior ensemble mean. 

Once  is known one can update the estimates of  and  similarly to what done in 

the previous step, in order to preserve the structural congruence between the variables and calculate the relevant 
updated means and variance-covariance matrices.  

In essence, using a cascade of three EnKF, each of which with a different state vector, instead of using a single 
EnKF with a unique state vector incorporating all state variables  and , it is not only possible to assimilate all 
the alternative types of available measures, but also to preserve the structural links among the different sets of state 
variables describing a WDN. 

 

3. The case study 

3.1 Description of the water distribution network under study 

Modena network consists in 317 pipes to design using 13 possible diameters. Required pressure is 20  for all 
268 demand nodes. The network is fed by 4 reservoirs (Figure 1), also the network is completely looped with 
diameters ranging between 100 to 400   [10]. The Modena WDN can be found as MOD-1 in 
“http://emps.exeter.ac.uk/engineering/research/cws/resources/benchmarks/design-resiliance-pareto-fronts/large-
problems/” where a full description is also available. 

 
3.2 Effectiveness of the data assimilation procedure 

The effectiveness of the proposed data assimilation procedure to reduce uncertainty over the estimated pressure 
heads, flow in pipes and demands, was assessed by randomly selecting a measurement network providing 100 
pressure measurements , 100 flow measurements , and 100 demand measurements   

In order to express a rather large prior uncertainty, the prior distribution on demands  was assumed to be a Log-
normal distribution with constant mean and variance at all nodes. The mean  , was estimated as the 
total released water from the reservoirs divided by the number of delivery nodes, while the standard deviation, 
expressing a large prior uncertainty on demands was assumed . From this Log-normal distribution, 
an ensemble of  members of demands for all 268 demand nodes were generated. 
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          Table 1. Total Variance and Standard Deviation for initial and posterior estimates 

       

     (Prior) 49.807 7.058 13.747 3.708 2.461 1.569 

 0.179 0.423 1.945 1.395 3.037 1.743 

 0.049 0.221 0.787 0.887 1,616 1.271 

 0.019 0.138 0.249 0.499 0.356 0.597 

 
 

Without loss of generality, the measurement sensors where considered to provide unbiased measurements with 
standard errors of: 

 
 

 
and, although accounting for measurement uncertainty in the DA process, the “true” value was used as the measured 
one, because if measurements are unbiased, their expectation coincides with the true value.  

 

 

Fig. 1.  Schematic representation of the 317 pipes and 268 nodes Modena WDN and positioning of sensors : pressure sensors are represented as 
blue dots, flow meters as blue segments and nodal demand aggregated measures as red dots. The four reservoirs are shown as black squares. 

 
The results of the data assimilation process are summarized in Table 1 and Figure 2. Table 1 shows the Total 

Variance (TV) of the prior estimates and of the posterior ones after each of the three successive data assimilation 
steps. The TV [11], [12] is defined as the sum of two terms: the first one, measures the variance of errors given the 
estimated ensemble mean, while the second term, measures the average variance of the ensemble mean. We also 
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introduced the Total Standard Deviations (TSD), defined as the square roots of the TV, and used in Table 1 to 
provide a measure of the standard errors in dimensional form. From the values of TSD it is possible to realize that 
after assimilating all the observations, the standard error on pressure heads from  falls around , while 
the standard error on pipe flows reduces from  to  and on demands from  to 

. 
As can be additionally seen in Table 1, the reduction of total variance from the prior assumption  is already 

significant both in terms of pressure head and pipe flow from the assimilation of the head measurements  . 
This does not happen for the demands which also require, in this case, the assimilation of the additional flow 
measurements . Nonetheless, after assimilating all the observations , the final result is quite 
satisfactory with a reduction of over 99% of the TV for pressure heads, 98% reduction for pipe flows and 62% for 
demands. 

 

 
 

Fig. 2. Prior and posterior empirical distributions of the estimation errors for the three sets of state variables  and  after assimilating in 
successive steps, as described in Section 2, measurements from 100 pressure sensors , 100 flow meters  and 100 demands  from the 
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assumed, randomly generated measurement network. The figure compares the prior distribution although limited to the range of the figures 
(dotted line); the empirical distribution of errors after assimilating the 100 pressure measurements (thin solid line); the empirical distribution of 
errors after assimilating both the 100 pressure measurements and the 100 pipe flow measurements (dashed line); the empirical distribution of 
errors after assimilating all the measurements (thick solid line). 
 

These results can be better appreciated in Figure 2 where the prior and the posterior empirical distribution of the 
estimation errors, defined as the difference between the ensemble mean and the true value, which is used to assess 
the performances of the approach, but is assumed unknown in the DA process.  

In Figure 2, the dotted line represents the portion of the prior empirical distribution of prediction errors  
falling in the range of the figure. The solid thin line shows the empirical distribution of errors after assimilating the 
100 pressure measurements ; the dashed line shows the empirical distribution of errors after assimilating 
both the 100 pressure measurements and the 100 pipe flow measurements  and the solid thick line shows 
the empirical distribution of errors after assimilating all the measurements including the 100 demand measurements 

. 
It can be immediately perceived from Figure 2 that the effect of DA increases the sharpness of the posterior 

distributions. The successive distributions are more and more cantered on the zero, thus reducing biases, and the 
percentage of values within a limited range increases. Moreover, it is interesting to underline that the successive 
conditional data assimilation steps have positive backward effects on the other state variables. In other words, the 
assimilation of pipe flow observations improves both demands and pressure heads estimates while the assimilation 
of demand measurements improves both the estimates of flow in pipes and pressure heads. 

These results confirm the validity of the new conditional DA approach in which each set of measurements is 
assimilated in relation to the corresponding state variables instead of operating at once using one EnKF on a single 
extended state vector. The approach, which benefits are primarily in the preservation of the structural relations 
among the variables, also allows for faster DA in that one solves three problems of reduced dimensionality instead 
of a single three times larger problem. 

 

4. Conclusions 

In this work, we presented a new approach to assimilate the information originating from a composite monitoring 
network consisting in pressure head, pipe flow and demand meters into prior uncertain knowledge of demands, 
expressed in the form ensemble. The DA is performed using a cascade of three successive EnKF, to ensure the 
preservation of structural hydraulics ties between the state variables all throughout the assimilation process. The 
approach, which shows great efficiency and allows reducing the uncertainty of all the state variables, can be viewed 
as the first essential step when aiming at calibrating WDN model parameters and at identifying the probability and 
location of leak losses. 
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