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Abstract: This paper dealswith the existence of nontrivial solutions for critical Hardy–Schrödinger–Kirchhoff
systems driven by the fractional p-Laplacian operator. Existence is derived as an application of themountain
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1 Introduction
In this paper, we study the existence of solutions for an elliptic system of Hardy–Schrödinger–Kirchhoff type,
involving the fractional p-Laplacian as well as critical nonlinearities. More precisely, we first consider the
system inℝN {{{{{{{{{

M(‖(u, v)‖p)(Lspu + V(x)|u|p−2u) − σ |u|p−2u|x|ps = λHu(x, u, v) + αp∗s |v|β|u|α−2u,
M(‖(u, v)‖p)(Lspv + V(x)|v|p−2v) − σ |v|p−2v|x|ps = λHv(x, u, v) + βp∗s |u|α|v|β−2v, (S)

where 0 < s < 1 < p < ∞, sp < N, α > 1 and β > 1 with α + β = p∗s and p∗s = Np
N−sp . The potential function

V : ℝN → ℝ+ verifies
V ∈ C(ℝN) and inf

x∈ℝN
V(x) = V0 > 0. (V)

The nonlocal fractional operator Lsp is defined along any φ ∈ C∞0 (ℝN) by
Lspφ(x) = lim

ε→0+
2 ∫
ℝN\Bε(x)

|φ(x) − φ(y)|p−2(φ(x) − φ(y))K(x − y) dy
for x ∈ ℝN , where Bε(x) denotes the ball inℝN of radius ε > 0 at the center x ∈ ℝN and, throughout the paper,
K : ℝN \ {0} → ℝ+ is a measurable function such that
(a) there exists K0 > 0 such that K(x) ≥ K0|x|−(N+ps) for any x ∈ ℝN \ {0},
(b) mK ∈ L1(ℝN), where m(x) = min{|x|p , 1}, x ∈ ℝN .
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A typical example of K is given by K(x) = |x|−(N+sp). In this case, the operator Lsp simply reduces to the frac-
tional p-Laplacian, denoted by (−∆)sp. In particular, (−∆)sp is consistent with the fractional Laplacian (−∆)s
as p = 2, and it is well known that (−∆)sp reduces to the standard p-Laplacian as s ↑ 1 in the limit sense of
Bourgain–Brezis–Mironescu, as shown in [4].

For critical equations in ℝN we refer the reader to [2, 7, 11, 14, 29] and references therein for the study
of scalar problems with critical nonlinearities.

The main solution space of (S) isW = W s,p
K,V (ℝN) ×W s,p

K,V (ℝN), with
W s,p
K,V (ℝN) = {u ∈ Lp(ℝN , V) : ∬

ℝ2N

|u(x) − u(y)|pK(x − y) dx dy < ∞}
and

Lp(ℝN , V) = {u : ℝN → ℝmeasurable : ∫
ℝN

V(x)|u(x)|p dx < ∞},
with norm |u|p,V = ( ∫

ℝN

V(x)|u(x)|p dx) 1
p

.

The spaceW is endowed with the norm‖(u, v)‖ = ([(u, v)]pK,p + |(u, v)|pp,V) 1p
for all (u, v) ∈W, where[(u, v)]K,p = ([u]pK,p + [v]pK,p) 1p = (∬

ℝ2N

{|u(x) − u(y)|p + |v(x) − v(y)|p}K(x − y) dx dy) 1
p

,

|(u, v)|p,V = (|u|pp,V + |v|pp,V ) 1p = ( ∫
ℝN

V(x){|u(x)|p + |v(x)|p} dx) 1
p

.

(1.1)

ThenW = (W, ‖ ⋅ ‖) is a separable reflexive real Banach space, see [17, 33] for more details.
Because of the presence of the Hardy terms in (S), we assume that the system is non-degenerate. We recall

that the degenerate case for (S) corresponds to M(0) = 0. Hence, throughout the paper, we suppose that the
Kirchhoff function M : ℝ+0 → ℝ+0 is continuous and satisfies
(M1) inft∈ℝ+0M(t) = a > 0,
(M2) there exists θ ∈ [1, p∗sp ) such that M(t)t ≤ θM (t) for all t ∈ ℝ+0 , where M (t) = ∫t0 M(τ) dτ.
Usually, the existence of solutions of fractional Kirchhoff problems is derived, whenM is also nondecreasing
inℝ+0 . For more comments we refer, e.g., to [18, 31, 33]. However, (M1)–(M2) do not forceM to be monotone
as the example M(t) = (1 + t)k + (1 + t)−1 for t ≥ 0, with 0 < k < 1, shows. For details we refer to [1, 32].

Theparameter σ is real and for theHardy terms in (S) it is important to recall the fractionalHardy–Sobolev
inequality. By [25, Theorems 1 and 2], we know that‖u‖pp∗s ≤ cN,p s(1 − s)(N − ps)p−1 [u]ps,p , p∗s = pN

N − ps , N > ps,
‖u‖pHp ≤ cN,p s(1 − s)(N − ps)p [u]ps,p , ‖u‖Hp = ( ∫

ℝN

|u(x)|p dx|x|ps) 1
p (1.2)

for all u ∈ Ds,p(ℝN), where the positive constant cN,p depends only on N and p and Ds,p(ℝN) is the fractional
Beppo–Levi space, that is, the completion of C∞0 (ℝN) with respect to the norm [ ⋅ ]s,p defined as[φ]s,p = (∬

ℝ2N

|φ(x) − φ(y)|p|x − y|N+ps dx dy) 1
p
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for any φ ∈ C∞0 (ℝN). Hence, denoting by Ds,pK (ℝN) the completion of C∞0 (ℝN)with respect to the norm [ ⋅ ]K,p,
then the best fractional Hardy–Sobolev constant, calledHp = H(p, N, s, K), is given by

Hp = inf
u∈Ds,pK (ℝ

N )
u ̸=0

[u]pK,p‖u‖pHp , (1.3)

andHp > 0 thanks to (1.2) and (a).
Moreover, (1.2) and (a) imply the existence of a constant Cp∗s > 0 such that‖u‖p∗s ≤ Cp∗s [u]K,p for all u ∈ Ds,pK (ℝN). (1.4)

Both (1.3) and (1.4) will be crucial for the statements of the main results.
The parameter λ in (S) is strictly positive and the perturbed terms Hu, Hv are partial derivatives of

a Carathéodory function H satisfying the subcritical growth condition:

Condition (H). For a.e. x ∈ ℝN it results H(x, ⋅ , ⋅ ) ∈ C1(ℝ2), H(x, ⋅ , ⋅ ) ≥ 0 in ℝ2, Hz(x, 0, 0) = (0, 0) with
Hz = (Hu , Hv) and z = (u, v). Furthermore, there exist μ and q such that θp < μ ≤ q < p∗s and for every ε > 0
there exists Cε > 0 for which the inequality|Hz(x, z)| ≤ με|z|μ−1 + qCε|z|q−1 for any z ∈ ℝ2,
where |z| = √u2 + v2, and also the inequalities

0 ≤ μH(x, z) ≤ Hz(x, z) ⋅ z for all z ∈ ℝ2,
hold for a.e. x ∈ ℝN . Finally, for all measurable set E of ℝN , with positive Lebesgue measure, H(x, u, v) > 0
for a.e. x ∈ E and (u, v) ∈ ℝ+ × ℝ+.
Noncompact variational problems have attracted much attention since the late seventies. System (S) is
a reasonable useful generalization of popular elliptic problems, with singular potentials and critical nonlin-
earities, which naturally arise in quantummechanics, astrophysics, aswell as in Riemannian geometry in the
so-called scalar curvature problem on the sphere𝕊N . The loss of compactness is caused by the invariant action
of the conformal group, or of one of its subgroups, leading to possible spikes formation. It is well known that
the Kazdan–Warner problem of finding a conformal metric with prescribed scalar curvature k(x) leads to
finding positive solutions of −∆u + V(x)u − σ u|x|2 = k(x)|u|2∗−2u.
This equation is a simplified version of the nonlinear Wheeler–DeWitt equation, which describes the quan-
tum version of the Hamiltonian constraint using metric variables and combines mathematically the ideas of
quantum mechanics and general relativity in quantum cosmology. The Wheeler–DeWitt equation is applied
to model quantum states of the universe and is also used to investigate the qualitative behavior of the uni-
verse wave function. For a more detailed discussion and history we refer to the recent nice survey [19]
and the references therein. In summary, equations with Hardy potentials arise from many physical con-
texts, such as molecular physics, quantum cosmology and linearization of combustion models. But, from
the mathematical point of view, the main reason of interest in Hardy potentials relies in their criticality.
Indeed, the non-compactness of the embedding D1,2(ℝN) 󳨅→ L2(ℝN , |x|−2 dx), and in the context of (S) of
Ds,p(ℝN) 󳨅→ Lp(ℝN , |x|−ps dx), even locally in any neighborhood of zero, leads to other additional difficulties
and, more importantly, to new phenomenon concerning the possibility of blow-up. Finally, the presence of
the Hardy terms and of the fractional critical nonlinearities, as well as the fact that (S) is studied in the entire
spaceℝN , cause, roughly speaking, a triple loss of compactness which produces new interesting difficulties.

Furthermore, concerning the Kirchhoff nature of (S), we recall that, following [6], Fiscella and Valdinoci
in [18] proposed a stationary Kirchhoff variational model, with critical nonlinear terms, in bounded regular
domains of ℝN , which takes into account the nonlocal aspect of the tension arising from nonlocal measure-
ments of the fractional length of the string. In [18], however, only the non-degenerate case was covered. Since
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then, several papers have been devoted to stationary fractional Kirchhoff problems involving critical nonlin-
earities in the degenerate case. For further comments we refer to [1, 7, 33] and the references therein. Let
us recall that Kirchhoff problems, with Kirchhoff function M, are said to be non-degenerate if M(0) > 0, and
degenerate ifM(0) = 0. For example, existence of solutions for non-degenerate fractional Kirchhoff problems
is treated in [18, 24] and for degenerate problems in [1, 7, 26, 33, 35].

For stationary Hardy–Kirchhoff fractional problems, with critical nonlinearities, even in the scalar case,
very few contributions are known. We refer to [7, 15, 16] and the references therein. The main novelty of our
paper is to treat (S) in the setting of fractional p-Laplacian involving critical nonlinearities and Hardy terms.
The results are new even in the case M ≡ 1.

Recall that throughout the paper 0 < s < 1 < p < ∞, sp < N, p∗s = Np
N−sp and α > 1, β > 1 with α + β = p∗s .

In the superlinear case, that is, when q ∈ (θp, p∗s ) as in (H), we get the next existence result for (S), which
involves the main geometrical parameter κ = κ(μ,M, p) defined by

κ = a(μ − θp)
θ(μ − p) , (1.5)

similar to the one introduced in [7]. Clearly κ ∈ (0, a], since θ ≥ 1 and p ≤ θp < μ by (H) and (M2). As shown
in [7, Section 2] there are cases, besides the obvious one M ≡ a, in which κ = a, that is, θ = 1 in (M2).
Theorem 1.1. Suppose that (a) and (b) hold for K, that V satisfies (V), that M verifies (M1)–(M2) and that H
fulfils (H). Then for any σ ∈ (−∞, κHp) there exists λ∗ = λ∗(σ) > 0 such that system (S) admits at least one
nontrivial solution (uσ,λ , vσ,λ) inW for all λ ≥ λ∗. Moreover,

lim
λ→∞
‖(uσ,λ , vσ,λ)‖ = 0 (1.6)

holds.

Avery natural appealing openproblem is to prove existence of nontrivial solutions for (S), whenM(0) = 0 and
M(t) > 0 for all t > 0. However, Theorem1.1was recently established in [27, Theorem1.1], without theHardy
terms, that is, in the case σ = 0, but in the degenerate case. Because of the lack of compactness, due to the
presence of the Hardy terms, Theorem 1.1 is more delicate to prove than in [27] and a tricky step in the proof
is necessary to overcome this new difficulty. Theorem 1.1 extends to entire solutions the existence results
recently obtained for fractional systems, with critical nonlinear terms, but in bounded domains, in [9, 10,
12, 13, 20, 22, 28], and generalizes to the fractional Hardy–Schrödinger–Kirchhoff case the systems driven
by the p-Laplacian operator studied in [23]. However, in the systems treated in [17] the fractional p-Laplacian
operator is replaced by two possibly different fractional Laplacian operators and H is not required to satisfy
the Ambrosetti–Rabinowitz growth condition as assumed in (H). Finally, Theorem 1.1 extends in a broad
sense [34, Theorem 1.1].

In what follows, we shall study system (S) under the solely assumption (M1) on the Kirchhoff functionM.
We first prove the next addition to Theorem 1.1.

Theorem 1.2. Suppose that (a) and (b) hold for K, that V satisfies (V), that M verifies (M1), that H fulfils (H)
with p < μ ≤ q < p∗s and that

pM(0) < μa. (1.7)

Then for any ϵ ∈ (M(0), aμp ) and for any σ ∈ (−∞, κϵHp), where
κϵ = aμ − pϵμ − p > 0, (1.8)

there exists λ∗ = λ∗(ϵ, σ) > 0 such that system (S) admits at least one nontrivial solution (uσ,λ , vσ,λ) inW for
all λ ≥ λ∗. Furthermore, (1.6) continues to hold.
Clearly the request (1.7) is automatic whenever M(0) = a, being μ > p by (H). The assumption M(0) = a,
together with monotonicity of M, was assumed in [18, 31] in the scalar case, as well as in numerous papers.
A very interesting open problem is to construct a nontrivial solution (uσ,λ , vσ,λ) of (S) when μa ≤ pM(0) and
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the growth condition on M stated in (M2) does not hold; in other words, when both Theorems 1.1 and (1.2)
cannot be applied. Finally, the number κϵ in (1.8) is in the open interval (0, a), since ϵ > M(0) ≥ a by (M1).

Theorem 1.2 extends in several directions [15, Theorem 1.3 (ii)] given in the scalar case. We refer to [15]
for further comments.

In the sublinear case, that is,when q ∈ (1, p),we continue to assumeonM solely (M1) but, following [27],
we takeH of the special separated formH(x, u, v) = h(x)f(u, v). Hence,wedealwith the followingnew system
inℝN : {{{{{{{{{

M(‖(u, v)‖p)(Lspu + V(x)|u|p−2u) − σ |u|p−2u|x|ps = h(x)fu(u, v) + γ αp∗s |v|β|u|α−2u,
M(‖(u, v)‖p)(Lspv + V(x)|v|p−2v) − σ |v|p−2v|x|ps = h(x)fv(u, v) + γ βp∗s |u|α|v|β−2v, (S󸀠)

where V satisfies (V), γ > 0 and f verifies
(f1) f ∈ C1(ℝ2,ℝ+) and there exist C > 0 and q ∈ (1, p) such that|fz(z)| ≤ C|z|q−1 for all z = (u, v) ∈ ℝ2,

where fz = (fu , fv) and fu, fv denote the partial derivatives of f with respect to the first and second variable,
(f2) there exist a0 > 0, δ > 0 and q1 ∈ (1, p) such that

f(z) ≥ a0|z|q1 for all z ∈ ℝ2 with |z| ≤ δ.
Concerning the function h in (S󸀠), we assume from now on that h verifies
(h) 0 ≤ h ∈ Lp∗s /(p∗s −q)(ℝN) and there exists a nonempty open subset Ω ofℝN such that infx∈Ω h(x) > 0.
In order to cover themore interesting casewhen γ > 0 in (S󸀠), we need a further assumption on h. Fix σ < aHp
and set

η(t) = 1
2p(a − σ+Hp

)tp − Cp∗sp∗sp∗s tp∗s
for all t ≥ 0. Since p < p∗s , the positive number

ρ0 = (aHp − σ+
2HpC

p∗s
p∗s

) 1
p∗s −p

is such that

η(ρ0) = max
t≥0

η(t) = ( 12p − 1
2p∗s
)(a − σ+

Hp
) p∗s
p∗s −p (2Cp∗sp∗s ) p

p−p∗s > 0.
We are now able to state the existence result for (S󸀠).

Theorem 1.3. Assume that (a) and (b) hold for K, that V satisfies (V), that M verifies (M1), that f fulfils (f1)–(f2)
and that h satisfies (h). Let σ be in (−∞, aHp). Then (S󸀠) admits at least one nontrivial solution (uσ,γ , vσ,γ) inW
for all γ ≤ 0. If γ > 0 and h, depending on σ+, satisfies

η(ρ0) > [ 12p(a − σ+Hp
)] q

q−p (CCqp∗s ‖h‖ p∗s
p∗s −q
) pp−q , (1.9)

where C and q are introduced in (f1) and Cp∗s > 0 in (1.4), then there exists γ∗∗ = γ∗∗(σ, h) > 0 such that sys-
tem (S󸀠) admits at least one nontrivial solution (uσ,γ , vσ,γ) inW for all γ ∈ (0, γ∗∗).
Clearly, condition (h) simply requires that h is nontrivial and (1.9) that the norm of h in L

p∗s
p∗s −q (ℝN) is suffi-

ciently small.
Theorem 1.3 was recently established in a weaker form in [27, Theorem 1.2] when σ = 0, that is, without

theHardy terms.Again, thenontrivial presenceof theHardy termsmakesTheorem1.3moredifficult tohandle
than in [27]. Furthermore, Theorem 1.3 generalizes the existence results obtained in [9, 10, 12, 13, 17, 20,
22, 28] in several directions. Finally, Theorem 1.3 extends in a broad sense the recent [34, Theorem 1.2].
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However, as far as we know, Theorems 1.1–1.3 are new even when M ≡ 1 and p = 2. The paper is struc-
tured in the following way. In Section 2, we present some preliminary results, which are useful for the next
main sections. In Section 3, we establish the key compactness theorems, particularly helpful to apply the
mountain pass lemma at a special mountain pass level and to prove Theorems 1.1 and 1.2, that is, the
existence of a nontrivial solution for (S). Finally, Section 4 is devoted to the proof of Theorem 1.3 via the
Ekeland variational principle.

2 Variational framework
In this sectionwe briefly recall the relevant definitions and notations related to real uniformly convex Banach
spaceW and for a complete treatment, we refer to [2, 17, 32, 33].

Combining the results of [7, Lemmas 4.1 and 5.1] and [33, Theorem 2.1], we get [17, Lemma 2.2], that
is, thanks to [17, Section 5] we have the next properties.

Lemma 2.1. Under (a)–(b) on K and (V) on V, the embeddings

W 󳨅→ W s,p
K (ℝN) ×W s,p

K (ℝN) 󳨅→ Lν(ℝN) × Lν(ℝN)
are continuous for all ν ∈ [p, p∗s ], and‖(u, v)‖ν ≤ ‖u‖ν + ‖v‖ν ≤ Cν‖(u, v)‖ for all (u, v) ∈W,

where Cν depends on ν, N, s, K0 and p.

The next result can be proved similarly to the arguments used for [8, Lemma 2.2].

Lemma 2.2. Assume (a)–(b) on K and (V) on V. Let {(un , vn)}n and (u, v) be inW such that (un , vn) ⇀ (u, v)
weakly inW and (un , vn) → (u, v) a.e. inℝN . Then (un , vn) → (u, v) strongly in Lν(ℝN) × Lν(ℝN) as n →∞ for
any ν ∈ (p, p∗s ).
Let us present a technical lemma, which will play a crucial role in the study of compactness property of
functional I. This result was proved in the scalar case in [30, Lemma 3.2] when K(x) = |x|−N−ps. For the sake
of completeness, we report here the proof.

Lemma 2.3. Assume (a)–(b) on K and (V) on V. Let {(un , vn)}n and (u, v) be inW such that (un , vn) ⇀ (u, v)
weakly inW and (un , vn) → (u, v) a.e. inℝN . Then‖(un − u, vn − v)‖p = ‖(un , vn)‖p − ‖(u, v)‖p + o(1) as n →∞.
Proof. Let us define ωn : ℝ2N → ℝ+ by

ωn(x, y) = |{|(un(x) − u(x)) − (un(y) − u(y))|p − |un(x) − un(y)|p + |u(x) − u(y)|p}K(x − y)|.
We want to prove that

lim
n→∞
∬
ℝ2N

ωn(x, y) dx dy = 0. (2.1)

Given ε > 0, there exists Cε > 0 such that󵄨󵄨󵄨󵄨|a + b|p − |a|p󵄨󵄨󵄨󵄨 ≤ ε|a|p + Cε|b|p for any a, b ∈ ℝ.
Thus, putting a = (un(x) − u(x)) − (un(y) − u(y)) and b = u(x) − u(y), we get

ωn(x, y) ≤ ε|(un(x) − u(x)) − (un(y) − u(y))|pK(x − y) + Cε|u(x) − u(y)|pK(x − y). (2.2)

Define ωεn : ℝ2N → ℝ+ by
ωεn(x, y) = (ωn(x, y) − ε|(un(x) − u(x)) − (un(y) − u(y))|pK(x − y))+.
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By (2.2) and (b) we have
ωεn(x, y) ≤ Cε|u(x) − u(y)|pK(x − y) ∈ L1(ℝN).

Since in particular un → u a.e. inℝN , clearly ωεn → 0 a.e. inℝ2N , so that
lim
n→∞
∬
ℝN

ωεn(x, y) dx dy = 0
by the dominated convergence theorem. Then, by (2.2),

lim sup
n→∞
∬
ℝ2N

ωn(x, y) dx dy ≤ ε lim sup
n→∞
∬
ℝ2N

|(un(x) − u(x)) − (un(y) − u(y))|pK(x − y) dx dy = εC,
since ([un]K,p)n is bounded, thanks to the fact that un ⇀ u in W s,p

K,V (ℝN), so that in particular un ⇀ u
in Ds,pK (ℝN). Consequently, since ε > 0 is arbitrary, the claim (2.1) holds true and it implies that[un]pK,p = [un − u]pK,p + [u]pK,p + o(1) as n →∞.
A similar argument shows that[vn]pK,p = [vn − v]pK,p + [v]pK,p + o(1) as n →∞
and |un|pV,p = |un − u|pV,p + |u|pV,p + o(1), |vn|pV,p = |vn − v|pV,p + |v|pV,p + o(1) as n →∞.
This concludes the proof.

Since α and β > 1 in problems (S) and (S󸀠) are such that α + β = p∗s , the Hölder inequality and (1.4) yield∫
ℝN

|u|α|v|β dx ≤ ( ∫
ℝN

|u|p∗s dx) α
p∗s ( ∫
ℝN

|v|p∗s dx) β
p∗s ≤ Cp∗sp∗s [u]αK,p[v]βK,p ≤ Cp∗sp∗s [(u, v)]p∗sK,p (2.3)

for all (u, v) ∈W.

Lemma 2.4. Assume (a)–(b) on K and (V) on V. Let {(un , vn)}n and (u, v) be inW such that (un , vn) ⇀ (u, v)
weakly inW and (un , vn) → (u, v) a.e. inℝN . Then, for any fixed α > 1 and β > 1 with α + β = p∗s ,

lim
n→∞
∫
ℝN

|un − u|α|vn − v|β dx = lim
n→∞
∫
ℝN

|un|α|vn|β dx − ∫
ℝN

|u|α|v|β dx
and |un|α−2un|vn|β ⇀ |u|α−2u|v|β in Lp∗s /(p∗s −1)(ℝN),|un|α|vn|β−2vn ⇀ |u|α|v|β−2v in Lp∗s /(p∗s −1)(ℝN). (2.4)

Proof. The first part can be proved, with obvious changes, proceeding as in [21, proof of Lemma 2.1].
It remains to prove (2.4). The Hölder inequality and (1.4), since α > 1, β > 1 and α + β = p∗s , yield∫
ℝN

󵄨󵄨󵄨󵄨|un|α−1|vn|β󵄨󵄨󵄨󵄨 p∗sp∗s −1 dx ≤ ‖un‖ p∗s (α−1)p∗s −1

p∗s ‖vn‖ p∗s (p∗s −α)p∗s −1

p∗s ≤ Cp∗sp∗s [un] p∗s (α−1)p∗s −1
K,p [vn] p∗s (p∗s −α)p∗s −1

K,p ≤ Cp∗sp∗s [(un , vn)]p∗sK,p ≤ C
for a suitable constant C > 0. Similarly, ∫

ℝN

󵄨󵄨󵄨󵄨|un|α|vn|β−1󵄨󵄨󵄨󵄨 p∗sp∗s −1 dx ≤ C.
Thus, (2.4) holds by [3, Proposition A.8], since (un , vn) → (u, v) a.e. in ℝN and particular (un , vn) ⇀ (u, v)
weakly in Lp∗s (ℝN).
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3 Proof of Theorems 1.1 and 1.2
In this section, we first assume, without further mentioning, that the assumptions required in Theorem 1.1
are satisfied.

We say that the couple (u, v) ∈W is a (weak) solution of problem (S) if

M(‖(u, v)‖p)⟨(u, v), (φ, ψ)⟩K,V,p − σ(⟨u, φ⟩Hp + ⟨v, ψ⟩Hp )= ∫
ℝN

[Hu(x, u, v)φ + Hv(x, u, v)ψ] dx + αp∗s ∫
ℝN

|u|α−2u|v|βφ dx + β
p∗s
∫
ℝN

|u|α|v|β−2vψ dx
for any (φ, ψ) ∈W, where⟨(u, v), (φ, ψ)⟩K,V,p = ⟨u, φ⟩K,p + ⟨u, φ⟩V,p + ⟨v, ψ⟩K,p + ⟨v, ψ⟩V,p ,⟨u, φ⟩K,p = ∫ ∫

ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))K(x − y) dx dy,
⟨u, φ⟩V,p = ∫ ∫

ℝN

V(x)|u(x)|p−2u(x)φ(x) dx,
⟨u, φ⟩Hp = ∫

ℝN

|u(x)|p−2u(x)φ(x) dx|x|ps .
Clearly, the entire (weak) solutions of (S) are exactly the critical points of the Euler–Lagrange functional
I : W→ ℝ associated with (S), given for all (u, v) ∈W by

I(u, v) =1
p

M (‖(u, v)‖p) − σ
p
(‖u‖pHp + ‖v‖pHp ) − λ ∫

ℝN

H(x, u, v) dx − 1
p∗s
∫
ℝN

|u|α|v|β dx,
which is well defined and of class C1(W) by (H) and the continuity of M.

We start by showing that the functional I has the geometric features required to apply themountain pass
theorem of Ambrosetti and Rabinowitz.

Lemma 3.1. Fix σ ∈ (−∞, aHp) and any λ > 0. Then there exists a couple (e1, e2) ∈ C∞0 (ℝN) × C∞0 (ℝN), inde-
pendent of σ+ and λ, such that I(e1, e2) < 0, ‖(e1, e2)‖ ≥ 2 and ∫ℝN |e1|α|e2|β dx > 0. Furthermore, there exist
ȷ = ȷ(σ, λ) > 0 and ρ = ρ(σ, λ) ∈ (0, 1] such that I(u, v) ≥ ȷ for any (u, v) ∈W with ‖(u, v)‖ = ρ.
Proof. Fix σ ∈ (−∞, aHp) and λ > 0. Now (u, v) ∈ C∞0 (ℝN) × C∞0 (ℝN) such that ‖(u, v)‖ = 1 and∫

ℝN

|u|α|v|β dx > 0.
Assumption (M2) implies that

M (t) ≤M (1)tθ for all t ≥ 1. (3.1)

Thus, by (H), (2.3) and (3.1), we have for t →∞,
I(tu, tv) = 1

p
M (‖t(u, v)‖p) − σ tp

p
(‖u‖pHp + ‖v‖pHp ) − λ ∫

ℝN

H(x, tu, tv) dx − tp∗s
p∗s
∫
ℝN

|u|α|v|β dx
≤M (1) tθp

p
+ σ− tp

p
(‖u‖pHp + ‖v‖pHp ) − tp∗sp∗s ∫

ℝN

|u|α|v|β dx → −∞, (3.2)

since p ≤ θp < p∗s . Hence, taking (e1, e2) = τ0(u, v) with τ0 > 0 sufficiently large, we obtain at once that‖(e1, e2)‖ ≥ 2, ∫ℝN |e1|α|e2|β dx > 0 and I(e1, e2) < 0, as stated.
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For the second part, we first note that (H) gives for any ε > 0 the existence of Cε > 0 such that|H(x, z)| ≤ ε|z|μ + Cε|z|q for all (x, z) ∈ ℝN × ℝ2
holds. Hence, (M1), (1.3), Lemma 2.1 and (2.3) imply that for all (u, v) ∈W, with ‖(u, v)‖ ≤ 1,
I(u, v) ≥ a

p
‖(u, v)‖p − σ+

pHp
([u]pK,p + [v]pK,p) − λ ∫

ℝN

ε(u2 + v2) μ2 dx − λ ∫
ℝN

Cε(u2 + v2) q2 dx − 1
p∗s
‖u‖αp∗s ‖v‖βp∗s

≥ 1
p(a − σ+Hp

)‖(u, v)‖p − λεCμμ‖(u, v)‖μ − λCεCqq‖(u, v)‖q − Cp∗sp∗sp∗s ‖(u, v)‖p∗s .
Clearly, there exists ρ ∈ (0, 1] such that

max
t∈[0,1]

y(t) = y(ρ) > 0,
where

y(t) = 1
p(a − σ+Hp

)tp − λεCμμ tμ − λCεCqq tq − Cp∗sp∗sp∗s tp∗s ,
since p < μ ≤ q < p∗s and σ < aHp. Consequently, I(u, v) ≥ y(ρ) = ȷ for all (u, v) ∈W with ‖(u, v)‖ = ρ, as
desired. This concludes the proof.

We recall in passing that, if X is a real Banach space, a C1(X) functional J satisfies the Palais–Smale condition
at level c ∈ ℝ if any Palais–Smale sequence {un}n at level c, that is, such that

J(un) → c and J󸀠(un) → 0 in X󸀠 as n →∞, (3.3)

admits a convergent subsequence in X.
Now we discuss the compactness property for the functional I, given by the Palais–Smale condition at

a suitable level. For this, we fix σ ∈ (−∞, aHp), λ > 0 and we set
cσ,λ = inf

ξ∈Γ
max
t∈[0,1]

I(ξ(t)), (3.4)

where
Γ = {ξ ∈ C([0, 1];W) : ξ(0) = (0, 0), I(ξ(1)) < 0}.

Obviously, cσ,λ > 0 thanks to Lemma 3.1, since in particular ‖(e1, e2)‖ > ρ. Before proving that I satisfies the
Palais–Smale condition at level cσ,λ, we introduce an asymptotic condition for the level cσ,λ. This result was
proved in [7, Lemma 2.3] in the scalar case and will be crucial to overcome the lack of compactness due to
the presence of Hardy terms and critical nonlinearities.

Lemma 3.2. For any σ ∈ (−∞, aHp) it results
lim
λ→∞

cσ,λ = 0.
Proof. Fix σ ∈ (−∞, aHp) and λ > 0. Let (e1, e2) be the couple determined in Lemma 3.1, which is indepen-
dent of σ+ and λ. Since I satisfies the mountain pass geometry at (0, 0) and (e1, e2), there exists tσ,λ > 0
verifying I(tσ,λe1, tσ,λe2) = maxt≥0 I(te1, te2). Therefore, ⟨I󸀠(tσ,λe1, tσ,λe2), (e1, e2)⟩ = 0. Thus,

tp−1σ,λ (M(‖tσ,λ(e1, e2)‖p)‖(e1, e2)‖p − σ‖e1‖pHp − σ‖e2‖pHp )= λ ∫
ℝN

Hu(x, tσ,λe1, tσ,λe2)e1 dx + λ ∫
ℝN

Hv(x, tσ,λe1, tσ,λe2)e2 dx + tp∗s −1σ,λ ∫
ℝN

|e1|α|e2|β dx
≥ tp∗s −1σ,λ ∫

ℝN

|e1|α|e2|β dx, (3.5)

by (H), being λ > 0.
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We claim that {tσ,λ}λ is bounded in ℝ. Indeed, putting Λ = {λ > 0 : tσ,λ‖(e1, e2)‖ ≥ 1}, from (M2), (1.3)
and (3.1) we derive that

tpσ,λ(M(‖tσ,λ(e1, e2)‖p)‖(e1, e2)‖p − σ‖e1‖pHp − σ‖e2‖pHp )≤ θM (‖tσ,λ(e1, e2)‖p) + σ−
Hp

tpσ,λ([e1]pK,p + [e2]pK,p)≤ (θM (1) + σ−
Hp
)tθpσ,λ‖(e1, e2)‖θp (3.6)

for any λ ∈ Λ, since 1 < p ≤ θp. Therefore, (3.5) and (3.6) imply that(θM (1) + σ−
Hp
)‖(e1, e2)‖θp ≥ tp∗s −θpσ,λ ∫

ℝN

|e1|α|e2|β dx for any λ ∈ Λ,
which yields that {tσ,λ}λ∈Λ is bounded since θp < p∗s and∫

ℝN

|e1|α|e2|β dx > 0
by Lemma 3.1. It follows at once that {tσ,λ}λ>0 is bounded. This proves the claim.

Fix now a sequence {λn}n ⊂ ℝ+ such that λn →∞ as n →∞. Obviously {tσ,λn }n is bounded. Thus, there
exist a t0 ≥ 0 and subsequence of {λn}n, still denoted by {λn}n, such that tσ,λn → t0. By the continuity of M,
also {M(tpσ,λn‖(e1, e2)‖p)}n is bounded, and so by (3.5) there exists Cσ− > 0 such that, for any n ∈ ℕ,
λn( ∫
ℝN

Hu(x, tσ,λn e1, tσ,λn e2)e1 dx + ∫
ℝN

Hv(x, tσ,λn e1, tσ,λn e2)e2 dx) + tp∗s −1σ,λn ∫
ℝN

|e1|α|e2|β dx ≤ Cσ− . (3.7)

We assert that t0 = 0. Otherwise, (H) and the dominated convergence theorem yield∫
ℝN

Hu(x, tσ,λn e1, tσ,λn e2)e1 dx → ∫
ℝN

Hu(x, t0e1, t0e2)e1 dx,
∫
ℝN

Hv(x, tσ,λn e1, tσ,λn e2)e2 dx → ∫
ℝN

Hv(x, t0e1, t0e2)e2 dx
as n →∞. In particular, as n →∞∫

ℝN

(Hu(x, tσ,λn e1, tσ,λn e2)e1 + Hv(x, tσ,λn e1, tσ,λn e2)e2) dx→ ∫
ℝN

(Hu(x, t0e1, t0e2)e1 + Hv(x, t0e1, t0e2)e2) dx > 0
by (H) and the fact that ∫ℝN |e1|α|e2|βdx > 0 as constructed in Lemma 3.1. Recalling that λn →∞, we get
lim
n→∞
[λn( ∫
ℝN

Hu(x, tσ,λn e1, tσ,λn e2)e1 dx + ∫
ℝN

Hv(x, tσ,λn e1, tσ,λn e2)e2 dx) + tp∗s −1σ,λn ∫
ℝN

|e1|α|e2|β dx] = ∞,
which contradicts (3.7). Thus t0 = 0 and tσ,λ → 0 as λ →∞, since the sequence {λn}n is arbitrary.

Now the path ξ(t) = t(e1, e2), t ∈ [0, 1], belongs to Γ, so that Lemma 3.1 gives

0 < cσ,λ ≤ max
t≥0

I(ξ(t))≤ I(tσ,λe1, tσ,λe2)≤ 1
p

M (‖tσ,λ(e1, e2)‖p) + σ−p tpσ,λ(‖e1‖pHp + ‖e2‖pHp ).
Moreover, M (‖tσ,λ(e1, e2)‖p) → 0 as λ →∞, by the continuity of M and the fact that (e1, e2) does not
depend on λ. This completes the proof of the lemma.
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Nowwe are ready to prove the compactness property of I at the special level (3.4) and recall that the number
κ ∈ (0, a] was defined in (1.5).
Lemma 3.3. For any σ ∈ (−∞, κHp) there exists λ∗ = λ∗(σ) > 0 such that for any λ ≥ λ∗ the functional I satis-
fies the Palais–Smale condition at level cσ,λ.

Proof. Fix σ ∈ (−∞, κHp) and let {(un , vn)}n ⊂W be a Palais–Smale sequence of I at level cσ,λ for any λ > 0.
By (M2) and (H), we get

I(un , vn) − 1μ ⟨I󸀠(un , vn), (un , vn)⟩= 1
p

M (‖(un , vn)‖p) − 1μM(‖(un , vn)‖p)‖(un , vn)‖p − σ(1p − 1μ)(‖un‖pHp + ‖vn‖pHp )− λ ∫
ℝN

(H(x, un , vn) − 1μHu(x, un , vn)un − 1μHv(x, un , vn)vn) dx+ (1μ − 1
p∗s
) ∫
ℝN

|un|α|vn|β dx
≥ ( 1θp − 1μ)M(‖(un , vn)‖p)‖(un , vn)‖p − σ+Hp

(1p − 1μ)‖(un , vn)‖p ,
(3.8)

since p ≤ θp < μ < p∗s . Then, thanks to (1.3), (3.3), (3.8) and (M1), there exists γσ,λ > 0 such that as n →∞
cσ,λ + γσ,λ‖(un , vn)‖ + o(1) ≥ νσ‖(un , vn)‖p , νσ = a( 1θp − 1μ) − σ+Hp

(1p − 1μ) > 0, (3.9)

since σ < κHp. Therefore {(un , vn)}n is bounded in the reflexive Banach spaceW.
Thus, there exist (uσ,λ , vσ,λ) ∈W, nonnegative numbers κσ,λ, ıσ,λ, ℓσ,λ and δσ,λ, and two functions

gμ ∈ Lμ(ℝN) and gq ∈ Lq(ℝN) such that, up to a subsequence, still denoted by {(un , vn)}n, we have(un , vn) ⇀ (uσ,λ , vσ,λ) inW, ‖(un , vn)‖ → κσ,λ ,
un ⇀ uσ,λ in Lp(ℝN , |x|−ps), ‖un − uσ,λ‖Hp → ıσ,λ ,
vn ⇀ vσ,λ in Lp(ℝN , |x|−ps), ‖vn − vσ,λ‖Hp → ℓσ,λ ,(un , vn) → (uσ,λ , vσ,λ) in Lν(ℝN) × Lν(ℝN), (un , vn) → (uσ,λ , vσ,λ) a.e. inℝN ,|(un , vn)| ≤ gμ a.e. inℝN , |(un , vn)| ≤ gq a.e. inℝN and all n ∈ ℕ,∫

ℝN

|un − uσ,λ|α|vn − vσ,λ|β dx → δσ,λ ,|un|α−2un|vn|β ⇀ |uσ,λ|α−2uσ,λ|vσ,λ|β in Lp∗s /(p∗s −1)(ℝN),|un|α|vn|β−2vn ⇀ |uσ,λ|α|vσ,λ|β−2vσ,λ in Lp∗s /(p∗s −1)(ℝN),
(3.10)

with ν ∈ (p, p∗s ), by (1.3), (2.3) and Lemmas 2.2 and 2.4.
Turning to (3.3), we have shown that

cσ,λ + o(1) ≥ νσ‖(un , vn)‖p + (1μ − 1
p∗s
) ∫
ℝN

|un|α|vn|β dx, (3.11)

where νσ is given in (3.9).
First we assert that

lim
λ→∞

κσ,λ = 0. (3.12)

Otherwise, lim supλ→∞ κσ,λ = κσ > 0. Hence there is a sequence j 󳨃→ λj ↑ ∞ such that κσ,λj → κσ as j →∞.
Then, letting j →∞, we get from (3.11) and Lemma 3.2 that

0 ≥ νσκpσ > 0.
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This contradiction proves the assertion (3.12). Moreover,‖(uσ,λ , vσ,λ)‖ ≤ κσ,λ ,
since (un , vn) ⇀ (uσ,λ , vσ,λ) inW, so that (V), (1.3), (2.3) and (3.12) imply that

lim
λ→∞
‖uσ,λ‖Hp = lim

λ→∞
‖vσ,λ‖Hp = lim

λ→∞
∫
ℝN

|uσ,λ|α|vσ,λ|β dx = lim
λ→∞
‖(uσ,λ , vσ,λ)‖ = 0. (3.13)

Let us prove that {(un , vn)}n, up to a possibly further beyond subsequence, converges strongly to (uσ,λ , vσ,λ)
inW. To this end, let {Un}n be the sequence defined inℝ2N \ Diag(ℝ2N) by(x, y) 󳨃→ Un(x, y) = |un(x) − un(y)|p−2[un(x) − un(y)] ⋅ K(x − y) 1p󸀠 .
Then {Un}n is bounded in Lp󸀠 (ℝ2N) by (b), as well as Un → Uσ,λ a.e. inℝ2N , where

Uσ,λ(x, y) = |uσ,λ(x) − uσ,λ(y)|p−2[uσ,λ(x) − uσ,λ(y)] ⋅ K(x − y) 1p󸀠 .
Thus, going if necessary to a further subsequence, we get that Un ⇀ Uσ,λ in Lp

󸀠 (ℝ2N) as n →∞. Hence,⟨un , φ⟩K,p → ⟨uσ,λ , φ⟩K,p (3.14)

for any φ ∈ W s,p
K,V (ℝN), since (x, y) 󳨃→ |φ(x) − φ(y)| ⋅ K(x − y) 1p ∈ Lp(ℝ2N) by (b). Furthermore, we have that|un|p−2un ⇀ |uσ,λ|p−2uσ,λ in Lp󸀠 (ℝN , V) by [3, Proposition A.8]. From this,⟨un , φ⟩V,p → ⟨uσ,λ , φ⟩V,p (3.15)

for any φ ∈ W s,p
K,V (ℝN), since φ ∈ Lp(ℝN , V). In the same way, (3.10) and [3, Proposition A.8] imply that|un|p−2un ⇀ |uσ,λ|p−2uσ,λ in Lp󸀠 (ℝN , |x|−ps) as n →∞. Consequently,⟨un , φ⟩Hp → ⟨uσ,λ , φ⟩Hp (3.16)

for any φ ∈ W s,p
K,V (ℝN). A similar argument shows that the sequence {Vn}n, defined inℝ2N \ Diag(ℝ2N) by(x, y) 󳨃→ Vn(x, y) = |vn(x) − vn(y)|p−2[vn(x) − vn(y)] ⋅ K(x − y) 1p󸀠 ,

is bounded in Lp󸀠 (ℝ2N) as well as Vn → Vσ,λ a.e. inℝ2N , where
Vσ,λ(x, y) = |vσ,λ(x) − vσ,λ(y)|p−2[vσ,λ(x) − vσ,λ(y)] ⋅ K(x − y) 1p󸀠 .

Hence, going if necessary to a further subsequence, we have⟨vn , ψ⟩K,p → ⟨vσ,λ , ψ⟩K,p , ⟨vn , ψ⟩V,p → ⟨vσ,λ , ψ⟩V,p , ⟨vn , ψ⟩Hp → ⟨vσ,λ , ψ⟩Hp (3.17)

for all ψ ∈ W s,p
K,V (ℝN).

By (H), with ε = 1, and (3.10), the Hölder inequality gives󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∫
ℝN

[Hu(x, un , vn)(un − uσ,λ) + Hv(x, un , vn)(vn − uσ,λ)] dx󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ ∫
ℝN

[μ|(un , vn)|μ−1|(un , vn) − (uσ,λ , vσ,λ)| + qC1|(un , vn)|q−1|(un , vn) − (uσ,λ , vσ,λ)|] dx≤ C(‖(un , vn) − (uσ,λ , vσ,λ)‖μ + ‖(un , vn) − (uσ,λ , vσ,λ)‖q) → 0

(3.18)

as n →∞, by Lemma 2.2 since p ≤ θp < μ ≤ q < p∗s , for a suitable constant C > 0. While (H) and the use of
the dominated convergence theorem yield for any (φ, ψ) ∈W,∫

ℝN

Hu(x, un , vn)φ dx → ∫
ℝN

Hu(x, uσ,λ , vσ,λ)φ dx,
∫
ℝN

Hv(x, un , vn)ψ dx → ∫
ℝN

Hv(x, uσ,λ , vσ,λ)ψ dx (3.19)

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/3/18 8:12 AM



A. Fiscella, P. Pucci and B. Zhang, Critical fractional Hardy–Schrödinger–Kirchhoff systems | 13

as n →∞. Consequently, (3.3), (3.10), (3.14)–(3.17) and (3.19) give at once that (uσ,λ , vσ,λ) satisfies the
identity

M(κσ,λ)⟨(uσ,λ , vσ,λ), (φ, ψ)⟩K,V,p − σ(⟨uσ,λ , φ⟩Hp + ⟨vσ,λ , ψ⟩Hp )= ∫
ℝN

[Hu(x, uσ,λ , vσ,λ)φ + Hv(x, uσ,λ , vσ,λ)ψ] dx + αp∗s ∫
ℝN

|uσ,λ|α−2uσ,λ|vσ,λ|βφ dx
+ β
p∗s
∫
ℝN

|uσ,λ|α|vσ,λ|β−2vσ,λψ dx
for any (φ, ψ) ∈W. In other words, (uσ,λ , vσ,λ) is a critical point of the C1(W) functional

Iκσ,λ (u, v) = 1pM(κpσ,λ)‖(u, v)‖p − σp (‖u‖pHp + ‖v‖pHp ) − λ ∫
ℝN

H(x, u, v) dx − 1
p∗s
∫
ℝN

|u|α|v|β dx. (3.20)

From (3.3), (3.10), (3.14)–(3.18) and (3.20) we deduce that

o(1) = ⟨I󸀠(un , vn) − I󸀠κσ,λ (uσ,λ , vσ,λ), (un , vn) − (uσ,λ , vσ,λ)⟩= M(‖(un , vn)‖p)‖(un , vn)‖p −M(‖(un , vn)‖p)⟨(un , vn), (uσ,λ , vσ,λ)⟩K,V,p−M(κpσ,λ)⟨(uσ,λ , vσ,λ), (un , vn)⟩K,V,p +M(κpσ,λ)‖(uσ,λ , vσ,λ)‖p− σ ∫
ℝN

(|un|p−2un − |uσ,λ|p−2uσ,λ)(un − uσ,λ)|x|ps dx

− σ ∫
ℝN

(|vn|p−2vn − |vσ,λ|p−2vσ,λ)(vn − vσ,λ)|x|ps dx

− λ ∫
ℝN

[Hu(x, un , vn) − Hu(x, uσ,λ , vσ,λ)](un − uσ,λ) dx
− λ ∫
ℝN

[Hv(x, un , vn) − Hv(x, uσ,λ , vσ,λ)](vn − vσ,λ) dx
− α
p∗s
∫
ℝN

(|vn|β|un|α−2un − |vσ,λ|β|uσ,λ|α−2uσ,λ)(un − uσ,λ) dx
− β
p∗s
∫
ℝN

(|un|α|vn|β−2vn − |uσ,λ|α|vσ,λ|β−2vσ,λ)(vn − vσ,λ) dx= M(κpσ,λ)[κpσ,λ − ‖(uσ,λ , vσ,λ)‖p] − σ[‖un‖pHp + ‖vn‖pHp − ‖uσ,λ‖pHp − ‖uσ,λ‖pHp ]− ∫
ℝN

|un|α|vn|β dx + ∫
ℝN

|uσ,λ|α|vσ,λ|β dx + o(1),
by continuity of M, since ‖(un , vn)‖ → κσ,λ as n →∞, and α + β = p∗s . Therefore, as n →∞,

o(1) = M(κpσ,λ)[κpσ,λ − ‖(uσ,λ , vσ,λ)‖p] − σ[‖un‖pHp + ‖vn‖pHp − ‖uσ,λ‖pHp − ‖uσ,λ‖pHp ]− ∫
ℝN

|un|α|vn|β dx + ∫
ℝN

|uσ,λ|α|vσ,λ|β dx + o(1). (3.21)

Furthermore, (3.10) and the celebrated Brézis and Lieb lemma of [5] give‖un‖pHp = ‖un − uσ,λ‖pHp + ‖uσ,λ‖pHp + o(1), ‖vn‖pHp = ‖vn − vσ,λ‖pHp + ‖vσ,λ‖pHp + o(1) (3.22)

as n →∞, while again (3.10) and Lemma 2.3 yield‖(un , vn)‖p = ‖(un , vn) − (uσ,λ , vσ,λ)‖p + ‖(uσ,λ , vσ,λ)‖p + o(1) (3.23)
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as n →∞. Hence, from (3.10), (3.21), (3.22), (3.23) and Lemma 2.4 we obtain

M(κpσ,λ) limn→∞
‖(un , vn) − (uσ,λ , vσ,λ)‖p = σ lim

n→∞
(‖un − uσ,λ‖pHp + ‖vn − vσ,λ‖pHp )+ lim
n→∞
∫
ℝN

|un − uσ,λ|α|vn − vσ,λ|β dx= σ(ıpσ,λ + ℓpσ,λ) + δσ,λ (3.24)

as n →∞. By (3.11) and Lemma 2.4 again, we get as n →∞,
cσ,λ + o(1) ≥ (1μ − 1

p∗s
)[δσ,λ + ∫

ℝN

|uσ,λ|α|vσ,λ|β dx] + o(1).
Then Lemma 3.2 and (3.13) imply that

lim
λ→∞

δσ,λ = 0.
Since σ < κHp ≤ aHp there exists c ∈ [0, 1) such that σ+ = caHp. Of course, (3.24) can be rewritten as(1 − c)M(κpσ,λ) limn→∞

‖(un − uσ,λ , vn − vσ,λ)‖p + cM(κpσ,λ) limn→∞
‖(un − uσ,λ , vn − vσ,λ)‖p = σ(ıpσ,λ + ℓpσ,λ) + δσ,λ .

Thus, by (1.3) combined with (1.1) and (V), using (2.3) with (u, v) = (un − uσ,λ , vn − vσ,λ) and (M1), we get
δσ,λ + σ+(ıpσ,λ + ℓpσ,λ) ≥ (1 − c)aC−p∗sp∗s δ

p
p∗s
σ,λ + caHp(ıpσ,λ + ℓpσ,λ)

for all λ > 0, being c ∈ [0, 1). Therefore, since σ+ = caHp,

δσ,λ ≥ (1 − c)aC−p∗sp∗s δ
p
p∗s
σ,λ . (3.25)

Consequently, (3.13) and (3.25) imply at once that there exists λ∗ = λ∗(σ) > 0 such that δσ,λ = 0 for all λ ≥ λ∗.
In other words,

lim
n→∞
∫
ℝN

|un − uσ,λ|α|vn − vσ,λ|β dx = 0
for all λ ≥ λ∗.

Now, assume by contradiction that there exists λ ≥ λ∗ such that ıσ,λ + ℓσ,λ > 0. Then, by (M1) and (1.3),
since σ < aHp, we have

M(κpσ,λ) limn→∞
‖(un − uσ,λ , vn − vσ,λ)‖p ≤ σ lim

n→∞
(‖un − uσ,λ‖pHp + ‖vn − vσ,λ‖pHp )< aHp lim

n→∞
(‖un − uσ,λ‖pHp + ‖vn − vσ,λ‖pHp )≤ M(κpσ,λ) limn→∞
‖(un − uσ,λ , vn − vσ,λ)‖p ,

which gives a contradiction.
Thus, ıσ,λ + ℓσ,λ = 0 for all λ ≥ λ∗. By (3.24) this yields

lim
n→∞
‖(un , vn) − (uσ,λ , vσ,λ)‖ = 0

thanks to (M1). In conclusion, (un , vn) → (uσ,λ , vσ,λ) as n →∞ inW, as required.

Proof of Theorem 1.1. Lemmas3.1 and3.3 guarantee that for any σ ∈ (−∞, κHp) there exists λ∗ = λ∗(σ) such
that for any λ ≥ λ∗, the functional I satisfies all assumptions of the mountain pass theorem at level cσ,λ.
Hence, there exists a critical point (uσ,λ , vσ,λ) ∈W of I at level cσ,λ. Clearly, we have (uσ,λ , vσ,λ) ̸= (0, 0), since
I(uσ,λ , vσ,λ) = cσ,λ > 0 = I(0, 0). Moreover, the asymptotic behavior (1.6) is a direct consequence of (3.13).

We conclude this section proving the non-degenerate result stated in Theorem 1.2. For this, we need a trun-
cation argument, as in [1, 18], in order to control the growth of the elliptic part of (S). From here until the end
of the section we assume that the hypotheses of Theorem 1.2 are satisfied.
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Proof of Theorem 1.2. Take ϵ ∈ ℝ with 0 < a ≤ M(0) < ϵ < aμp , which is possible by (1.7). Put for all t ∈ ℝ+0,
Mϵ(t) = {{{M(t), if M(t) ≤ ϵ,

ϵ, if M(t) > ϵ, so that Mϵ(0) = M(0), min
t∈ℝ+0

Mϵ(t) = a. (3.26)

Let us consider the following auxiliary system inℝN :{{{{{{{{{
Mϵ(‖(u, v)‖p)(Lspu + V(x)|u|p−2u) − σ |u|p−2u|x|ps = λHu(x, u, v) + αp∗s |v|β|u|α−2u,
Mϵ(‖(u, v)‖p)(Lspv + V(x)|v|p−2v) − σ |v|p−2v|x|ps = λHv(x, u, v) + βp∗s |u|α|v|β−2v. (3.27)

We are going to solve (3.27), using a mountain pass argument as done in the proof of Theorem 1.1, but
replacing the Kirchhoff function M with Mϵ.

To this end, fix λ > 0 and σ ∈ (−∞, κϵHp), where κϵ is given in (1.8). Clearly, (3.27) can be thought as the
Euler–Lagrange system of the C1(W) functional

Iϵ(u, v) =1pMϵ(‖(u, v)‖p) − σp (‖u‖pHp + ‖v‖pHp ) − λ ∫
ℝN

H(x, u, v) dx − 1
p∗s
∫
ℝN

|u|α|v|β dx
for all (u, v) ∈W, whereMϵ denotes the primitive ofMϵ. First let us note that for the functional Iϵ Lemmas 3.1
and 3.2 continue to hold. Indeed, for Lemma 3.1 it is enough to observe that (3.2) is now replaced by

Iϵ(tu, tv) = 1pMϵ(‖t(u, v)‖p) − σ tpp (‖u‖pHp + ‖v‖pHp ) − λ ∫
ℝN

H(x, tu, tv) dx − tp∗s
p∗s
∫
ℝN

|u|α|v|β dx
≤ ϵ tp

p
+ σ− tp

p
(‖u‖pHp + ‖v‖pHp ) − tp∗sp∗s ∫

ℝN

|u|α|v|β dx → −∞
as t →∞, thanks to the definition (3.26) and the fact that p < p∗s . Similarly, also Lemma 3.2 can be proved
in a simpler way, by observing that by (3.26), now (3.6) becomes

tpσ,λ(Mϵ(‖tσ,λ(e1, e2)‖p)‖(e1, e2)‖p − σ‖e1‖pHp − σ‖e2‖pHp ) ≤ (ϵ + σ−Hp
)tpσ,λ‖(e1, e2)‖p

for any λ ∈ Λ. Therefore, by using also (3.5), we get(ϵ + σ−
Hp
)‖(e1, e2)‖p ≥ tp∗s −pσ,λ ∫

ℝN

|e1|α|e2|β dx for any λ ∈ Λ,
which yields that {tσ,λ}λ∈Λ is bounded since p < p∗s and ∫ℝN |e1|α|e2|β dx > 0 by Lemma 3.1. It follows at once
that {tσ,λ}λ>0 is bounded. The rest of the proof is unchanged. Hence Lemmas 3.1 and 3.2 are valid for Iϵ and
it remains to prove for Iϵ the main Lemma 3.3.

Fix a Palais–Smale sequence {(un , vn)}n ∈W of Iϵ at level cσ,λ. Proceeding as in the proof of Lemma 3.3,
by (M1) and (3.26) now (3.9) becomes

cσ,λ + γσ,λ‖(un , vn)‖ + o(1) ≥ νϵ,σ‖(un , vn)‖p with νϵ,σ = ap − ϵμ − σ+Hp
(1p − 1μ) > 0,

by (1.8), since ϵ < aμp . Consequently, we get that {(un , vn)}n is bounded inW and so we derive again (3.10).
Therefore,

cσ,λ + o(1) ≥ νϵ,σ‖(un , vn)‖p + (1μ − 1
p∗s
) ∫
ℝN

|un|α|vn|β dx. (3.28)

While the other key formulas hold true with no relevant modifications, just considering that p < μ ≤ q < p∗s
and σ < κϵHp < aHp. Thus, arguing as before, we find that the sequence {(un , vn)}n, up to a subsequence,
still denoted by {(un , vn)}n, strongly converges inW to some (uσ,λ , vσ,λ) ∈W for all λ sufficiently large.
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In conclusion, we have shown that for any ϵ ∈ (M(0), aμp ) and any σ ∈ (−∞, κϵHp) there exists a suitable
λ0 = λ0(ϵ, σ) > 0 such that system (3.27) admits a nontrivial solution (uσ,λ , vσ,λ) ∈Wwith Iϵ(uσ,λ , vσ,λ) = cσ,λ.
Hence, (3.28) implies that for all λ ≥ λ0,

cσ,λ ≥ νϵ,σ‖(uσ,λ , vσ,λ)‖p with νϵ,σ > 0,
so that (1.6) follows at once by Lemma 3.2.

Fix ϵ ∈ (M(0), aμp ) and σ ∈ (−∞, κϵHp). By (1.6) and the continuity of M,

a ≤ M(0) = Mϵ(0) = lim
λ→∞
λ≥λ0

Mϵ(‖(uσ,λ , vσ,λ)‖p).
Therefore, there exists λ∗ = λ∗(ϵ, σ) ≥ λ0 such that

a ≤ Mϵ(‖(uσ,λ , vσ,λ)‖p) < ϵ for all λ ≥ λ∗.
In closing, for any ϵ ∈ (M(0), aμp ) and for any σ ∈ (−∞, κϵHp) there exists a threshold λ∗ = λ∗(ϵ, σ) > 0 such
that for any λ ≥ λ∗ the mountain pass solution (uσ,λ , vσ,λ) of (3.27) is also a solution of system (S).

4 Proof of Theorem 1.3
In this section we assume that the hypotheses of Theorem 1.3 are fulfilled. System (S󸀠) has a variational
structure and the underlying functional is I : W→ ℝ, given by

I(u, v) = 1
p

M (‖(u, v)‖p) − σ
p
(‖u‖pHp + ‖v‖pHp ) − ∫

ℝN

h(x)f(u, v) dx − γ
p∗s
∫
ℝN

|u|α|v|β dx.
Clearly, (V), (f1), (h) and the continuity of M imply that I is of class C1(W). We first show that I has a useful
geometrical profile and recall that σ ∈ (−∞, aHp) and that, when γ > 0, we require also (1.9) on h, that is, h
may depend on σ+.

Lemma 4.1. Let σ ∈ (−∞, aHp) and γ ≤ 1. Then there exist positive numbers ρ0 and ȷ such that I(u, v) ≥ ȷ for
any (u, v) ∈W with ‖(u, v)‖ = ρ0. Moreover,

mσ,γ = inf
(u,v)∈Bρ0

I(u, v) < 0,
where Bρ0 = {(u, v) ∈W : ‖(u, v)‖ < ρ0}.
Proof. Fix σ ∈ (−∞, aHp) and γ ≤ 1. By (M1), (f1), (h), (1.3), Lemma2.1 and (2.3)weobtain for all (u, v) ∈W,

I(u, v) ≥ a
p
‖(u, v)‖p − σ+

pHp
([u]pK,p + [v]pK,p) − C ∫

ℝN

h(x)|(u, v)|q dx − γ+
p∗s
‖u‖αp∗s ‖v‖βp∗s≥ 1

p(a − σ+Hp
)‖(u, v)‖p − CCqp∗s ‖h‖ p∗s

p∗s −q
‖(u, v)‖q − γ+

p∗s
Cp

∗
s
p∗s ‖(u, v)‖p∗s . (4.1)

Therefore, if γ ≤ 0, for ρ0 > 0 sufficiently large we have

I(u, v) ≥ ρq0[1p(a − σ+Hp
)ρp−q0 − CCqp∗s ‖h‖ p∗s

p∗s −q
] = ȷ > 0

for all (u, v) ∈W with ‖(u, v)‖ = ρ0, since 1 < q < p.
If γ ∈ (0, 1], then the Young inequality yields for any ε > 0,

CCqp∗s ‖h‖ p∗s
p∗s −q
‖(u, v)‖q ≤ ε‖(u, v)‖p + ε− q

p−q (CCqp∗s ‖h‖ p∗s
p∗s −q
) p
p−q ,

since 1 < q < p. Thus, for ε = aHp−σ+
2pHp
> 0 inequality (4.1) implies that

I(u, v) ≥ ε‖(u, v)‖p − ε q
q−p (CCqp∗s ‖h‖ p∗s

p∗s −q
) p
p−q −Cp∗sp∗s

p∗s
‖(u, v)‖p∗s ,
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since 0 < γ ≤ 1. Let us consider the function
η(t) = εtp − Cp∗sp∗s

p∗s
tp∗s , t ≥ 0.

Since 1 < p < p∗s the number

ρ0 = [aHp − σ+
2HpC

p∗s
p∗s

] 1
p∗s −p > 0

is such that

η(ρ0) = max
t≥0

η(t) = ( 12p − 1
2p∗s
)(a − σ+

Hp
) p∗s
p∗s −p (2Cp∗sp∗s ) p

p−p∗s > 0.
Therefore, since h satisfies (1.9), we obtain for all (u, v) ∈W with ‖(u, v)‖ = ρ0,

I(u, v) ≥ η(ρ0) − [ 12p(a − σ+Hp
)] q

q−p (CCqp∗s ‖h‖ p∗s
p∗s −q
) p
p−q > 0,

which concludes the proof of the first part of the lemma.
Let x0 ∈ Ω and let r ∈ (0, 1) be sufficiently small so that B(x0, 2r) ⊂ Ω, where Ω is given in (h). Choose φ

and ψ in C∞0 (B(x0, 2r)) such that 0 ≤ φ ≤ 1
2 and 0 ≤ ψ ≤ 1

2 with ‖(φ, ψ)‖ ≤ ρ0 and ∫B(x0 ,2r) |(φ, ψ)|q1 dx > 0.
Let δ > 0 be the number given in (f2). For all t ∈ (0, δ) then (f2), (h) and the continuity of M yield

I(tφ, tψ) ≤ 1
p

M (‖t(φ, ψ)‖p) + σ− tp
p
(‖φ‖pHp + ‖ψ‖pHp ) − ∫

Ω

h(x)f(tφ, tψ) dx − γ tp∗s
p∗s
∫
Ω

|φ|α|ψ|β dx
≤ tp
p ( max

ξ∈[0,(δρ0)p]
M(ξ) + σ−

Hp
)ρp0 − tq1a0 infx∈Ω

h(x) ∫
B(x0 ,2r)

|(φ, ψ)|q1 dx + γ− tp∗s
p∗s
∫

B(x0 ,2r)

|φ|α|ψ|β dx.
Hence, I(tφ, tψ) < 0 for t ∈ (0, δ) sufficiently small, since 1 < q1 < p < p∗s by (f2). This shows that mσ,γ < 0
and completes the proof.

By Lemma 4.1 and the Ekeland variational principle, there exists a sequence (un , vn) ⊂ Bρ0 such that
mσ,γ ≤ I(un , vn) ≤ mσ,γ + 1n and I(u, v) ≥ I(un , vn) − 1n ‖(u, v) − (un , vn)‖ (4.2)

for all (u, v) ∈ Bρ0 . Then a standard procedure gives that {(un , vn)}n is a Palais–Smale sequence of I at
level mσ,γ.

Lemma 4.2. Let σ ∈ (−∞, aHp). Then there exists γ∗∗ = γ∗∗(σ) ∈ (0, 1] such that, up to a subsequence,{(un , vn)}n in (4.2) strongly converges to some (uσ,γ , vσ,γ) inW for all γ < γ∗∗.
Proof. Fix σ ∈ (−∞, aHp) and γ ≤ 1. Since {(un , vn)}n constructed in (4.2) is in Bρ0 , it follows that, by
reasoning as in Lemma 3.3, there exist a subsequence of {(un , vn)}n, still denoted by {(un , vn)}n, and(uσ,γ , vσ,γ) ∈ Bρ0 such that (3.10) holds true. Now we want to show that as n →∞,∫

ℝN

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx → 0. (4.3)

Fix ε > 0. Since h ∈ Lp∗s /(p∗s −q)(ℝN) and {(un , vn)}n is bounded inW, there exists R > 0 such that∫
ℝN\BR

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx ≤ ( ∫
ℝN\BR

|h(x)| p∗sp∗s −q dx) p∗s −qp∗s ‖(un , vn) − (uσ,γ , vσ,γ)‖qp∗s ≤ ε2 ,
where BR is the ball in ℝN with radius R > 0 centered at point 0. Furthermore, for any measurable subset
E ⊂ BR, by the Hölder inequality∫

E

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx ≤ C(∫
E

|h(x)| p∗sp∗s −q dx) p∗s −qp∗s
.
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Hence, {h(x)(un − uσ,γ , vn − vσ,γ)}n is equi-integrable and uniformly bounded in L1(BR), thanks to (h). Thus,
by (3.10) and the Vitali convergence theorem, there exists n0 > 0 such that∫

BR

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx ≤ ε2
as n ≥ n0. Therefore, we arrive at∫

ℝN

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx ≤ ∫
ℝN\BR

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx
+ ∫
BR

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx≤ ε
for all n ≥ n0. This proves (4.3). By (f1) and the Hölder inequality, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∫
ℝN

h(x)[fu(un , vn)(un − uσ,γ) + fv(un , vn)(vn − vσ,γ)] dx󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ C ∫
ℝN

h(x)|(un , vn)|q−1|(un , vn) − (uσ,γ , vσ,γ)| dx
≤ C( ∫
ℝN

h(x)|(un , vn) − (uσ,γ , vσ,γ)|q dx) 1
q

for a suitable constant C > 0. Thus, by (4.3) it follows that
lim
n→∞
∫
ℝN

h(x)[fu(un , vn)(un − uσ,γ) + fv(un , vn)(vn − vσ,γ)] dx = 0. (4.4)

Similarly, by using again (h) and (f1), we have as n →∞,∫
ℝN

h(x)fu(un , vn)φ dx → ∫
ℝN

h(x)fu(uσ,γ , vσ,γ)φ dx,
∫
ℝN

h(x)fv(un , vn)ψ dx → ∫
ℝN

h(x)fv(uσ,γ , vσ,γ)ψ dx (4.5)

for any (φ, ψ) ∈W.
As in Lemma 3.3, we easily get (3.14)–(3.17). Hence, by also (3.10), (4.2) and (4.5) we can prove that(uσ,γ , vσ,γ) verifies the identity

M(κσ,λ)⟨(uσ,λ , vσ,λ), (φ, ψ)⟩K,V,p − σ(⟨uσ,λ , φ⟩Hp + ⟨vσ,λ , ψ⟩Hp )= ∫
ℝN

h(x)[fu(uσ,γ , vσ,γ)φ + fv(uσ,γ , vσ,γ)ψ] dx + αp∗s ∫
ℝN

|uσ,λ|α−2uσ,λ|vσ,λ|βφ dx
+ β
p∗s
∫
ℝN

|uσ,λ|α|vσ,λ|β−2vσ,λψ dx (4.6)

for any (φ, ψ) ∈W, namely (uσ,γ , vσ,γ) is a critical point of the C1(W) functional
Iκσ,γ (u, v) = 1pM(κσ,γ)‖(u, v)‖p − σp (‖u‖pHp + ‖v‖pHp ) − ∫

ℝN

h(x)f(u, v) dx − γ
p∗s
∫
ℝN

|u|α|v|β dx.
Thus, by sending n →∞ in (4.2) and by (3.10), (4.4) and (4.6), we get (3.21). Moreover, by the Brézis and
Lieb lemma we have (3.22) and by Lemma 2.3 we obtain (3.23). Finally, combining (3.21)–(3.23) together
with Lemma 2.4, we derive the main formula

M(κpσ,γ) limn→∞
‖(un , vn) − (uσ,γ , vσ,γ)‖p = σ lim

n→∞
(‖un − uσ,γ‖pHp + ‖vn − vσ,γ‖pHp )+ γ lim
n→∞
∫
ℝN

|un − uσ,γ|α|vn − vσ,γ|β dx= σ(ıpσ,γ + ℓpσ,γ) + γδσ,γ . (4.7)
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Let us first consider the case γ ≤ 0. Assume by contradiction that ıpσ,γ + ℓpσ,γ > 0. Then, from (4.7) we get

M(κpσ,γ) limn→∞
‖(un − uσ,γ , vn − vσ,γ)‖p ≤ σ lim

n→∞
(‖un − uσ,γ‖pHp + ‖vn − vσ,γ‖pHp )< aHp lim

n→∞
(‖un − uσ,γ‖pHp + ‖vn − vσ,γ‖pHp )≤ M(κpσ,γ) limn→∞
‖(un − uσ,γ , vn − vσ,γ)‖p ,

since σ < aHp. This is impossible. Therefore, ıpσ,γ + ℓpσ,γ = 0 for all γ ≤ 0 and so (4.7) and (M1) imply that

lim
n→∞
‖(un , vn) − (uσ,γ , vσ,γ)‖ = 0, (4.8)

as required.
Let us now consider the case γ ∈ (0, 1]. Since σ < aHp, there exists c ∈ [0, 1) such that σ+ = caHp.

Of course, (4.7) can be rewritten as(1 − c)M(κpσ,γ) limn→∞
‖(un − uσ,γ , vn − vσ,γ)‖p + cM(κpσ,γ) limn→∞

‖(un − uσ,γ , vn − vσ,γ)‖p = σ(ıpσ,γ + ℓpσ,γ) + γδσ,γ .
Thus, combining (1.3) with (1.1), (V) and (M1), and using (2.3) with (u, v) = (un − uσ,γ , vn − vσ,γ), we get

γδσ,γ + σ+(ıpσ,γ + ℓpσ,γ) ≥ (1 − c)C−p∗sp∗s aδ
p
p∗s
σ,γ + caHp(ıpσ,γ + ℓpσ,γ)

for all γ ∈ (0, 1], being c ∈ [0, 1). Therefore,
γδσ,γ ≥ (1 − c)C−p∗sp∗s aδ

p
p∗s
σ,γ , (4.9)

since σ+ = caHp.
Let us define

γ∗∗ = {{{inf{γ ∈ (0, 1] : δσ,γ > 0}, if there exists γ ∈ (0, 1] such that δσ,γ > 0,
1, if δσ,γ = 0 for all γ ∈ (0, 1].

We claim that γ∗∗ > 0 if there exists γ ∈ (0, 1] such that δσ,γ > 0. Otherwise, there exists a sequence {γk}k
with δσ,γk > 0 such that γk → 0 as k →∞. Thus, (4.9) implies that

γkδ
1− p

p∗s
σ,γk ≥ (1 − c)C−p∗sp∗s a > 0.

This is an obvious contradiction, since {δσ,γ}γ∈(0,1] is uniformly bounded above by (2.3). Indeed, we have{(un , vn)}n ⊂ Bρ0 , (uσ,γ , vσ,γ) ∈ Bρ0 and ρ0, given in Lemma 4.1, is independent of γ.
Hence, δσ,γ = 0 for any γ ∈ (0, γ∗∗). Therefore, for all γ ∈ (0, γ∗∗),

lim
n→∞
∫
ℝN

|un − uσ,γ|α|vn − vσ,γ|β dx = 0.
Now, assume by contradiction that there exists γ ∈ (0, γ∗∗) such that ıσ,γ + ℓσ,γ > 0. Since σ < aHp, arguing
as in the previous case, we obtain from (M1) and (1.3) that

M(κpσ,γ) limn→∞
‖(un − uσ,γ , vn − vσ,γ)‖p = σ lim

n→∞
(‖un − uσ,γ‖pHp + ‖vn − vσ,γ‖pHp )< aHp lim

n→∞
(‖un − uσ,γ‖pHp + ‖vn − vσ,γ‖pHp )≤ M(κpσ,γ) limn→∞
‖(un − uσ,γ , vn − vσ,γ)‖p ,

which gives a contradiction. Thus, ıσ,γ + ℓσ,γ = 0 for any γ ∈ (0, γ∗∗). Now (3.24) and (M1) imply again the
validity of (4.8).

In conclusion, (un , vn) → (uσ,γ , vσ,γ) as n →∞ inW for all γ < γ∗∗, as required.
Proof of Theorem 1.3. Fix σ ∈ (−∞, aHp). For any γ ≤ 1, Lemma 4.1 and the Ekeland variational principle
give the existence of a Palais–Smale sequence {(un , vn)}n inW at level mσ,γ. Moreover, by Lemma 4.2 there

Brought to you by | University of Sussex Library
Authenticated

Download Date | 7/3/18 8:12 AM



20 | A. Fiscella, P. Pucci and B. Zhang, Critical fractional Hardy–Schrödinger–Kirchhoff systems

exists γ∗∗ = γ∗∗(σ) > 0 such that, up to a subsequence, {(un , vn)}n strongly converges to (uσ,γ , vσ,γ) inWwith
mσ,γ = I(uσ,γ , vσ,γ) < 0and I󸀠(uσ,γ , vσ,γ) = 0 for any γ < γ∗∗. Consequently, (uσ,γ , vσ,γ) is a nontrivial solution
of system (S󸀠).

As in [35], we can conclude by giving an example, which illustrates a very simple application of Theo-
rems 1.1–1.3. To this end, consider the following prototype system inℝN :{{{{{{{{{
(a + θb‖(u, v)‖(θ−1)p)[(−∆)spu + V(x)|u|p−2u] − σ |u|p−2u|x|ps = λh(x)|(u, v)|q−2u + γ αp∗s |u|α−2u|v|β ,(a + θb‖(u, v)‖(θ−1)p)[(−∆)spv + V(x)|v|p−2v] − σ |v|p−2v|x|ps = λh(x)|(u, v)|q−2v + γ βp∗s |v|β−2v|u|α , (4.10)

where a > 0, b ≥ 0, 1 < q < p∗s , α > 1, β > 1 with α + β = p∗s , 0 ≤ h ∈ Lp∗s /(p∗s −q)(ℝN) with infx∈Ω h(x) > 0,
where Ω is a nonempty open subset ofℝN , and finally λ is a positive number and γ is a real parameter. Here,
M(t) = a + θbtθ−1, H(x, u, v) = h(x)|(u,v)|qq , μ = q and

I(u, v) = a
p
‖(u, v)‖p + b

p
‖(u, v)‖θp − σ

p
(‖u‖pHp + ‖v‖pHp ) − λq ∫

ℝN

h(x)|(u, v)|q dx − γ
p∗s
∫
ℝN

|u|α|v|β dx.
If θ ∈ [1, p∗sp ), thenM satisfies conditions (M1)–(M2), so that for all q ∈ (θp, p∗s ), Theorem 1.1 can be applied
to system (4.10) for all γ > 0.WhileM satisfies (M1) for all θ ≥ 1, so that for all q ∈ (p, p∗s ), Theorem1.2 canbe
applied to system (4.10) for all γ > 0, since clearly M(0) = a.

Finally, for all θ ≥ 1 and all q ∈ (1, p), Theorem 1.3 can be applied for all λ > 0 and γ ≤ 1.
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