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A B S T R A C T

Insect pests are often associated with food contamination and public health risks. Accurate and timely species-
specific identification of pests is a key step to scale impacts, trace back the contamination process and promptly
set intervention measures, which usually have serious economic impact. The current procedure involves visual
inspection by human analysts of pest fragments recovered from food samples, a time-consuming and error-prone
process. Deep Learning models have been widely applied for image recognition, outperforming other machine
learning algorithms; however only few studies have applied deep learning for food contamination detection. In
this paper, we describe our solution for automatic identification of 15 storage product beetle species frequently
detected in food inspection. Our approach is based on a convolutional neural network trained on a dataset of
6900 microscopic images of elytra fragments, obtaining an overall accuracy of 83.8% in cross validation.
Notably, the classification performance is obtained without the need of designing and selecting domain specific
image features, thus demonstrating the promising prospects of Deep Learning models in detecting food con-
tamination.

1. Introduction

Food grains such as rice, wheat, corn are often contaminated by
insect pests such as pantry beetles. Food products that use these gains or
processed in unhygienic conditions are also prone to similar con-
tamination (Gorham, 1979; Rees, 2004). With some species being ac-
tive carriers of pathogens, these winged creatures can spread fast and
quickly make large quantities of food unsafe for human consumption
(James F. Champbell, 2004; Zurek and Gorham, 2008). Their spread
can further be escalated if contaminated food grains and/or products
are not regulated during the global transportation of food products.
Such incidents can also introduce invasive foreign pests that can cause
severe environmental damage. Thus, regulatory agencies, including the
US-FDA and EFSA, throughout the world continuously survey food
samples to monitor for this contamination in order to prevent pests for
being more destructive (Stejskal et al., 2015). This requires collection
and processing of hundreds of food samples and their subsequent
screening for filth elements such as beetle remains, which would in-
dicate a contamination. Unfortunately, just detecting the contamination
is not adequate. Their correct identification is also required to better

manage contaminations, as each species poses different levels of threat.
To date, the species identification procedure consists of visual

analysis by human expert at the comparison microscope, typically of
fragments of the collected specimens. However, the process is highly
time-consuming, error prone and difficult to automate, especially for
beetle species with similar appearance. More refined procedures com-
bine the visual inspection of fragments with other technologies, like
genomics (Wu et al., 2017). However, a challenge to food filth analysis
lies in the difficulty of obtaining pure beetle DNA. Often, no body parts
are recovered besides elytra, or hardened forewings, which are mainly
made of proteins. Additional experiments may further increase the
workload of food filth analysts and decrease efficiency. Notably, extra
omics analysis may also introduce a burden to the regulatory action,
increasing the overall cost of food processing.

Computer-assisted image analyses have been applied in beetles and
food safety research for decades (Boyer et al., 2011; Daly et al., 1982;
Gaston and O'Neill, 2004; Larios et al., 2008; Weeks et al., 1997). The
approach has evolved rapidly due to the emergence of Machine
Learning (ML) algorithms (Karunakaran et al., 2004; Zou et al., 2008),
including Support Vector Machine (SVM) (Cortes and Vapnik, 1995),
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and Random Forests (RF) (Breiman, 2001). These algorithms have been
adopted for food contamination analysis, achieving competitive results.
An artificial Neural Network (ANN) based model (Park et al., 2016) has
been used for the beetle species recognition problem, achieving an
average classification accuracy (ACC) of 0.8. Later, we further im-
proved this study by adopting an SVM model (Bisgin et al., 2018), and
improving the ACC to 0.85. Notably, both methods rely on a feature
extraction step, namely an appropriate, and possibly discriminant set of
features is derived from raw images then used as the input to predictive
models, ANN and SVM, respectively. However, despite the good per-
formance results, this feature engineering process imposes a strong
limitation to the adoption of the whole pipeline to different experi-
mental settings (e.g. non-elytra images).

Deep Learning (DL) (Goodfellow et al., 2016; LeCun et al., 2015;
Schmidhuber, 2015) has drastically emerged as the paradigm of image
processing, improving the state-of-the-art in many domains, including
object detection and object recognition. Differently from conventional
image recognition methods, deep learning architectures like Convolu-
tional Neural Networks (CNNs) can use the raw image as input as they
incorporate the feature construction step directly into the learning
process, by updating their parameters and connections as a function of
the error on a set of training data (LeCun et al., 2015). Deep Learning
has already been applied in food and agricultural science such as
identifying Northern leaf blight in Maize plants (DeChant et al., 2017),
rice disease detection (Lu et al., 2017), food image classification and
recognition (Kagaya and Aizawa, 2015; Kagaya et al., 2014), symptoms
detection (Cardinale et al., 2018; Cruz et al., 2019, 2017), moth de-
tection (Wen et al., 2015) and plant identification (Lee et al., 2015).
Different from many other object recognition studies that focus on the
entire object, identification of filth elements such as beetle remains
needs to recognize the species not from the entire beetle image, but
only from small fragments of the beetle elytra. However, a very few
deep learning models have currently been implemented for filth ele-
ments identification in food (Bansal et al., 2017; Reinholds et al., 2015).

In this endeavor, we present an end-to-end DL based approach for
beetle species identification on filth elements (elytra fragments) from
food contaminations. Our solution exploits a VGG16-based model
(Simonyan and Zisserman, 2014), that is one widely used neural ar-
chitectures originally designed for image classification tasks, and
trained on the ImageNet dataset (Deng et al., 2009). Our model is first
initialized using the publicly available ImageNet-training weights.
Then, all the convolutional blocks are kept unchanged, while only the
top layers of the network, i.e. fully-connected layers, are trained over
images of beetles. This process is generally referred to as transfer
learning or domain adaptation (Bengio, 2012). Our solution achieves an
average ACC of 0.838 (CI: 0.829, 0.846) in the classification of the 15
beetle species frequently detected in food inspection, improving the

current state of the art results. Our method therefore explores the
possibility of using DL models in food filth and food safety analysis and
avoids a lengthy feature extraction work, which sensibly eases the
model development process. We believe our work will lay foundation to
similar studies in this area in the near future.

2. Materials and methods

2.1. Beetle elytra images dataset

The Beetle Elytra Images (BEI) dataset used in this study was col-
lected from Arkansas Laboratory. We harvested the whole elytra from a
whole specimen and collected high-resolution images with no food
background. Each image has been manually annotated with the corre-
sponding species by human experts. In details, the dataset consists of 69
whole high-resolution elytra images for 15 beetle species, namely
Cryptolestes pusillus, Lasioderma serricorne, Gnathocerus cornutus,
Zabrotes subfasciatus, Oryzaephilus mercator, Oryzaephilus surinamensis,
Rhyzopertha dominica, Sitophilus granarius, Sitophilus oryzae, Stegobium
paniceum, Tribolium brevicornis, Tribolium castaneum, Tribolium con-
fusum, Tribolium freemani, and Tribolium madens. Each beetle species
consists of 3 to 6 high-resolution images respectively. The size and
shape of the elytra vary from less than 1mm up to 2mm, depending the
size of insect. Resulting elytra images have a width ranging from 3000
to 4000 pixels, and a height ranging from 1000 to 2000 pixels. The BEI
dataset has been also used in other research studies: (Bisgin et al., 2018;
Park et al., 2016). A complete summary of the dataset is provided in
Table 1.

It is worth noting that some of these species share the same genus
classification - e.g. Tribolium madens, and Tribolium castaneum – possibly
leading to confusion when visually inspected by human analysts.
However, while T. madens (black flour beetle) feeds on grain that is
damaged or is going out of condition and it can be found in flour mills
and warehouses, T. castaneum attacks grains that are intact and stable,
but have become heated. Thus, being able to correctly distinguish the
two species gives crucial indication about the infestation, even if the
damage is not distinctive. Two full-body example images for the two
species are shown in Fig. 1a. An example of fragmented images used in
this study is shown in Fig. 1b-e. As shown, with the lab light condition,
S12 and S15 showed different colors of elytra which is an important
factor to differentiate them. However, there are also beetles that from
different species, however had quite similar elytra fragments (S13 and
S14, Fig. 1f).

2.2. Image pre-processing

To mimic the elytra remains commonly observed in contaminated

Table 1
Beetle Elytra Images Dataset Statistics used in this study.

Index Number Genus Species Common Name # whole elytra images

S01 Cryptolestes pusillus Flat Grain Beetle 5
S02 Lasioderma serricorne Cigarette Beetle 5
S03 Gnathocerus cornutus Broad-horned flour beetle 4
S04 Zabrotes subfasciatus Mexican Bean Weevil 6
S05 Oryzaephilus mercator Merchant Grain Beetle 4
S06 Oryzaephilus surinamensis Saw-toothed Grain Beetle 4
S07 Rhyzopertha dominica Lesser Grain Borer 4
S08 Sitophilus granarius Granary Weevil 5
S09 Sitophilus oryzae Rice Weevil 4
S10 Stegobium paniceum Drugstore Beetle 5
S11 Tribolium brevicornis North American Flour Beetle 5
S12 Tribolium castaneum Red Flour Beetle 3
S13 Tribolium confusum Confused Flour Beetle 5
S14 Tribolium freemani Kashmir Flour Beetle 5
S15 Tribolium madens Black Flour Beetle 5
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food samples, we generated 100 randomly cropped images for each
RAW image (i.e. whole elytra image) in RGB format. In details, the
fragmented images were randomly cropped with width and height
varied from 400 to 4000 in pixels, and no background would be cap-
tured in the fragmented image. Notably, this dataset is the same image
dataset already adopted in previous published research studies, (Park
et al., 2016; Bisgin et al., 2018), to allow for a fair comparison of
classification performance. This dataset will be further referred to as
RAND since the images in this dataset have different (and random)
width and height. Notably, since our VGG16-based model requires a
fixed input size of 224 pixels in height and width (hereafter 224-by-224
for short), each RAND image is resized to fit this requirement. In ad-
dition, to investigate the effect of fixed image resolutions to classifi-
cation performance, we generated two others dataset out of the RAND
dataset, namely PX224 and PX448. To do so, each image in RAND
dataset is cropped into multiple sub-images (i.e. one sub-image at each
corner and one in the central of the images) at the considered fixed size.
Thus, we generated 5 fixed size images for each RAND image, leading to
a total of 500 fixed size images for each original RAW image (whole
elytra image). The PX224 and PX448 datasets have been generated by
considering a fixed cropping size of 224-by-224 and 448-by-448 pixels,
respectively.

Although the final input size of all these datasets (RAND, PX224 and
PX448) in the network model is the same, the covered elytra region of

these dataset is significantly different since we used a fixed magnifi-
cation ratio in the lab camera to capture the elytra image. For example,
PX448 image will cover 4 times larger region of elytra than PX224
image. Although larger size image may contain more features of the
beetle species, it may also lose information during resolution reduction
in the resizing process to fit VGG16 requirements.

2.3. Convolutional neural network

Convolutional neural networks (CNNs) are a class of deep neural
architectures widely adopted in computer vision for object classifica-
tion and automatic segmentation (Krizhevsky et al., 2012; Lawrence
et al., 1997; LeCun et al., 1998). Different from other image classifi-
cation algorithms (Zheng et al., 2006), CNNs need little pre-processing
on the image, as they learn the features (i.e., weights of the convolu-
tional filters) directly during the network training process. In details,
the architecture of a typical CNN is composed of a sequence of con-
volutional and pooling layers, terminating with a block of fully-con-
nected layers. Each convolutional block is constituted by one or many
convolutional filters. Each filter will apply a convolution operation to
the input matrix and generate an output activation map that will be fed
as the input to the next layer. Pooling layers are used to apply sub-
sampling, usually via maximum or average value of neighborhood
pixels. Finally, a block of dense layers is composed of a series of fully

Fig. 1. . (a) S15 - Tribolium madens (Black Flour Beetle), on the left - and S12 - Tribolium Castaneum (Red Flour Beetle), on the right. (Source: https://www.
grainscanada.gc.ca; access date: 07/01/2019) (b) whole elytra images capture via lab camera; (c) RAND dataset; random fragmented elytra images for S12 and S15;
(d) and (e) PX224 and PX448 dataset; fragmented elytra image with fixed cropping size, which covered diffe rent size of the elytra. (f) one example of difficult pairs of
beetles (S13 and S14).
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connected neural network layers aimed at combining the features re-
sulting from previous convolutional layers. Frequently a CNN archi-
tecture may also include other operations such as the dropout, used to
avoid overfitting and to help the network better generalize, or the Batch
Normalization (Ioffe and Szegedy, 2015), introduced with the purpose
of normalizing the variability in the data batches.

Selecting the network structure to best match the classification task
is crucial for accuracy and good generalization on unseen data. The
choice of the structure is currently based on semi-automated optimi-
zation procedures applied to main types of architecture and variants of
the CNNs. In particular, LeNet (LeCun, 2015), VGG (Simonyan and
Zisserman, 2014), and Inception network (Szegedy et al., 2015), have
been widely used in the deep learning community for different tasks.
With 138 million of parameters, VGG16 is one of the best-performing
convolution based structures trained and benchmarked on the Im-
ageNet dataset (Krizhevsky et al., 2012) and it is the one that has been
used in this study.

2.4. Network model structure

Due to the limited number of available beetle images, it is proble-
matic to train a large deep network model from scratch. Therefore, we
used a pre-trained network model, and a transfer learning approach
(Pratt, 1993) to adapt the model to our learning setting. To do so, the
pre-trained weights of the 5 convolutional blocks in the VGG16 archi-
tecture were frozen, thus allowing only the final dense block to receive
gradient updates during the training epochs. In our model, the dense
block was composed of 4 fully connected (FC) hidden layers. The
number of nodes in hidden layers were 1024, 512, 256 and 128 re-
spectively. One dropout unit was added after the first FC layer (1024
nodes) with a drop rate equal to 0.8. We considered ReLU (Rectified
Linear Units) as the activation function for each FC layer (Nair and
Hinton, 2010). The dense block included a last output layer with
Softmax activation for the classification of the 15 beetle species (Fig. 2).
The network weights in the FC layers were trained via back propagation
for 1000 epochs. To balance the vectorization ability with the total
sample size, we also considered a mini-batch setting with a batch
size= 128 in each epoch for each training and modeling process.

2.5. Network optimizers

We evaluated four different optimization strategies, stochastic gra-
dient descent (SGD), RMSprop (Tieleman and Hinton, 2012), Adam
(Kingma and Ba, 2014) and Adadelta (Zeiler, 2012)) with Categorical

Cross-entropy loss function. For SGD, we empirically noted that the
default value of 10e-2 for the learning rate was too high, and so we
tuned it to 10e-3. For other optimizers we used default hyper-para-
meters.

2.6. Cross validation

Non-exhaustive “Leave-many-out” cross validation (also called re-
peated learning-testing, RLT) (Arlot and Celisse, 2010) was used to
evaluate the model performance. For each time, the whole dataset
would be randomly split into a train set including 5400 images, and a
test set including the remaining 1500 images. The cross-validation
process was repeated 100 times.

Since augmented images from the same raw image may include
overlapped areas; treating them as independent samples in training-
testing split will cause information leak and overfitting. The 100 sub-
images from the same raw image were grouped together when assigned
to training or testing dataset.

2.7. Code and experimental environment

Keras (version 2.0.6) (Chollet, 2015) and TensorFlow (version
1.1.0) (Abadi et al., 2016) were used for network construction. The
working environment was based on CentOS 6.9 and Python 3.6.1, on an
in-house High Performance Computing Cluster with ~1100 CPU cores.
The script for modeling used in this study is available on github
(https://github.com/seldas/DL_Beetles).

3. Results

3.1. Framework overview

The overview workflow of the deep learning framework developed
in this study is displayed in Fig. 3. Three datasets (RAND, PX224 and
PX448) were prepared for the analysis (see Materials and Methods).
The network model was constructed with two main parts: P1 (con-
volutional layers) and P2 (fully connected layers). In P1 where transfer
learning was applied, all network weights were imported from pre-
trained network on ImageNet and fixed during our own training pro-
cess. The output feature matrix of P1 was then passed to P2 as input.
Leave-many-out cross validation was applied to systematically evaluate
the network model performance, where for each run, the training and
testing dataset would be randomly assigned.

The fully connected layers in P2 were trained via back propagation.

Fig. 2. The customized VGG16 Network structure for the beetle identification task (15 classes). Starting from a VGG16 architecture, the weights in convolutional
layers are kept frozen during training, while the final fully connected layers are customized and trained for 1000 epochs.
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Weights in network P2 were updated within 1000 epochs. The model
was then used to predict testing images, which were not used in model
training process, for performance evaluation.

3.2. Model training and optimization

In our study, we investigated the best cropping size of input image,
and the best optimizer in combination with our VGG16-based model.
Three datasets with different cropping sizes (PX224, PX448 and RAND)
and four different optimizers (SGD, RMSprop, Adam, Adadelta) have
been considered. All together, we experimented 12 deep learning
models with different combinations of cropping size and optimizer. For
each combination, we repeated 5 times in RLT to evaluate its perfor-
mance.

The average accuracy of prediction over the 5 repetitions for all the
tested combinations is shown in Table 2, along with corresponding 95%
Bootstrap Confidence Intervals. Overall, the SGD optimizer with PX448
resulted in the best combination for both training and testing accuracy.
Although RAND and PX448 have similar performance, performance
obtained on the PX224 dataset are not as good as the ones on the other
two datasets regardless the optimizer used. The poor performance of
PX224 may be explained as considered images may not contain enough
significant patterns allowing the model to classify correctly the species.
Considering the different optimizers, SGD and Adadelta resulted on
average in the better performance, with respect to the other two,
RMSprop and Adam. In Table 2 we highlighted in bold the combina-
tions of parameters leading to the best performance.

Furthermore, we also investigated the training process over 1000
epochs. The trends of training loss (i.e., Categorical Cross-entropy) over
1000 epochs for all four optimizers are shown in Fig. 4a. We observed a
lower loss score of SGD and Adadelta, with Adadelta already conver-
ging to its minimum after 400 epochs. However, the loss score of SGD is
generally better. On the other hand, the loss score of RMSprop is in-
creasing after ~100 epochs, which means the optimizing process is not
working well to find the optimum point. Since SGD and Adadelta are
already working well for our dataset, we did not further tune RMSprop
hyper-parameters. The trends of training process for all three datasets
have been also investigated (Fig. 4b). Note that the performance of
PX448 with SGD optimizer occurred in both figures can be used as a
baseline. In general, PX448 performs best among all three datasets.
However, since the Y-axis is log10-based, the performance for all three
datasets is acceptable as final loss score (Categorical Cross Entropy) is
lower than 0.1, which is much better than those models using Adam or
RMSprop optimizers. We then evaluated both training and testing
performance of SGD+PX448, the best model based on our training
performance. As shown in Fig. 4c, although the training loss kept re-
ducing, the testing loss and accuracy saturated after 100 epochs, which
indicated the model quickly reached its optimum point.

In summary, we demonstrated PX448 is the best input size for our
model. Compared to RAND, PX448 would increase the model applic-
ability to handle smaller fragments, and PX224 did not hold a satisfying
performance based on the result. In terms of optimization, we think
either SGD or Adadelta works adequately, as they showed similar
modeling performance. We further demonstrated the model perfor-
mance is reliable by evaluating with 5 repetition, as we extended the
RLT repeats from 5 to 100 times for two best models, PX448 with SGD
and PX448 with Adadelta. The averaged categorical accuracy among
100 repeats for PX448 with SGD and Adadelta was 0.838 (CI: 0.829,
0.846) and 0.816 (CI: 0.808, 0.825) respectively, which are concordant
to these evaluated by 5 repetition.

3.3. Model performance per species

We selected the PX448 input size with SGD optimizer as it held the
best performance in both training and testing performance for perfor-
mance per species evaluation. In details, the precision and recall of each
of 15 beetle species are shown in Fig. 5. Generally, five species (S01,
S03, S07, S11 and S15) showed good predicting performance, and
maintained a high and steady score in both precision and recall during
100 repeats. Three species (S02, S09 and S14) showed a relatively low
precision (median value< 0.75); three species (S05, S13 and S14) had
relatively high deviation of precision (large hinges, whiskers and

Fig. 3. Overview of beetle species recognition pipeline based on fragmented elytra image.

Table 2
Performance of DL model on three datasets with four optimizers with 5 repeats.

Optimizer Dataset Train Accuracy (Min CI,
Max CI)

Cross Validation Accuracy (Min
CI, Max CI)

SGD RAND 0.995 (0.995, 0.996) 0.814 (0.783, 0.813)
PX448 0.997 (0.996, 0.997) 0.848 (0.814, 0.874)
PX224 0.969 (0.966, 0.972) 0.698 (0.703, 0.724)

RMSprop RAND 0.941 (0.937, 0.948) 0.659 (0.618, 0.68)
PX448 0.661 (0.629, 0.761) 0.518 (0.449, 0.592)
PX224 0.779 (0.749, 0.844) 0.414 (0.357, 0.459)

Adam RAND 0.926 (0.917, 0.934) 0.53 (0.48, 0.563)
PX448 0.955 (0.949, 0.963) 0.391 (0.358, 0.471)
PX224 0.85 (0.837, 0.86) 0.107 (0.069, 0.158)

Adadelta RAND 0.995 (0.994, 0.996) 0.833 (0.803, 0.847)
PX448 0.996 (0.996, 0.997) 0.815 (0.779, 0.852)
PX224 0.975 (0.972, 0.977) 0.583 (0.588, 0.623)
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outliers); two species (S05 and S10) showed moderate low recall
(< 0.75). The overall performance for each species was measured by F1
score, that is the harmonic mean of Precision and Recall. As reported in
Fig. 5, species S05 and S10 showed relatively weak predicting perfor-
mance among all 15 species; S08 and S13 had the most lower end
outliers, which imply these beetle species are difficult to be dis-
tinguished by the model.

4. Discussion

In this study, we adopted a deep learning network model to re-
cognize beetle species that are usually found in food products. To ob-
tain the optimized network model, we investigated three different input
image sizes and tuned different optimizers used in model training. The
best model with PX448 and SGD optimizer, yielded an averaged 0.838
accuracy of prediction in testing dataset, which is competitive to our
previous machine learning models using ANN (0.79) or SVM (0.85)
(Bisgin et al., 2018), which have also been optimized after extensive
feature selection and parameter optimization.

The advantage of the DL algorithm is not only having a competitive
performance, which is expected if the dataset is large enough; but the
automatic feature design will also make deep learning more attractive,
as researchers do not need to human-engineered image features, a very
time and labor-consuming step where the expert skill is essential. For
example, in our previous studies using ANN and SVM, we manually
engineered the image features including 210 global features (such as
color, shape, etc.) and 415 local features (such as edges, lines, etc.).

Those features were designed to capture patterns like hairs, holes, lines,
etc., which used the most of labor and time during the whole study.
Based on our previous experience, good features that capture the most
important patterns of the image are the most impacting factor and often
dominate the model performance regardless of the model type. By using
deep learning, since input is the image themselves, theoretically a well-
trained deep learning model will not lose any pattern information that
exists in the original image. Although DL models will automatically
design and fine-tune features during the learning process, there are
usually millions of weights needs to be fine-tuned and the learning
process may be quite long to get a good performance. Therefore, ap-
propriate selection of network architecture and its hyper-parameters
would be essential for achieving a well-performed model. There are a
lot of hyper-parameters that can be tuned; for example, different net-
work architecture like AlexNet, VGG, or ResNet may perform differ-
ently on the dataset; even with the same network architecture, different
initialization and optimization, and activation method would also affect
the model training time and final performance. During our research, we
observe that the performance of SGD would be better on RAND dataset
if the learning rate parameter is set to 10e-3 rather than the default
value (10e-2); dropout works better than Batch Normalization as a
regularization method. Since the focus of this paper majorly relies on
the applicability of deep learning, we don’t include in the paper the
results of all hyper-parameter optimization process.

On the other hand, a good initialization of the network weights, or
pre-trained networks may significantly reduce the time required for the
training process. As we demonstrated in our study, transfer learning by

Fig. 4. Tuning deep learning model. (a) training process of four optimizers with PX448 dataset; (b) training process of three datasets with SGD optimizer. The X-axis
is the training epochs from 0 to 1000; Y-axis is the loss score i.e., categorical crossentropy. The value is averaged of 5 repeats. (c) Training and testing performance of
SGD+PX448. Primary Y-axis (left) is for loss score, secondary y-axis (right) is for accuracy of prediction. Yellow and green lines are for loss score and accuracy,
where bold and thin lines are for training and testing, respectively.
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using pre-trained network weights can be helpful to this specific task of
beetle species recognition based on elytra fragments.

Although we have demonstrated that PX448 with SGD will hold the
best performance for current deep learning model, there is still a lot of
room for improvement that can be done in the future. One important
factor to model performance is the training data size. As known, deep
learning model performs better especially on large dataset. With the
accumulation of beetle elytra images, we expect our model can be more
accurate and may generalize to recognize more beetle species.
Moreover, a large dataset will increase the flexibility of the training
process. As currently we freeze the whole convolutional part of the
model due to lack of images, we may also consider extending gradient
updates also to the last one or two convolutional blocks if we collect
enough images, and so giving the network the ability to fine-tune its
own set of learnt features on the beetle elytra images. Also, with the fast
development of new network architectures, other network structures
such like ResNet, AlexNet and GoogLeNet may achieve a better per-
formance than VGG.

Our current model is training and fine-tuning on in-silico frag-
mented beetle elytra images, although it is also captured by the same
lab camera, it still differs from the real sample found in the food remain.
One of the most important differences between the in-silico mimic and
real fragments is that the texture may change after food-processing.
There are two concerns that we decided to use mimic fragments: first is
because of the sample size and data augmentation. It is quite time and

labor-consuming to go through the whole imaging process to obtain one
qualified image for both fragments and whole elytra, that is also the
main reason why only 69 entire beetle images were obtained in the
dataset. Since the real fragments are usually very small and differs in
shapes, one real fragment may not be applicable to use due to its shape,
and it is difficult to do data augmentation. Meanwhile, it is possible to
crop multiple different fragments from a whole elytra image, and it is
easy to get fragment images with good shapes. Another concern is about
the ground truth of the dataset. As known, labeling preparation for the
dataset used in deep learning is always the most difficult part, and it is
even harder for beetle elytra fragments since many of them are difficult
to recognize even for an experienced expert. Meanwhile, it is much
easier to label the whole elytra and, in such case, provide a more re-
liable endpoint for model training.

Additionally, since in most cases transfer learning will perform
better when the source and target dataset are similar, it is thus im-
portant to use a pre-trained network that is optimized by similar ob-
jects. To the best of our knowledge, we are not aware of any beetle
fragment model that has been trained publicly, and our model is the
first one that is optimized based on fragment images. We believe it is
much similar to the scenario of real fragments than other pre-trained
models that are trained for common objects recognition. Meanwhile,
since the in-silico fragmented image is relatively easier to obtain and
assign species labels, it is also easier to optimize when more data is
retrieved. The further optimized model would have a chance to perform

Fig. 5. Overall precision (red), recall (blue) and F1 (green) scores per species in 100 RLTs. The Tukey box and whiskers plot reveals the median (base line in the box),
the first and third quartiles of the data (hinge of box) and the 1.5 inter-quartile range (IQR) from the hinge (upper and lower whiskers). Outliers are marked in black
dots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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better when transferred to a real fragment recognition model, and
further research and investigations are essentially needed.

5. Conclusion

This study has demonstrated that deep learning has a promising
potential in assisting laboratory processes need for food safety regula-
tion. With the advantages of automated feature design and transfer
learning, deep learning models will help FDA investigators quickly and
accurately recognize the species of pest in food contamination, and it
also holds the potential to expand to other filth elements in food con-
tamination, not only elytra fragments. We acknowledge that the model
performance may be inflated since the current dataset used in this study
is small. To further improve the model performance and applicability,
processing more beetle images to enlarge the dataset is necessary.
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