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Abstract

This article describes a modified technique for enhancing noisy speech to improve automatic speech recognition
(ASR) performance. The proposed approach improves the widely used spectral subtraction which inherently suffers
from the associated musical noise effects. Through a psychoacoustic masking and critical band variance normalization
technique, the artifacts produced by spectral subtraction are minimized for improving the ASR accuracy. The popular
advanced ETSI-2 front end is tested for comparison purposes. The performed speech recognition evaluations on the
noisy standard AURORA-2 tasks show enhanced performance for all noise conditions.

1 Introduction
Enhancement of noise corrupted speech signals is a chal-
lenging task for speech processing systems to be deployed
in real-world applications. In practice, speech signals are
usually degraded by additive background noises, reverber-
ation effects and speech signals from other speakers [1].
The primary goal of robust speech processing techniques
is to improve intelligibility and quality of noise corrupted
speech in perspective human listeners and modify the
same and extract robust features that lead to improved
performance for speech recognition systems.
Apart from extracting robust features which repre-

sent parameters less sensitive to noise by modifying the
extracted features [1], other research directions aimed
at increasing the performance of speech recognizers in
noise are: speech signal enhancement, model adaptation
and hybrid methods [2-5]. The model adaptation tech-
niques fail to perform in constantly changing environ-
ments where little or no adaptation data is available and
hybrid methods attempt to preprocess speech signals and
depend on reliability of estimations of those segments. On
the other hand the signal enhancement techniques require
no training, and provide “real-time” enhancement of the
recognition accuracy. The spectral subtraction method of
speech enhancement is themost widely used conventional
method for reducing additive noise. Many improvements
are proposed to deal with the problems typically associ-
ated to spectral subtraction such as residual broadband
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noise and narrow band tonal noise referred as musical
noise [4]. Other variants of spectral subtraction for this
purpose include spectral subtraction with over subtrac-
tion, non-linear spectral subtraction, multi-band spectral
subtraction, MMSE spectral subtraction, and extended
spectral subtraction [3,6].
Spectral subtraction based on perceptual properties has

been investigated to improve intelligibility and quality of
the speech signals [7-9]. Themasking properties of human
auditory system are incorporated into the enhancement
process in order to attenuate the noise components that
are already inaudible due to masking. In [7], the selected
masking threshold level is high, so that the residual noise
will be masked and will be inaudible. In [8], a psycho-
acoustical spectral weighting rule is proposed which uti-
lizes only estimates of the masking threshold and noise
power spectral density for complete masking of distor-
tions of the residual noise. The application of using human
auditory masking in Kalman filtering to speech enhance-
ment is considered in [9]. Furthermore, another novel
approach based on sub-band variance normalization tech-
nique was proposed where speech frames are character-
ized by high variance and noise frames by low variance,
which are suppressed to improve the ASR performance in
presence of both additive noise and reverberation [10].
In the present study, an alternate approach based on

psycho-acoustical model for reducing the artifacts asso-
ciated with spectral subtraction for improving speech
recognition performance in the presence of additive noise
is proposed. Based on the human auditory system, the
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noise below the audible threshold is suppressed which
reduces the amount of modification to the spectral mag-
nitude, and hence the amount of distortion introduced
into the cleaned speech signal. Further, critical band vari-
ance normalization is performed to minimize the musical
noise which is caused by increased variance at random
frequencies. The features derived from the combination
of techniques are effective in providing robustness. The
studied features are shown to be reliable and robust to
the effects of the additive noise. The effectiveness of
the proposed features is demonstrated with experiments
on noisy AURORA-2 database. For comparison purposes
the recognition results obtained by using the standard
spectral subtraction and ETSI advanced front-end are
tested [11].
The article is organized into the following sections.

Section 2 briefly summarizes the principle spectral sub-
traction using over subtraction. Section 3 describes
psycho-acoustic motivated features including tone and
noise masking and critical band variance normalization.
Section 4 discusses the spectral subtraction with per-
ceptual post-filter and Section 5 describes the database,
experiments and results. Finally, Section 6 concludes the
article.

2 Spectral subtraction for speech enhancement
Spectral subtraction algorithms are based on subtraction
of the noise estimate from original speech. The power
spectral density (PSD) of a clean speech signal is esti-
mated by subtracting the PSD of the noise from the PSD
of the noisy speech signal [12]. Each estimate of the PSD
is performed within a short-time segment based on the
assumption that noise is stationary or slowly varying, and
that the noise spectrum does not change significantly
between the updating periods. The noisy speech signal
can be expressed as

y(t) = s(t) + d(t) (1)

where y(t) is the degraded speech signal, s(t) represents
the clean signal, d(t) is the additive noise, which is uncor-
related with the speech signal and unknown.
The power spectrum of the noisy speech signal is repre-

sented as:

|Y (ω)|2 = |S(ω)|2+|D(ω)|2+S(ω)·D(ω)∗+S(ω)∗·D(ω)

(2)

where D(ω)∗ and S(ω)∗ represent the complex conjugates
of D(ω) and S(ω), respectively. If noise and speech are
uncorrelated then the terms S(ω) ·D(ω)∗, S(ω)∗ ·D(ω) can
be neglected. The power spectral subtraction estimate of
the enhanced speech S(ω) is given by

|Ŝ(ω)|2 ≈ |Y (ω)|2 − |D̄(ω)|2 (3)

where |D̄(ω)|2 is the average value of noise square-
magnitude taken during non-speech activity. The perfor-
mance of this technique depends on the accuracy of noise
estimation and is limited by the processing distortions
caused by random variations of the noise spectrum. The
non-linear mapping of spectral estimates that fall below a
threshold, where noise has been overestimated results in
some randomly located negative values for the estimated
clean speech magnitude. This leads to undesired residual
noise called musical noise (narrow band spectrum with
randomly distributed tones over time and frequency).
An important variation of spectral subtraction proposed

in [4] in order to alleviate the problem of musical noise is

|Ŝ(ω)|2 =
{ |Y (ω)|2 − α|D̄(ω)|2, if |Ŝ(ω)|2 > β|D̄(ω)|2

β|D̄(ω)|2, otherwise
(4)

where α, β are the subtraction factor and spectral floor
parameter. To reduce the speech distortion caused by
large values of α, its value is adapted from frame to frame
depending on the segmental noisy signal to noise ratio
(NSNR) of the frame. In general, less subtraction is applied
for frames with high NSNR and vice versa. For the esti-
mate of the noise power spectrum, minimum statistics
technique is used [13]. The NSNR is computed using a
decision directed approach as proposed in [14].
As described in [4], the oversubtraction factor α can be

calculated as

αm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, NSNRm ≥ 20 dB

α0 − 3
20

NSNRm, −6 dB ≤ NSNRm < 20 dB

4.9, NSNRm < −6 dB,
(5)

wherem is the frame index and α0 is the value of α at 0 dB
NSNR. With the higher over-subtraction, the stronger
components with a low SNR are attenuated which pre-
vent musical noise. But, too strong over-subtraction may
suppress too many components causing distortion to the
signal.

3 Psychoacoustical maskingmodel
The oversubtracted spectral subtraction reduces the noise
to some extent but the musical noise is not completely
eliminated, effecting the quality of the speech signal.
There is a trade-off between the amount of noise reduc-
tion and speech distortion. The perceptual based tech-
niques help in reducing the noise by taking advantage of
the masking properties of the auditory system. In order
to further enhance the quality, the noise and tones are
masked and critical band variance normalization is per-
formed by incorporating themasking properties of human
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auditory system. The human auditory system does not
perceive all the frequencies in the similar way, and is lim-
ited to mask certain sounds in the presence of competitive
sounds. The two main properties of the human audi-
tory system that make up the psychoacoustic model are:
absolute threshold of hearing and auditory masking.

3.1 Absolute threshold of hearing
The absolute threshold of hearing defines the minimum
sound level that can be heard by an active listener in
absence of other sounds. The quiet threshold can be
expressed by the following equation:

ATH(f ) = 3.64
(

f
1000

)−0.8
− 6.5e−0.6

(
f

1000−3.3
)2

+ 10−3

×
(

f
1000

)4

(6)

The frequency components of the signal with power lev-
els that fall below the absolute threshold of hearing (ATH)
can be discarded, as they do not contribute in improving
perceptibility of the signal.

3.2 Auditory masking
The inability of the human auditory perception system to
identify the minute differences in frequency when played
at the same time is known as masking. A strong 1 kHz sig-
nal masks the nearby frequencies, making them inaudible
to the listener. For a masked signal to be heard, its power
has to be increased to a level greater than that of a thresh-
old that is determined by the frequency of themasker tone
and its strength.
The masking analysis method described in MPEG1

audio coder is used to detect the tonal and nontonal com-
ponents [15]. The tonal and noise masking threshold that

give the maximum level of noise that is inaudible in the
presence of speech is computed. The calculation steps as
described in [15] are:
The frequency analysis along the critical band scale

is performed by mapping the power spectrum onto an
auditory frequency axis, by combining FFT bins into
equally-spaced intervals on the Bark scale defined by:

Bark(f ) = 13 arctan(0.00076f ) + 3.5 arctan
((

f
7500

)2
)

(7)

where f is the frequency in linear domain. The relation-
ship between frequency in Hertz and Bark scales is shown
in Figure 1.
The masking threshold is computed from the short-

term power spectral density estimate of the input signal.
The power density spectrum is obtained from the FFT
of the input signal, following multiplication by a Hann
window. The magnitude of each spectral component is
converted to a decibel scale, to obtain the estimate P[ k].
The power spectrum is normalized to a level of 96 dB SPL,
such that the maximum spectral component corresponds
to this value.
The following step involves the discrimination between

tonal and noise maskers. This accounts for the depen-
dence of masking thresholds on the nature of the maskers.
First, tonal components are identified through the detec-
tion of local maxima within the power spectrum. A com-
ponent is labeled as a local maximum if P[ k] > P[ k − 1]
and P[ k] ≥ P[ k + 1]. Components are declared as tonal if
P[ k]− P[ k+ j]≥ 7 dB, where j lies within a neighborhood
that is dependent on the center frequency, k. The sound
pressure level of the tonal masker, PTM(z), where z is the
Bark value of the frequency bin k, is computed as follows:

PTM(z) = 10 log10
(
10P[k−1]/10 + 10P[k]/10 + 10P[k+1]/10

)
(8)
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Figure 1 Relationship between frequency in Hertz and Bark scales.
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Tonal maskers are removed from the power spectrum
P[ k], by setting all frequency lines within the examined
range to −∞. The sound pressure levels of noise maskers
are obtained by summing the energies of spectral lines
within each critical band to compute PTM(z).
Subsequently, the number of maskers considered for

threshold computation is reduced. At first, only maskers
having a level above the absolute threshold of hearing are
retained. A decimation process then occurs between mul-
tiple tonal maskers that lie within half of a critical band.
The tonal masker having the highest level is maintained
while the other elements are removed from the directory
of maskers. The tone and noise maskers for part of the
utterance “three six seven” corrupted with subway noise
of 5 dB SNR is shown in Figure 2.
The contribution of each masker to the overall masking

threshold is evaluated. The spread of masking effects is
modeled using the spreading function described below:

s(zj ,�z,PM(zj)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

17�z − 0.4PM(zj) + 11, −3 ≤ �z < −1
(0.4PM(zj) + 6)�z − 1 ≤ �z < 0
− 17�z 0 ≤ �z < 1
(0.15PM(zj) − 17)�z − 0.15PM(zj) 1 ≤ �z < 8
− ∞ otherwise,

(9)

where zj, �z, and PM(zj) represent, respectively, the
masker Bark frequency, the Bark frequency separation
between the masker and target and the sound pressure
level of the masker. The spread of masking is only con-
sidered within the range of −3 ≤ �z < 8, for reasons of
implementation complexity.
The masking indices (in dB) for tonal maskers aTM(z),

and noise maskers aNM(z), expressed below in Equations
(11) and (12) are both frequency dependent. They repre-
sent the offset to be subtracted from the excitation pattern
of the masker to obtain the masking pattern. The checked

tone and noise maskers for part of the utterance “three six
seven” corrupted with subway noise of 5 dB SNR is shown
in Figure 3.

aTM(z) = −1.525 − 0.257z − 4.5 (10)

aNM(z) = −1.525 − 0.175z − 0.5 (11)

The individual masking thresholds from each masker
calculated according to:

MTM(zj,�z) = PTM(zj) + aTM(zj) + s(zj,�z,PTM(zj))
(12)

MNM(zj,�z) = PNM(zj)+aNM(zj)+s(zj,�z,PNM(zj))
(13)

The individual making thresholds are computed for
each sub-band, using all the maskers. The global mask-
ing threshold per sub-band is computed by summing the
individual masking contributions from each masker along
with the absolute threshold of hearing, TQ(z)

Mg(zi) = 10 log10

⎛
⎝10TQ(zi)/10 +

m∑
j=1

10
MTM(zj ,zi)/10

+
n∑

j=1
10

MNM(zj ,zi)/10

⎞
⎠

(14)

The ATH, original PSD, noise and tone maskers, and
global masking threshold for part of the utterance “three
six seven” corrupted with subway noise of 5 dB SNR is
shown in Figure 4.
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Figure 2 Tone and noise maskers for part of the utterance “three six seven” corrupted with subway noise of 5 dB SNR.
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Figure 3 Checked tone and noise maskers for part of the utterance “three six seven” corrupted with subway noise of 5 dB SNR.

3.3 Variance normalization
Further, to reduce the effect of any present tones which are
caused by increased variance at random frequencies, vari-
ance normalization across the critical bands is performed
[10]. The variance is computed as

v(m) = 1
K − 1

K∑
i=1

(
vi(m) − v̂(m)

)2 (15)

where K is the number of bands,m is the frame index, v̂ is
the mean, and vi is the element number i. To suppress the
peaks of noise, these values are normalized with respect
to the maximum value across the bands

w(m) = v(m)

max{v(m)} (16)

4 Spectral subtraction with perceptual post-filter
The description provided in previous Section 3 provided
a theoretical foundation for combining the masking prop-
erties of human auditory system in a spectral subtraction
framework used for speech recognition. The proposed
feature extraction methodology is shown in Figure 5.
First, the 8 kHz speech signal undergoes pre-emphasis
and short segments of speech are extracted with a 25ms
rectangular window, shifted by 10ms. After the spectral
subtraction (spectral floor parameter β = 0.02, α as
defined in Equation (5) with α0 = 4) with oversubtraction,
the signal is then filtered by a bank of 24 critical-band bark
filters. The global masking threshold is applied, then vari-
ance normalization is performed to further suppress the
tones at random frequencies. Later, these normalized val-
ues are used as weights which are then multiplied with the
filter bank energies as shown

Ỹk(m) = Yk(m) · w(m) (17)
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Figure 4 The ATH, original PSD, noise and tones, and global masking threshold for part of the utterance “three six seven” corrupted with
subway noise of 5 dB SNR.



Maganti and Matassoni EURASIP Journal on Audio, Speech, andMusic Processing 2012, 2012:29 Page 6 of 9
http://asmp.eurasipjournals.com/content/2012/1/29

Figure 5 Processing stages of the proposed features.

MFCC features are extracted from the log Mel spec-
trum by applying a discrete cosine transformation. First
thirteen cepstral coefficients along with their first- and
second-order derivatives are used.

5 Experiments and results
The ASR experiments are performed with the proposed
approach using a full HTK based recognition system [16]
on connected digit recognition task using the Aurora 2
database [17]. The database was designed to evaluate the
front-end of ASR systems in noisy conditions, and the
training and testing follow the specifications described
in [17]. The task is speaker independent connected
digit recognition.

Testing data include eight types of realistic background
noise subway, babble, car, exhibition hall, restaurant,
street, airport and train station noise at various SNRs
(clean, 20, 15, 10, 5, 0, and −5 dB). There are three test
sets. Set A contains 4004 utterances in the first four types
of noise, set B contains 4004 utterances in the other four,
and set C contains 2002 utterances, where only subway
and street noise are present.
The Aurora 2 task defines two different training modes:

training on clean condition only, and training on multi-
condition which include both clean and noisy conditions.
Experiments with training on both conditions are con-
sidered to demonstrate the efficiency of the proposed
approach. A word-based ASR system for digit string
recognition where each HMM word model has 16 emit-
ting states is adopted. A three-state silence model and a
one state short pause model are used. The details about
the training set, test set and HTK recognizer can be
found in [17]. Results on Aurora 2 test sets A, B, and C
with training on clean data and multi-condition data are
reported in Figures 6 and 7, respectively.
From Figures 6 and 7, it can be seen that spectral

subtraction has the highest word error rates (WER) for
both clean and multi-condition training. Also, it can be
observed that for a minimal average loss in case of clean
speech for both clean and multi-condition training, an
improvement is obtained with the proposed features for
all the noise conditions. The improvement is particularly
large for −5, 0, 5, 10 and 15 dB SNRs. It can also be
observed that the improvements are better for training on
clean data than multi-condition data which is consistent
with [17]. For both the cases, the approach is precisely
able to remove noise as much as possible improving the
recognition accuracy.
Figure 8 shows comparison of the performance for aver-

age calculated over 0 to 20 dB SNR’s for all the test sets
A, B, and C, respectively. The first and second bars indi-
cates the average result obtained with spectral subtraction
and ETSI-2 frontend trained on clean data. The third
bar denotes the performance of proposed approach for
clean condition training. The fourth, fifth, and sixth bars
show the results obtained with spectral subtraction, ETSI-
2 frontend and proposed approach for multi-condition
training. It can be observed that for all the test sets the per-
formance of the proposed approach is better than spectral
subtraction and ETSI-2 frontend for both training on
clean data and multi-condition data.
It can be clearly observed from the Figures 6, 7, and

8 that the performance of proposed features is consis-
tently the best for all noise conditions irrespective of the
training. To overcome the basic limitation and application
of spectral subtraction technique for recognition tasks,
the combination of psychoacoustical masking and critical
band variance normalization is effective in minimizing the
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Figure 6 Comparison of WER (%) performance for ETSI-2 (�), proposed features (�) and spectral subtraction (�) for all noises of test sets
A, B, and C trained on clean data.
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Figure 7 Comparison of WER (%) performance for ETSI-2 (♦), proposed features (�) and spectral subtraction (�) for all noises of test sets
A, B, and C trained onmulti-condition data.
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Figure 8 Comparison of averageWER (%) performance
calculated from 0 to 20 dB for spectral subtraction, ETSI-2
frontend and proposed approach for test sets A, B, and C. The first
and fourth and second and fifth bars indicate performance of spectral
subtraction and ETSI-2 frontend for training on clean data and multi-
condition data. The third and sixth indicate performance of proposed
approach for training on clean data and multi-condition data.

artifacts without causing distortion to the original speech
signal, thereby improving the ASR accuracy.

6 Conclusions
This article presented a psychoacoustical masking and
critical band variance normalization based spectral sub-
traction approach to improve the speech recognition per-
formance in noisy environments.
The spectral subtraction method was used to reduce

the broadband noise due to peaks, and the combina-
tion of masking and variance normalization technique
was effective in reducing the artifacts by reducing the
dynamic range of its magnitude spectrum, which resulted
in the improved speech recognition performance. The
proposed approach has been evaluated on a standard
Aurora-2 database. Results were compared with standard
ETSI-2 advanced front-end which show that the pro-
posed features perform consistently better both in terms
of robustness and reliability for all types of noises.
In future investigations, improvement of auditory based

features to deal with both additive noise and reverbera-
tion simultaneously will be investigated. Also, evaluation
of these features on large vocabulary tasks to deal with real
world noisy speech will be studied.
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