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Abstract. Both in the cloud and mobile environments, a large number of online
services is daily accessed through smartphones and tablets. Since several secu-
rity, safety and trust concerns may arise when using these services, providers
may require a usage policy to be enforced on the devices while accessing these
services. This kind of policy enforcements enables service providers to have as-
surance that remote devices are in an acceptable state when using the provided
service, according to their terms and conditions.

In this paper, we propose a framework which allows service providers to have
assurance about the enforcement of some functional policies directly on the de-
vice. The proposed framework inserts an enforcer into the client’s device, which
is responsible for enforcing the provider’s policy to abide by the terms and con-
ditions of the service. To assure the integrity of the enforcer and of the policy,
the framework exploits Trusted Computing techniques to remotely attest the en-
forcer’s measurements. Preliminary experiments and a first prototype implemen-
tation for Android-based smartphones suggest that the approach is both viable
and effective.

1 Introduction

Mobile devices are used to access a large number of online services, such as e-banking,
multimedia streaming, location services, videogames and social networking. Since some
security and safety concerns may be raised when using these online services, providers
may be willing to have some assurance that, when using them, devices are in a well-
know, and acceptable, state. As an example, it is safe if no key-logging software is
active on the device during an e-bank transaction, due to the sensitive data exchanged.
Hence, a safe usage of online services may require the definition of specific behaviors
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for the remote clients. These behaviors forbid actions that are incompatible with the
service itself.

The set of the correct expected behaviors defined by a provider constitutes a provider
policy. The definition and enforcement of a policy should provide a safe service usage
both from the user and provider point of view and may also be part of an agreement
on the service conditions between the user and the provider. In fact, in this scenario,
the provider may grant a determined Quality of Service (QoS) only if the user behavior
is compliant with a certain specification. For example, a video-streaming provider may
grant the streaming of high definition videos with a negligible latency, assuming that the
available bandwidth is higher than a predefined threshold. However, supposing that the
user is filling the bandwidth using other network-exhausting programs (e.g., through
torrent, download manager, etc.), the QoS of the agreement cannot be provided. The
monitoring of the effective behaviors, to discover if there are policy violations, can be
hard to implement in real-scenarios since (i) provider policies may concern behaviors
of third-party applications, OS, users or other components that are not controlled by the
provider itself; (ii) it may be deceived by malicious applications installed on a device.

To overcome these issues, we propose a provider policy enforcement framework
based upon remote attestation. The proposed framework allows providers to have assur-
ance that service policies are enforced by remote devices when using their services. To
this end, policy compliance is applied by a global enforcer running on the device, which
monitors all the security-relevant events on a mobile device. The enforcer periodically
submits policy reports to the service provider. To ensure that both the enforcer and the
policies have not been compromised, or faked, the framework exploits a Trusted Plat-
form Module (TPM) on the device to build a chain-of-trust. In this way, the provider
can have assurance that, when enforcing the policy, the remote device is in a trusted
state.

Contributions. The contributions of the paper are multifold and include the following:

– we propose a remote measurement framework to provide assurance to service
providers about the enforcement of policies on remote devices when accessing their
services;

– we discuss the format of the policy to be globally enforced on remote devices: the
policy is sealed with the application, and it specifies acceptable behaviors that are
compliant with the terms of service;

– we provide a protocol for both attesting the initial state of the device and to alert
the provider in case of policy violations;

– we discuss the first prototype implementation and the first results.

Outline of the Paper. The paper is organized as follows. Section 2 recalls some back-
ground notions related to the Trusted Computing Platform and to the Android Frame-
work. In Sect. 3 we describe in detail the architecture of the proposed framework. Section
4 presents the first prototype of the framework along with some examples of the policies
instantiated to some real use cases. Section 5 discusses some related works while Sect. 6
concludes by proposing further extensions.
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2 Background

In this section we recall some notions about Trusted Computing, Android system, and
the main components requested to build a remote attestation service.

2.1 Trusted Computing

One prominent framework of integrity measurement is promoted by the Trusted Com-
puting Group (TCG), which is an industry consortium that defines specifications for
hardware and software components [1]. The standard TCG measurement basically re-
quires the computation of SHA-1 cryptographic hash of critical software components as
soon as they are loaded into the system. The TCG guidance for measurement includes
the Trusted Platform Module (TPM) as a hardware device to securely store and report
measurement values through SHA-1 hash. This architecture provides a good framework
for determining the integrity during software initialization. Since the TCG framework
is pretty complex, we detail here some of its main components:

– RTM (Root-of-Trust for Measurement) is a on-device chip capable of performing
reliable integrity measurements. This is the root of the chain of transitive trust.

– CRTM (Core Root-of-Trust for Measurement) is the small set of instructions that
are executed by the platform when it acts as the RTM.

– RTS (Root-of-Trust for Storage) is the part of the framework responsible for main-
taining a not-modifiable summary of values of integrity digests and the sequence
of digests.

– RTR (Root-of-Trust for Reporting) is the part of the framework that reliably reports
information held by the RTS.

– PCR (Platform Configuration Register) are the set of physical, and tamper-proof,
registers containing a digest of integrity digests.

– TPM (Trusted Platform Module) is used to implement all the functions defined in
the TCG specification and includes the set of Root-of-Trust with shielded locations
and protected capabilities.

– TSS (TPM Software Stack) is a library used by higher-level services that facilitates
the use of the TPM.

In the following, we describe in more detail the TPM functionalities.

TPM and MTM. The TPM acts as a root-of-trust in the process that builds and con-
figures the software environments and it ensures that a system has loaded its software
properly. Moreover, it protects secrets such as asymmetric and symmetric keys. The
TPM has a set of registers that are protected from the system software. The TPM im-
plements two operations on each register content: extend and quote. The extend
operation takes a value V as input and computes the SHA-1 hash of the current register
content and V. This function is used to compute and store the hash of new values. In-
stead, in a quote operation, the TPM generates a message with the register contents
and signs it with a private key protected by the TPM.
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Fig. 1. Android Architecture (From [2])

The Mobile Trusted Module (MTM) is both a security device and an approved TCG
specification [3] [4] for mobile devices. The specification for mobile devices differs
from TPM specifications by introducing the concept of secure boot and by specifying
the implementation of the MTM as a functionality rather than as a physical implemen-
tation in hardware and, finally, by taking into account the support of several coexisting
MTMs in the same device. As an example, some of these may enforce discretionary
policies (e.g.., MTMs exposed to user applications) whereas others may enforce manda-
tory security policies(e.g., the device manufacturer MTM).

2.2 Android

Android is an open source Operating System (OS) designed for mobile devices, such
as smartphones and tablets, which currently has the largest share of the mobile device
market. Android is a complex framework divided in several functional blocks and levels
(Figure 1). The lowest level is a Linux kernel, cross-compiled through a toolchain, in
order to run on mobile device architectures, i.e. ARM processors. Some binaries that can
be commonly found on desktop distributions have been removed, to produce a lighter
kernel more suitable to mobile devices. Applications (apps) run at higher level (Ap-
plication Level) in a sandboxed environment. Each application runs in a virtual ma-
chine called Dalvik Virtual Machine (DVM), which is a Java Virtual Machine optimized
to run on mobile devices. Every instance of the DVM is handled as a different Linux
user, with its own storage and virtual memory space. This ensures application isolation,



74 F. Martinelli et al.

Fig. 2. Client-Provider Architecture

i.e. each application runs in its sandbox and cannot interfere with other running or idle
applications.

Both the application framework and the libraries level offer a large number of APIs
to allow applications to interact with device components and kernel functions. The num-
ber of applications available for Android systems is continuously growing. The official
online market for applications, i.e., Google Play, distributes more than 700K apps. Sev-
eral applications require Internet access to provide a service and are based on a classical
client-server paradigm, where the server provides a service to all the clients (mobile de-
vices) requesting it.

3 Architecture

This section describes the architecture of the proposed framework, and it specifies the
components that have to be ported on Android systems. The architecture is composed
of two main parts: the client-side, i.e. the on-device enforcement mechanism, and the
provider-side part, i.e. the provider policy specification. A high-level view of the system
is shown in Fig. 2.

We first start by describing some real-world use cases to show the viability and the
benefits of the proposed architecture.

Secure Driving. Consider a street navigation software, e.g. Google Maps, which
allows users, e.g. in cars, to continuously receive route directions while driving. The
provider of such a software may require that while driving texting and app-browsing are
forbidden to avoid possible distractions while driving that may pose serious risks to the
safety of the driver1. In fact, if the application is used, this means that the user may be

1 This could be based upon the speed of the user/device, e.g. to avoid forbidding messaging apps
while walking.
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in a potential dangerous situation. Hence, an example of a remote policy enforcement
is to block all the operations that require a user manual interaction to avoid possible
distractions while driving.

Flight Mode. Usually, while on board of a plane passengers are asked to keep their mo-
bile phones in Flight Mode (radio interface down) for the entire duration of the flight,
as the radio interface may interfere with the airplane system. In such a situation, the air-
line company may enable users to download an application that constantly updates their
phones through Wi-Fi on the current plane position2, weather condition of the final desti-
nation, delay if any. In such a scenario, a policy to be enforced on the device is to disable
the telephony radio interface and only allow Wi-Fi to access on-board services while
flying.

Real Location. The provider of a location-based service may require that no services of
location obfuscation are active on the device. Location-based services provide a reliable
service only if the given location is correct. In such a scenario, a policy to be locally
enforced on the device may be based on a black-list of applications, known to obfuscate
the location, that cannot run on the device while the location-based service is active

Game Fairness. Online games are known to be populated by unfair players that try to
cheat to gain more popularity / points or simply to provide denial of service both to the
service provider and other players. As an example, users may exploit some applications
to simulate a heavy network latency, slowing the reaction of their adversaries. In this
scenario, a game-provider would like to forbid the usage of cheating applications when
the user is playing its online video-game.

3.1 Provider-Side Architecture

Service providers may require to have some assurance that, when using their online
services, remote devices are in a well-known, and acceptable, state. Hence, in the pro-
posed framework, users access online services through apps developed and distributed
by the provider itself that are shipped together with a policy to be enforced. A policy
is a formal complete specification of the acceptable security-relevant behavior allowed
to applications executed on the platform [5]. Policies may also concern user or OS be-
haviors and may be expressed using (i) several formalisms, such as formal specification
languages [6], (ii) high-level or natural language, or (iii) execution graphs. To enforce
a policy, the behaviors that are of interest should be constantly monitored, by verifying
that they match the ones described in the policy, otherwise they should be forbidden.

Policy Format. Each provider policy is written in eXtensible Markup Language (XML)
using a nested tag structure to specify allowed and disallowed actions. In the current im-
plementation the full list of XML tags enables control on the following elements:

– Blacklist and whitelist of installed or running applications.
– Usage of network interfaces, such as data connection, Wi-Fi, Bluetooth and NFC.

2 E.g., on Windows Phone devices, during flight mode it is possible to enable Wi-Fi.
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Table 1. Policy Specification

<policy default_reaction={deny, report, lower_trust}>
<networking>

<wifi reaction={deny, report, lower_trust}> {enabled,disabled} </wifi>
<radio reaction={deny, report, lower_trust}> {enabled,disabled} </radio>
<bluetooth reaction={deny, report, lower_trust}> {enabled,disabled} </

bluetooth>
<nfc reaction={deny, report, lower_trust}> {enabled,disabled} </nfc>

</networking>
<telephony>

<call reaction={deny, report, lower_trust} time_per_day=[1,1440]
number_per_day=[1,inf] direction={outgoing, incoming}> {enabled,
disabled} </call>

<sms reaction={deny, report, lower_trust} number_per_day=[1,inf] direction={
outgoing, incoming}> {enabled,disabled} </sms>

<mms reaction={deny, report, lower_trust} number_per_day=[1,inf] direction={
outgoing, incoming}> {enabled,disabled} </mms>

</telephony>
<location>

<gps reaction={deny, report, lower_trust} time_per_day=[1,1440]> {enabled,
disabled} </gps>

<cell_location reaction={deny, report, lower_trust}> {enabled,disabled} </
cell_location>

<ip_location reaction={deny, report, lower_trust}> {enabled,disabled} </
ip_location>

</location>
<input>

<touchscreen reaction={deny, report, lower_trust}> {enabled,disabled} </
touchscreen>

<keyboard reaction={deny, report, lower_trust}> {enabled,disabled} </
keyboard>

<side_button reaction={deny, report, lower_trust}> {enabled,disabled} </
side_button>

<voice_input reaction={deny, report, lower_trust}> {enabled,disabled} </
voice_input>

</input>
<output>

<ringtone reaction={deny, report, lower_trust}> {enabled,disabled} </
ringtone>

<speakerphone reaction={deny, report, lower_trust}> {enabled,disabled} </
speakerphone>

</output>
<app_running>

<app1 package_name={package_name1}> {enabled,disabled} </app1>
<app2 package_name={package_name2}> {enabled,disabled} </app2>
...
<appn package_name={package_name1}> {enabled,disabled} </appn>

</app_running>
<app_installed>

<app1 package_name={package_name1}> {enabled,disabled} </app1>
<app2 package_name={package_name2}> {enabled,disabled} </app2>
...
<appn package_name={package_name1}> {enabled,disabled} </appn>

</app_installed>
</policy>

– Enabled input mechanisms, e.g. touch-screen, physical keyboard, voice commands,
etc.

– Outgoing voice traffic, SMS/MMS messages, raw data through network interfaces.
– Black list and white list of contacts.
– Usage of location providers.
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The full policy specification language is described in Table 1. The policy can also be ex-
tended by adding new XML tags to control more smartphone elements. Each XML tag
specifies the policy for a critical device component using a nested structure. The possi-
ble value for each tag is either enabled or disabled, where disabledmeans that
the component cannot be used. Through attributes it is possible to define finer grained
policies. By default each component is enabled. The attribute default reaction
of the policy tag specifies the default reaction for policy violations. This reaction can
be customized for each component using the reaction attribute of each policy sub-
tag. The criticality order is, from the less critical to the most critical: lower trust,
report, deny.

To implement these specifications on Android devices, the framework needs to
update the AndroidManifest.xml file. In Android, every application comes in
the form of an APK file. Android application package file (APK) is the file for-
mat used to distribute and install application software. Every APK must have an
AndroidManifest.xml file in its root directory. The manifest presents essential
information about the application components and security relevant authorization that
the application requires to work correctly. Since the policy is part of the applica-
tion (APK), we have decided to express the policy in XML so to be included in the
AndroidManifest.xml file. This file is bound to the application by means of digi-
tal signature, to ensure the integrity of both application and policy. When installing the
application, the user accepts the provider policy, which will be enforced on the device.

3.2 Client-Side Architecture

In this section we detail the on-device components required to support the integrity
measurement/reporting and policy enforcement.

Enforcer. The enforcer is a multi-layer component, which monitors the action per-
formed on the device, and enforces the provider policy. In the current implementation,
the monitoring is performed both at application-level and kernel-level, but this compo-
nent can be extended to enforce policies and monitor behaviors at any level. When the
enforcer detects a behavior that is non-compliant with a policy, the enforcer executes a
reaction, which is an action specified in a policy to react to a performed misbehavior.
Examples of reactions are:

– Deny: the misbehavior is blocked before it takes place;
– Report: the provider is notified about the non-compliance of the device/application

with the policy;
– Trust Lowering: the trust level of the client is lowered. Different strategies may be

applied towards clients with low trust levels.
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Fig. 3. Remote Attestation Protocol

In the current prototype, the enforcer has been implemented by modifying the system
at the application level and inserting a Linux module at kernel-level. The part of the
enforcement at application level monitors the device interfaces activities, like GPS,
Wi-Fi, Bluetooth and NFC. This component also controls and handles the events of
outgoing and incoming phone calls and SMS/MMS messages. The kernel module tracks
all the running processes and is responsible of stopping (or reporting, or lowering the
trust level of, according to the policy) the applications that violate a policy.

Trusted Policy Enforcement. Integrity of the client-side architecture is assured through
usage of Trusted Computing. The Trusted Computing building blocks that have to be
included on the Android platform have been described in [16], and are the following:
a Root-of-Trust for Measurement (RTM), a Root-of-Trust for Storage and Reporting
(RTS/RTR) and a Static Chain of Trust (SCoT). To build the Chain-of-Trust, the Linux
kernel is enhanced by including the Integrity Measurement Architecture (IMA). The
enforcer exploits a minimal TSS implementation for PCR extend operations, to al-
low its measurement functions to communicate the results to the TPM, and for PCR
quote to enable the trustworthy reporting of the stored value registers of the PCR to
the remote provider.

The framework requires a verification of the initial device integrity through a set of
measurements on its configuration, which includes a set of hash computations of the
code of its kernel and of the running applications. The root-of-trust is rooted to the
physical platform TPM. Hence, to measure the initial integrity of the device, starting
with the TPM, the following steps are required. Firstly, the TPM applies a set of mea-
surements on the boot-loader, so that from now on, all the steps can be measured from
boot to kernel loading and its modules. Attestation requires that the measurements of
the device are certified by the keys stored in the TPM and that the provider can establish
trust in the device’s integrity based upon these measurements. By computing the hash of
the running software, signed by the private key of the TPM, the provider can be assured
of the trustworthiness of the data received. Then, further integrity measurements are
performed by IMA, ported for Android, which communicates with the TPM to safely
measure, and store the results of, all the executables loaded on the device as well as the
Dalvik VM, run-time libraries and the enforcer.
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Fig. 4. Trusted Chain

These steps establish the first chain-of-trust up to the Dalvik VM and the enforcer.
Then, the enforcer is responsible for ensuring that the chain-of-trust reaches the con-
sidered application. To this end, the enforcer continuously monitors the device status
according to the received policy, i.e. by forbidding any unacceptable behavior and/or
by reporting the misbehavior to the service provider. Once the attestation tokens (PCR
quote and measurements logs) are received by the service provider, which acts as a
challenger, the service provider needs to verify the trustworthiness, and policy compli-
ance, of the remote device. This basically means to validate the digital signature on the
quotes. This step is necessary to verify that a genuine TPM vouches for the measure-
ments logs that, hence, are not fake and unmodified. To verify this, the service provider
requires the public portion of Attestation Identity Key (AIK), which is issued using by
a certification authority. The AIK is used for platform authentication, platform attesta-
tion and certification of keys. The whole chain-of-trust of the proposed framework is
depicted in Fig. 4.

4 Preliminary Tests

This section reports a brief description of the current implementation on Android de-
vices and presents some experiments with some example policies.

4.1 Current Prototype

In the current prototype, since no Android devices include a MTM module, some MTM
emulators exist that implement their functionalities in software. Since we only need few
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Fig. 5. On-Device Framework Architecture

of these functionalities, we have implemented a simple MTM emulator that provides
TPM quote and protected storage only as a kernel module, called kTPM. The functions
exported by kTPM can be called either by the kernel itself, through the IMA (modi-
fied to call these functions, i.e. the communication with the TPM is emulated through
these two functions) and the enforcer, which includes the TSS (Trusted Software Stack)
that communicates directly with kTPM. This communication is implemented by a pro-
tocol on a shared buffer in the /proc/ directory, where basically the TSS writes the
requested action and the parameters, then it loops until results are written by the kTPM.

As shown in Fig. 5, the enforcer is composed of several components, divided in two
parts. The first part is the enforcer at the application-level (aEnforcer), and the second
one at the kernel-level (kEnforcer). The aEnforcer includes the policyReader, which
takes as input the policy in XML format. The aEnforcer also includes the sensorCon-
troller and interfaceController, which are used to monitor and control the activities of
the various sensors and network interface. As an example, it can shutdown interfaces on
request if the policy requests so. Finally, the aEnforcer also includes the minimal TSS
implementation to directly communicate with kTPM.

The kernel-level part of the enforcer, i.e. the kEnforcer, communicates bidirection-
ally with the application-part through the /proc/kenf file. As an example of policy
enforcement, the kEnforcer may kill all the processes related to an application that vio-
lates a policy.

4.2 Experimentations

We have tested the prototype in all the use-cases described in Sect. 3 by simulating the
environment. To this end, we first have coded four simple applications that emulate the
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functionalities requested by each scenario, e.g. a simple game for the Game Fairness
scenario and the corresponding policy. The provider is emulated through a simple PHP
server that sends the APK file of the tested applications with the manifest file including
the policy and communicates with the emulator and then listens for communications
through an exported interface of a Web Service.

In all of the four tests, the policy has been correctly enforced: as an example, as soon
as an action violates the policy, the application has been killed by the the kEnforcer or
the aEnforcer has reported the misbehavior to the server/provider. In the following, we
report all the XML policies used in the tests.

Table 2. Policy Specification of Secure Driving Use-Case

<policy default_reaction="deny">
<telephony>

<call direction="outgoing">disabled</call>
<sms direction="outgoing">disabled</sms>
<mms direction="outgoing">disabled</mms>

</telephony>
<input>

<touchscreen>disabled</touchscreen>
<keyboard>disabled</keyboard>
<side_button>disabled</side_button>

</input>
</policy>

Secure Driving. This policy is active only when the navigation mode of the software
is active, which is after the user has chosen the destination and is driving. To avoid
that the user get distracted by the smartphone, all interaction that require an active user
interaction have been disabled. The user can only interact with the device using voice
controls. The full policy is described in Table 2.

Table 3. Policy Specification of Flight Mode Use-Case

<policy default_reaction="report">
<networking>

<radio>disabled</radio>
</networking>
<app_installed>

<app_1 package_name="com.myflightcompany.surfandfly">enabled</app_1>
</app_installed>

</policy>

Flight Mode. This policy mandates that the user keeps the radio interface of her phone
disabled during flight. This is a safety requirement that should be enforced when the
user is on-board. The policy is violated if the user enables the radio interface or unin-
stall the application, e.g. trying to avoid the policy enforcement. In both cases, the
enforcement strategy is report so that the server, together with the cabin crew of the
airplane, will know if the policy has been violated and who is violating the policy.
The full policy is described in Table 3.
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Table 4. Policy Specification of Game Fairness and Real Location Use-Cases

<policy default_reaction="deny">
<app_running>

<app_1 package_name="com.myfakelocator.fakelocator">disabled</app_1>
</app_running>

</policy>

Real Location and Game Fairness. This policy forbids programs able to forge the user
location to run while the provider location service is running. Similarly, a list of known
cheating programs for online videogames may be blacklisted using the same technique.
The full policy is described in Table 4.

5 Related Work

The design and implementation of Integrity Measurement Architecture (IMA), a secure
integrity measurement system for Linux, is discussed in [8]. IMA enables automatic
measurement of all software, such as program, libraries, and kernel modules, and it
can also be used to measure static data files when specified by the software. [9] dis-
cusses an access control architecture that enables corporations to verify the integrity
of a remote client and establish trust into its ability to enforce a security policy before
allowing the client to access corporate Intranet services. Property based attestation [10]
[11] is a framework to describe the behavior of the platform to be attested with respect
to security-related requirements. As an example, a property may state that a platform
has built-in mechanisms to conform to the privacy laws, or that it strictly separates pro-
cesses from each other. With property attestation, a verifier is securely assured of secu-
rity properties of the execution environment of the verified platform without receiving
detailed configuration data. Semantic integrity [12] is a measurement approach targeting
the dynamic state of the software during execution and, therefore, providing fresh mea-
surement results. This approach can provide increased flexibility for the challenger, be-
cause the integrity monitor can examine the current state of a system to detect semantic
integrity violations. Prima [13] is an extension of the Linux IMA system, that measures
information flow integrity and can be verified by remote parties. [14] presents a frame-
work to protect a mobile application at run-time through the use of TCG technologies.
Application developers define an application policy that is enforced locally on the de-
vice. Examples of such policies are controlling which users can run the applications or
what kind of results they can observe. A framework for remote attestation, implemented
on the Android platform is presented in [15]. However, the presented framework is only
used to verify the device integrity, ensuring that no unknown software is running on the
device. [16] proposes an attestation approach for Android smartphones that integrates
TCG and the Android’s permission system, in particular by attesting the permissions
used by the installed applications to a remote party at run-time. The authors of [17]
propose a malware prevention architecture for smartphones that exploits applications
signatures, process authentication and verification. The proposed framework allows a
smartphone to run only trusted applications, e.g., signed applications, and those that are
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not modified. The trust of an application is a function of the application signature and
MTM and is propagated through the processes through process authentication. Differ-
ently from the previous approach, the framework proposed in this paper is the first one
that exploits Trusted Computing to verify the remote enforcement of provider policies.
Finally, Mobile device management (MDM) [18] is a way to monitor and manage mo-
bile devices deployed across mobile operators, enterprises by distributing applications,
data and configuration settings over-the-air.

6 Conclusion and Future Work

In this paper we have presented a policy enforcement system for Android applications
that access online services. Policies are given by service providers, to enforce both
safety and security for the device and for the user. Policy enforcement is assured through
an enforcement module included in the Android system and a Trusted Computing Plat-
form, which ensures the integrity of reports sent to the server. We have presented a
policy specification formalism that exploits XML language and the modification re-
quested to include our system on Android devices. The proposed approach enables the
definition and enforcement of provider policies, which users have to accept to access the
service. The current implementation exploits an emulated MTM to implement the func-
tions of Trusted Computing, which are requested to assure authenticity and integrity of
the reported device status.

A first future extension of this work consists in including our framework on mobile
devices with a real MTM. To the best of our knowledge, currently there are no de-
vices that include both the MTM and the Android OS. Afterward we are planning to
test our framework in an enterprise environment that uses the Bring Your Own Device
paradigm with employers, by considering finer grained policies that takes in account
context information. Finally, we plan to reduce the number of modifications requested
to a standard device by requiring the provider to include into a single bundle both the
application and the enforcer, along with the policy.
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