
Semantic and Agent Technologies for Cloud Vendor Agnostic Resource Brokering

Alba Amato, Giuseppina Cretella, Beniamino Di Martino and Salvatore Venticinque

Department of Industrial and Information Engineering
Second University of Naples - Aversa, Italy

Email: alba.amato@unina2.it,giuseppina.cretella@unina2.it,beniamino.dimartino@unina.it, salvatore.venticinque@unina2.it

Abstract—The selection of Cloud providers, whose offers
best fit the requirements of a particular application, is a
complex issue due to the heterogeneity of the Cloud services,
resources, technology and service levels offered by the several
providers.

In order to support this selection and requirements
specification, we have developed, in the context of the
mOSAIC project, a Knowledge Base, representing resources
and domain concepts and rules by means of Semantic Web
Ontologies and inference rules; a support tool, the Semantic
Engine, that helps the user to abstract the requirements in
vendor independent way starting from application require-
ments or from specific vendor resources; a Cloud Agency,
that compares the different offers of providers with the user
proposal and retrieves the best offer.

In this paper, we illustrate how the two components, the
Semantic Engine and the Cloud Agency, interoperate in
order to support the Cloud Application Developer to express
the requirements and services/resources in vendor agnostic
way, to translate automatically these requirements into a
neutral format in order to compare it with providers’ offers
and to broker the best one according to defined policies.

Keywords-Cloud Ontology, Semantic, Agents, Cloud pro-
visioning, brokering

I. INTRODUCTION

The choice of Cloud providers whose offers best fit

the requirements of a particular application is a complex

issue due to the problem of the heterogeneity of the

services in terms of resources, technology and service

levels that providers ensure.There are thousands of options

which are described using metrics or properties which

can change from one provider to another and there are

some key factors to consider in terms of characteristics of

the service, general terms and conditions of service and

service levels that providers ensure. Besides sometimes

users are not able to find the most suitable configuration of

resources for their applications and to compare it with the

several offers of the different providers in order to make an

efficient choice taking into account not only the technical

requirements, but also the providers rules and conditions.

In this scenario, it would be useful to have a way to

express the user’s requirements closer to the user logic,

translate automatically these requirements into a neutral

format in order to compare it with offers of providers and

for choosing the best one according to defined policies. A

common ontology can help to bridge the gap between ap-

plication requirements and technical requirements declared

by resource providers. In fact semantic technologies are

useful to define an agnostic, machine readable, description

of resources to be compared with the vendor offers using

a brokering system, that acquire autonomically resources

from providers on the basis of SLA evaluation rules.

In order to support this selection and requirements

specification, we have developed, in the context of the

mOSAIC project [15], a Knowledge Base, representing

resources and domain concepts and rules by means of

Semantic Web Ontologies and inference rules; a support

tool, the Semantic Engine, that helps the user to ab-

stract the requirements in vendor independent way starting

from application requirements or from specific vendor

resources; a Cloud Agency, that compares the different

offers of providers with the user proposal and retrieves

the best offer.

In this paper, we illustrate how the two components,

the Semantic Engine and the Cloud Agency, interoperate

in order to support the Cloud Application Developer to

express the requirements and services/resources in vendor

agnostic way, to translate automatically these requirements

into a neutral format in order to compare it with providers’

offers and to broker the best one according to defined

policies.

The user can choose the known concepts that describe

his application or the required resources, utilizing a knowl-

edge base and inference rules managed by the Semantic

Engine, which supports him/her to produce a vendor ag-

nostic template of a Service Level Agreement, to be used

for negotiating a concrete offer from the available Cloud

vendors. The Cloud Agency interacts with the supported

providers for retrieving the available offers and brokers the

best one(s). The Semantic Engine can further be useful for

filtering many proposals, which are optimal according to

different criteria, when the user’s knowldege is not helpful.

The paper is organized as follows. In section 2 we

present an overview of works related to semantic rep-

resentation of cloud resources and multi cloud resource

brokering and negotiaton. In section 3 we present a design

architecture and an example of use. In section 4 and 5 we

present an ontology supporting the semantic representation

of resources and the engine based on it. In section 6 a

description of the Cloud Agency and of the utilization of

Broker Agents is provided; In Section 7 an example is

shown. Conclusions are drawn in Section 8.

II. RELATED WORKS

Semantic and agent technology are being applied to

the task of automated resource brokering in many areas,

2013 27th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4952-1/13 $26.00 © 2013 IEEE

DOI 10.1109/WAINA.2013.163

1253

including cloud computing. In this field, the solution

provided are commonly oriented towards standardization.

Many efforts to standardization have been done, in partic-

ular the Open Grid Forum [9] has defined an interface (the

Open Cloud Computing Interface: OCCI [5] that offers a

uniform access to IaaS resources. The Open Grid Forum

uses UML as main formalism to define the interface while

in this paper we provide resources’ description, compliant

with OCCI proposal, based on semantic web formalism,

namely the Ontology Web Language - OWL [11].

In [12] and [10] ontologies for Cloud domain are

proposed. Instead the ontology proposed in this paper

is focused on the infrastructure service layer, and aims

at describing neutrally the resources offered by different

cloud providers.

Thanks to the rapid diffusion of cloud computing an

increasing number of initiatives and projects are currently

running aimed at developing search engines for discov-

ering Cloud services. In [6] [7] [8] Cloudle, a notable

example of Cloud service discovery system based on

matchmaking, is presented. In Cloudle users can identify

the Cloud services queried by means of three kinds of

requirements: functional requirement (like programming

language for PaaS service type), technical requirement

(like CPU clock or RAM for IaaS service type) and cost

requirement (like max price) as input parameters. Instead

our approach try to take advantages from inference rules

trying to overlap the gap between high level requirements

and technical requirements.

SLA@SOI [3] is the main project which aims at offer-

ing an open source based SLA management framework

that will provide benefits of predictability, transparency

and automation in an arbitrary service-oriented infrastruc-

ture, being compliant with the OCCI standard. SLA@SOI

results are extremely interesting and offer a clear start-

ing basis for the SLA provisioning and management in

complex architectures.

In [1] an architecture is presented for a federated Cloud

computing environment named InterCloud to support the

scaling of applications across multiple vendor Clouds

using A Cloud Broker for mediating between service

consumers and Cloud coordinators for an allocation of

resources that meets QoS needs of users.

Sim [2] proposes an extension of the alternate offers

protocol that supports multiple complex negotiation activi-

ties in interrelated markets between user agents and broker

agents, and between broker agents and provider agents.

III. OBJECTIVE AND METHODOLOGY

A Cloud Application Developer, who intends to develop

a cloud based application, would like to express his or her

requirements according to the application logic, to make

a choice based on what he or she knows and based on

high level requirements. In order to support this selection

and requirements specification, we have developed: (a) a

Knowledge Base, representing resources and domain con-

cepts and rules by means of Semantic Web Ontologies and

inference rules; (b) a support tool, the Semantic Engine,

that helps the user to abstract the requirements in vendor

independent way starting from application requirements

or from specific vendor resources; (c) a Cloud Agency,

that compares the different offers of providers with the

user proposal and retrieves the best offer. In figure 1 the

integration and interaction of such components is shown.

The Semantic Engine, based on the ontologies and

inference rules representing the Knowledge Base, enables

the user in defining his or her requirements in a format

suitable for comparison among offers and produces an

SLA template that is passed to the Cloud Agency. The

Cloud Agency adds the brokering rules so composing the

Call for Proposal (CFP) [4] that describes the list of

resources, which are necessary to run cloud applications.

It includes also the negotiation rules to select the best offer

among those proposed by providers. After that the Cloud

Agency compares each proposal with the user’s template

and retrieves the best offer.

Figure 1. Integrated view of Knowledge Base, Semantic Engine and
Cloud Agency

IV. AN ONTOLOGY FOR IAAS

Starting from OCCI description of resource interface we

offer a uniform way to represent the resources through

an ontology. The language chosen for the ontology de-

velopment is OWL that is the most used languages for

ontology definition and is supported by several tools,

libraries and reasoners. Our ontology is compliant with

the OCCI resource description [5], which is summarized

in table I

The ontology we built contains the semantic structure

to describe the basic resources described by OCCI (Com-

pute, Storage, Network) and an additional concept that

is the configuration, that means a composition of single

resources. The class hierarchy, shown in figure 2, is related

to the Infrastructural Domain and classifies the resources

of type compute, storage and network in vendor resources

and agnostic resources. In the vendor resources we collect

a series of offers by cloud provider like IBM and Amazon,

while in agnostic resources we collect resources and

their characteristic not linked with the offers of cloud

provider. The link between a configuration element and

the resources that compose it are represented through

owl object property, while the characteristic of the single

resource are defined through owl data property according

to the attribute defined in OCCI. An example of how

1254

Table I
OCCI RESOURCES ATTRIBUTE SUMMARY

Resource Attribute Type
Compute architecture Enum {x86, x64}

cores Integer
hostname String
speed Float
memory Float
state Enum {active, inactive, suspended}
summary String

Storage size Float
state Enum {online, offline, backup,

snapshot, resize, degraded}
summary String

Network vlan String
label String
state Enum {active,inactive}
address String
gateway String
allocation Enum {dynamic, static}
summary String

a compute resource is represented is shown in figure 3.

The vendors’ offers of several IAAS cloud provider are

represented in this ontology through individuals and their

characteristics. A cloud user accustomed to a particular

cloud provider may start from the specific customized so-

lution (for instance the IBM Silver Compute) and translate

this solution in vendor independent’ terms through the

Semantic Engine, then pass this neutral representation to

the Cloud Agency to find an equivalent solution that fulfill

additional requirements. If instead the user don’t know

which are the technical requirement of his/her application,

he/she can start specifying high level requirements as the

complexity of the algorithms used or functional/design

requirements. These requirements may be expressed using

concepts contained in the knowledge base of the Seman-

tic Engine and then can be translated in infrastructural

requirements by the application of heuristic rules.

Figure 2. Ontology class hierarchy

Figure 3. Example of single resource representation

V. SEMANTIC ENGINE

The Semantic Engine [13] is a prototype tool that

supports the user in Cloud Applications’ development

by discovering cloud APIs functionalities and resources

based on semantic technologies. It handles, maintains and

exposes to the user in a graphical way the semantic

descriptions of application domain concepts, application

related concepts, general design patterns and programming

functionalities, specific API implementations and Cloud

resources. It provides the user with fulltext, synonima

augmented, search facility on the knowledge base, with

graphical query composition, and inference reasoning fa-

cilities, by automatically generating inference rules, in

order to select suitable API functionalities, components

and Cloud resources suitable for developing the applica-

tion. It allows for reuse of the semantic description of

the application to be developed, performed by the user

during the query phase, by allowing for the definition of

application patterns, stored in the knowledge base, and

reused in future searches.

In this section we describe how the user can create an

agnostic description of resources guided by the Semantic

Engine. To produce the CFP [4] part related to resource

list the user can use three different options. The first one

(the simplest) is to fill the fields suggested by the tool

for the particular resource selected. The second one is to

select a cloud vendor customized resource configuration

and from this obtain an agnostic description. The third

one is to specify the user requirements referring to the

application he or she intends to develop like information

related to the workload or design and functional pattern.

For instance the user can specify the application pattern

of her/his application and for this class of applications

she/he can specify particular characteristic related to the

pattern. For example for a web application the user can

specify some parameters like peak visitors per hour, aver-

age page views per visitor and average time per visit, and

so the Semantic Engine, running heuristic rules defined

in the knowledge base or defined by the user, can select

the most suitable resource for the pattern described. Listed

below is an example of simple rules 1 that links a type of

application pattern with infrastructure resources.

Listing 1. Inference Rules

@prefix ApplicationPattern: http://127.0.0.1/
SEontology/ApplicationPattern.owl#

@prefix InfrastructureResourceDomain: http:
//127.0.0.1/SEontology/
InfrastructureResourceDomain.owl#

[WebAppRule:
(?x rdf:type

ApplicationPattern:WebApplication),
(?x ApplicationPattern:hasPeakVisitors ?y),
greaterThan(?y, 500),lessThan(?y, 1000),
(?x ApplicationPattern:maxResponseTime ?r),
greaterThan(?r, 1),lessThan(?r, 3),
(?z rdf:type

InfrastructureResourceDomain:Compute),
(?z InfrastructureResourceDomain:memory ?k),
greaterThan(?m, 8),lessThan(?m, 20),
(?z InfrastructureResourceDomain:cores ?k),

1255

greaterThan(?m, 8)
-> (?x

ApplicationDomain:PatternUseInfrastructure
?y)]

Running this rules the Semantic Engine can find an offer

of IBM Cloud Provides, named Platinum, described in the

knowledge base, and produces the part of the CFP listed

below 2.

Listing 2. CFP produced from rules
<ws:ServiceDescriptionTerm ws:Name =" Compute

" >
<Compute >

<cpuSpeed>1.25</cpuSpeed>
<cpuCores>16</cpuCores>
<architecture>x86</architecture>
<memory>16</memory>

</ Compute >
</ws:ServiceDescriptionTerm >

In addition to the list of resources and their character-

istic, the Semantic engine provides also a way to support

the definition of some constraints. The definition of these

constraints can be driven by heuristic rules that define the

parameters to take into account while developing a certain

kind of application and by user constrains. For example

the user can express constraints like the maximum price,

or the need to have at least a certain value for a resource’s

parameter.

VI. CLOUD AGENCY

Cloud Agency (CA)[4] is a Multi Agent System con-

ceived for provisioning by negotiation, monitoring and re-

configuration of acquired resources. Using Cloud Agency,

the user can negotiate the needed resources in order to

run his applications. The user can also delegate to the

Agency the monitoring of resource utilization, the neces-

sary checks of the agreement fulfillment and eventually

re-negotiations. In this paper we will focus our attention

on resource provisioning.

The configuration of resources that are necessary to

execute the users application produced by Semantic En-

gine and expressed in terms of SLA template may be

complemented by the user with other information. In

particular the SLA template can include desired service

levels and other terms of service like contract duration,

data location and billing frequency. In listing 3 an example

of SLA template is shown. It contains service descrip-

tion terms and garantee terms in WS-Agreement. The

requested resource is a Virtual Machine configuration with

an architecture x86, 2 Cores, 2Gb of available memory and

a price not greater than 0.8$.

Listing 3. Service Description Term and Guarantee Term
<ws:ServiceDescriptionTerm ws:Name="Compute"

>
<Compute>
<cpuCores>2</cpuCores>

<architecture>x86</
architecture>

<memory> 2GB </memory>
</Compute>

</ws:ServiceDescriptionTerm>

[..]
<wsag:GuaranteeTerm wsag:Name="Availability"

>
<wsag:Variables>

<wsag:Variable wsag:Name="Price"
wsag:Metric="price/hour" />

<wsag:ServiceLevelObjective> 0.8$ <
/wsag:ServiceLevelObjective>

</wasg:Variables>
[..]

</wsag:GuaranteeTerm>

The SLA template is part of the Call for Proposal (CfP).

The last part of the CfP is a set of brokering rules.

Examples of brokering rules are the best price, the greatest

number of cores, the best accredited provider or the

minimum accepted availability. The provisioning service

provided by Cloud Agency implements an extension of

the Contract Net Interaction Protocol [14]. The CfP is

submitted to Cloud Agency that returns one or a number

of different solutions, which can be optimal according

to different criteria. The sequence diagram that describes

the interaction among agents for resource provisioning is

shown in Figure 4.

Figure 4. Interaction among agents for resource provisioning

For each received CFP Cloud Agency creates a broker

that searches for vendors that can offer resources with

the required QoS (Quality of services). Cloud Vendors

neither implement negotiation services, nor provide de-

scriptions of their SLA in machine-readable language. We

address these issues by Vendor Agents, which wrap the

services of each Cloud provider and return, for each SLA

template received from the broker, the available proposal

that accomplishes at the best the claimed requirements.

The broker collects a number of proposals described in an

uniform way and chooses the best one(s) according to the

brokering rules. If the user accepts one among the received

proposals an SLA is agreed and the offered resources are

allocated.

1256

Table II
AVAILABLE INSTANCE TYPES AND PRICES

Offer Amazon EC2 Windows Azure

xsmall N/A CPU Cores: Shared, Memory: 768 MB, Disk
Space Web: 20 GB, Disk Space VM Role: 20
GB, Bandwidth: 5, Cost/Hour: $0.04

small CPU: 1 EC2 Compute Unit (1 virtual core
with 1 EC2 Compute Unit), Memory: 1.7 GB,
Disk: 160 GB, Platform:32-bit or 64-bit, I/O
Performance: Moderate, Cost/Hour Linux/U-
NIX Usage: $0.09, Cost/Hour Windows Usage
$0.115

CPU Cores: 1, Memory: 1.75 GB, Disk Space
Web: 230 GB, Disk Space VM Role: 165 GB,
Bandwidth: 100, Cost/Hour: $0.12

medium CPU: 2 EC2 Compute Unit (1 virtual core
with 2 EC2 Compute Unit), Memory: 3.75
GB, Disk: 410 GB, Platform:32-bit or 64-bit,
I/O Performance: Moderate Cost/Hour Lin-
ux/UNIX Usage: $0.180, Cost/Hour Windows
Usage $0.230

CPU Cores: 2, Memory: 3.5 GB, Disk Space
Web: 500 GB, Disk Space VM Role: 340 GB,
Bandwidth: 200, Cost/Hour: $0.24

large CPU: 4 EC2 Compute Unit (2 virtual core with
2 EC2 Compute Unit), Memory: 7.5 GB, Disk:
850 GB, Platform: 64-bit, I/O Performance:
High Cost/Hour Linux/UNIX Usage: $0.360,
Cost/Hour Windows Usage $0.460

CPU Cores: 4, Memory: 7 GB, Disk Space
Web: 1 TB, Disk Space VM Role: 850 GB,
Bandwidth: 400, Cost/Hour: $0.48

xlarge CPU: 8 EC2 Compute Unit (4 virtual core with
2 EC2 Compute Unit), Memory: 15 GB, Disk:
1690 GB, Platform: 64-bit, I/O Performance:
High Cost/Hour Linux/UNIX Usage: $0.720,
Cost/Hour Windows Usage $0.920

CPU Cores: 8, Memory: 14 GB, Disk Space
Web: 2 TB, Disk Space VM Role: 1890 GB,
Bandwidth: 800, Cost/Hour: $0.96

VII. CASE STUDY

In order to show how the brokering process takes place

and the two components (Semantic Engine and CLoud

Agency) interact, we present in this section a simple

example involving real cloud providers. Please consider

that, even if the proposals reported in this example are

real, the final result of evaluation may have completely

different results with little changes in offerings, that

continuously happens in the cloud environment. Let us

assume a user (Cloud Application Developer) looking for

a Virtual Machine with i) specific CPU architecture and

a fixed amount of memory, ii) the maximum number of

cores, iii) brokering the best price among the proposals

which satisfy i) and ii). The user can identify and express

in agnostic way her/his requirements with the help of

Semantic Engine, by means of the graphical facility shown

in Fig. 5, to express the resources’ requirements and then

to automatically translate them into the SLA template.

Figure 5. SLA template graphical composition

In the example we assume that the user requests a

VM with at least 2GB memory, CPU intel architecture,

the maximum number of cores and that she/he wants to

broker a best offer that does not exceed 0.8$ per hour.

The Cloud Agency adds the brokering rules to the SLA

template produced by Semantic Engine, asks to vendors

for available offers, brokes the best one and allows to close

the transaction. Table II summarizes some of the available

offers of the Amazon EC2 and Microsoft Azure cloud

providers. Each cloud provider has an offer consisting of

several Virtual Machine configurations, which are different

in cpu cores, available memory and price.

Vendor Agents of Amazon and Azure have to answer

to the broker with their proposal that best fits the user’s

requirements. In this case Amazon VA will exclude the

small offer because of its memory. Three offers remain, but

the most powerful machine, compliant with the fixed price

is the xlarge. Azure VA will exclude xsmall and small

offers because of the memory requirement. Furthermore

its xlarge offer is too much expensive. The selected offer

eventually is the large one. Finally the broker will select

the best price, i.e. Azure’s offer. The presented example

represents a basic application of a methodology, which is

currently been developed, and in which we are considering

not only price constraints but also factors like the capacity

for each provider, the service levels that providers ensure

and the trustworthiness of the provided measured using

user’s feedback and benchmarking report.

VIII. CONCLUSION

The increasing number of Cloud providers, the lack

of interoperability and the heterogeneity in current public

Cloud platforms, leads to the need of innovative mecha-

nisms to find the most appropriate Cloud resource config-

uration as easy and automated as possible. In this paper

we described the architecture design of a Cloud service

composed by two collaborative modules. The Semantic

1257

Engine, whose aim is to create an agnostic description

of resource based on users’ service requirements and a

brokering system, the Cloud Agency, whose aim is to

acquire autonomically resources from providers on the

basis of SLA evaluation rules finding the most suitable

Cloud provider that satisfy users’ requirements. In fu-

ture work we will investigate mechanisms for dynamic

filtering the proposals and more complex models of SLA

negotation. The brokering methodology is currently being

developed, and we are considering factors like the capacity

for each provider, the service levels that providers ensure

and the trustworthiness of the provided measures using

user’s feedback and benchmarking reports.

Acknowledgments: The research leading to these results

has received funding from the European Community’s

Seventh Framework Programme (FP7/2007-2013) under

grant agreement n 256910 (mOSAIC Project).

REFERENCES

[1] Buyya, R., Ranjan,R.,Calheiros R.N.: InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for
Scaling of Application Services, In: ICA3PP 2010, pp. 13-
31.

[2] Sim, K. M.,Towards Complex Negotiation for Cloud Econ-
omy, 5th International Conference on Advances in Grid and
Pervasive Computing (GPC 2010),pp. 395-406.

[3] sla-at-soi.eu

[4] Venticinque, S., European Research Activities in Cloud
Computing, Cambridge Scholars, January 2012, ch. Agent
Based Services for Negotiation, Monitoring and Reconfigu-
ration of Cloud Resources, pp. 178202.

[5] T. Metsch and A. Edmonds: Open Cloud Computing Inter-
face - Infrastructure, GFD-P-R.184, April 2011. Available:
http://ogf.org/documents/GFD.184.pdf

[6] T. Han and K. M. Sim, Cloudle: An ontology-enhanced
cloud service search engine in WISE Workshops, ser. Lec-
ture Notes in Computer Science, D. K. W. Chiu, L. Bella-
treche, H. Sasaki, H. fung Leung, S.-C. Cheung, H. Hu, and
J. Shao, Eds., vol. 6724. Springer, 2010, pp. 416-427.

[7] Kang, J., Sim, K.M.: Cloudle: A Multi-criteria cloud ser-
vice search engine. To appear in the Proceedings of the
2010 IEEE Asia-Pacific Services Computing Conference,
Hangzhou, China, December 6-10 (2010).

[8] T. Han, K. M. Sim: An Ontology-enhanced Cloud Service
Discovery System. Proceedings of the International Multi-
Conference of Engineers and Computer Scientists 2010 Vol
I, March 2010.

[9] Open Grid Forum: Open Cloud Computing Interface
(OCCI). http://forge.ogf.org/sf/projects/occi-wg

[10] Youseff, L., Butrico, M., and Da Silva, D. (2008): Toward
a unified ontology of cloud computing. In Grid Computing
Environments Workshop, 2008. GCE 08, pages 110.

[11] Deborah L. McGuinness and Frank van
Harmelen. Owl web ontology language overview.
http://www.w3.org/TR/2004/REC-owl-features-20040210/,
2004.

[12] Francesco Moscato, Rocco Aversa, Beniamino Di Martino,
Dana Petcu, Massimiliano Rak, and Salvatore Venticinque,
”‘An Ontology for the Cloud in mOSAIC”’, in: Lizhe Wang,
Rajiv Ranjan, Jinjun Chen, Boualem Benatallah (Eds.),
Cloud computing: methodology, system, and applications,
Chapter , pp. 467-487, CRC press - Taylor e Francis group,
2011 (ISBN 978-1-4398-5641-3).

[13] Beniamino Di Martino, Giuseppina Cretella, “Towards
a Semantic Engine for Cloud Applications Development
Support”, Proc. of CISIS-2012: The Sixth International
Conference on Complex, Intelligent, and Software Intensive
Systems, July 4-6th 2012, Palermo, Italy, IEEE CS Press,
2012.

[14] FIPA TC Communication. Fipa contract net interaction
protocol, 2002. Available at http://www.fipa.org.

[15] mOSAIC. The mOSAIC Project. Available at
http://www.mosaic-cloud.eu/.

1258

