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Protective corrosion resistant coatings serve for decreasing the amount of ionic contaminants from
Havar� entrance foils of the targets for [18F] production. The corrosion damage of coated entrance foils
is caused mainly by the diffusion of highly reactive products of water radiolysis through the protective
film toward Havar� substrate. Since amorphous metal alloys (metallic glasses) are well-known to per-
form a high corrosion resistance, the glass forming ability, microstructure and diffusion barrier efficiency
of binary alloys containing chemically inert Nb, Ta, Zr were investigated. Nb–Ta, Nb–Zr and Ta–Zr films of
different alloy composition and �1.5 lm thickness were co-deposited by magnetron sputtering. Diffusion
barrier efficiency tests used reactive aluminum underlayer and protons of acid solution and gallium
atoms at elevated temperature as diffusing particles. Though co-sputtered Nb–Ta and Nb–Zr alloy films
of different contents were crystalline, Ta–Zr alloy was found to form dense amorphous microstructures in
a range of composition with 30–73% atomic Ta. The diffusion barrier efficiency of Nb–Zr and Nb–Ta alloy
coatings decreased with increase of Nb content. The diffusion barrier efficiency of sputtered Ta–Zr alloy
coatings increased with the transition from nanocrystalline columnar microstructure to amorphous for
coatings with 30–73 at.% Ta.

� 2015 Published by Elsevier B.V.
1. Introduction

The number of medical procedures involving the use of cyclo-
tron-produced radionuclides is constantly growing year by year.
[18F]Fluoro-2-deoxy-D-glucose ([18F]FDG), an analogue of glucose
that is labeled with [18F], makes up the large majority of all of
the radiotracer (>95%) used in PET (Positron Emission
Tomography) and PET/CT scanning. FDG is produced typically by
proton irradiation of enriched water targets in an 18 MeV proton
cyclotron. Water becomes an extremely corrosive media because
of a number of highly reactive species occurring during proton
irradiation. It shortens a lot the life time of Havar� entrance foils
usually used for [18F] production and initiate a large amount of
ionic contaminants from Havar� [1,2].
When designing the cyclotron target for [18F] production it is
not always possible to find the material that corresponds
simultaneously to all mechanical and physicochemical require-
ments. The use of thermally and mechanically suitable substrate
materials, like Havar�, protected by chemical resistant coating
was found to be a compromise. It was proven that the use of sput-
tered niobium coating on Havar� entrance foils decreases the
amount of ionic long-lived impurities during [18F] production more
than ten times [3]. The next experiments in the area showed an
even higher performance of tantalum protective coatings [4].

From the corrosion point of view, the combination of elements,
which are able to maintain the passive state in a given environ-
ment, is the principle of protective coating design. For passive films
the ability as the diffusion barrier appears to be also extremely
important characteristic. For crystalline films, the grain boundaries
tend to act as the main diffusion path for ions to penetrate through
the barrier layer. However, amorphous alloys (also called metallic
glasses), which normally have the dense and boundary-free struc-
ture, are known to eliminate effectively the fast diffusion paths [5],
resulting in several cases even higher corrosion protection effi-
ciency than single metals [6–8]. In a range of corrosion conditions,
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Fig. 1. Ta–Zr deposition. Sample holder for alloy co-sputtering.

H. Skliarova et al. / Journal of Alloys and Compounds 639 (2015) 488–495 489
amorphous metallic glass systems have shown higher corrosion
resistance than crystallized ones with equal compositions [9,10].
Besides that amorphous metallic glasses were shown to resist to
irradiation [11,12] even improving plasticity while crystalline met-
als degrade fast, that is important feature for the nuclear
application.

In order to improve corrosion protection efficiency of cyclotron
target Havar� entrance foils we applied the idea of amorphous pro-
tective coating. Three elements, niobium, tantalum and zirconium,
were chosen in current investigation as candidates for binary alloy
protective coatings because of extreme chemical stability of single
metals [13] as well as their alloy combinations [14–16] and
because of small amount of radionuclide impurities that can be
produced during irradiation and appear in the final radio-
pharmaceutical product [1].

The general procedure for the synthesis of metallic glasses is to
‘‘energize’’ and then ‘‘quench’’ the material. This can be done by a
variety of methods: conventional quenching [17], different
mechanical cold working [18], evaporation [19], sputtering [20–
23], ion implantation and electron irradiation, annealing induced
solid-state amorphization of multilayered films [24–26].

For immiscible systems (characterized by positive heat of for-
mation), such as Nb–Zr, Nb–Ta and Ta–Zr, the occurrence of
amorphous structures is provided under non-equilibrium condi-
tions. Thus the glass forming ability (GFA) can be improved and
the amorphization ranges are wider when metallic alloy coating
is formed by non-equilibrium processes as sputtering [27,28] or
ion beam mixing. Hereby amorphous Ta–Zr alloy coatings were
prepared by ion beam mixing [29], co-condensation [30] and
co-sputtering [31,32]. Formation of Ta-rich amorphous phases
by high current pulse electron beam melting of Nb–Ta multilayers
was mentioned [33]. Amorphous Nb–Zr coatings were prepared
by sputtering onto liquid nitrogen cooled substrate [34] and by
ion-beam mixing of multilayers [34–37]. Although amorphous
Ta–Zr and Nb–Zr alloy coatings were successfully prepared by
co-sputtering, amorphization ranges vary depending on the
deposition parameters and should be controlled in each specific
case. No attempts to produce amorphous Nb–Ta alloy coatings
by co-sputtering were reported. Extensive studies were focused
on glass formation and physical properties of alloys. The data
on their performance as diffusion barriers are limited by
study of Ta–Zr as diffusion barrier for copper at high temperature
[31].

The objective of the current work was to determine the
possibilities to obtain amorphous binary alloy coatings by
co-sputtering of chosen refractory metals (niobium, nantalum
and zirconium) and the impact of amorphization on the barrier
properties of the coatings in order to find best protective coating
for cyclotron target entrance foils. The use of an appropriate pro-
tective coating can drastically decrease the amount of long-lived
impurities during [18F] production and thus increase the labeling
yield and the specific activity of the final radiopharmaceutical
[18F]FDG.
2. Materials and methods

2.1. Sputtering

The alloys were deposited by DC magnetron co-sputtering with two 2 in. in
diameter planar cathode unbalanced magnetron sources (II type in the Window
and Savvides classification [38]) in a cylindrical, 316 L stainless steel vacuum cham-
ber of 35 cm diameter and 40 cm in length. Before sputtering, the chamber was ini-
tially pumped to a base pressure of 3�10�6 mbar. The sample holder with 10
different fixed positions (Fig. 1) allowed to obtain samples with different alloy con-
tents simultaneously. The sample holder during deposition was grounded without
heating or cooling. 10 cm target-sample holder distance was chosen for optimal
uniformity of coating thickness in different positions. 0.5 A DC-current was used
for each magnetron source during alloys co-sputtering.
Niobium, zirconium and tantalum targets with purity 99.9%, 99.2% and 99.9%
respectively and argon (99.9999% purity) as process gas were used for alloys
deposition.

Tensile stress in a metallic thin film signifies a voided film structure with a big
distance between the grain boundaries. On the other hand, high compressive stress
can cause film delamination from the substrate. Both cases are detrimental for cor-
rosion protective films. Furthermore, presence of both tensile and compressive
stress can induce crystallization of metallic glasses [39–41]. Therefore, minimiza-
tion of the residual stress in the coatings is required. It is well known that the
intrinsic stress in sputtered films drastically depends on a sputtering gas pressure.
There is a specific sputtering pressure for each combination of a sputtered material
and deposition system, at which stress reversal from compressive to tensile stress
occurs. In order to find the optimal pressure for alloy co-sputtering, which means
with minimal intrinsic stress in films, a deposition onto a flexible substrate
(Kapton) was performed as described by Entenberg and coauthors [42]. Two types
of stress can be observed: tensile, in which the film is trying to contract on the sub-
strate and compressive, in which the film is trying to expand on the substrate. The
intrinsic stress can be estimated directly from the radius of curvature of the relaxed
film and substrate.

The flexible substrates have been placed in three positions on the sample
holder: positions 2, 9 and between 5 and 6 – in the center (Fig. 1). Change of a radius
of curvature of the coated flexible substrate from negative to positive identifies the
transition from compressive to tensile stress. Each material has its own pressure of
the compressive-tensile stress conversion. Co-sputtering involving two materials is
more difficult, so we have considered optimal the pressure corresponding to the
stress conversion along the sample holder (mostly in the center of SH). In this case,
the total stress in all alloy films is minimal. Thus the Ar working pressure 5�10�3 -
mbar was chosen for Nb–Zr co-deposition, 7�10�3 mbar for Nb–Ta and 8�10�3 mbar
for Ta–Zr co-deposition.

2.2. Estimation of diffusion barrier efficiency

The irradiation models for water radiolysis [43] predict production of a number
of reactive species:

H2O! H2; O2; H2O2; OH; H; e�aq ; HO2; O�2 ; HO�2 ; OH�; Hþ; . . .

Since the lifetime of such species is very short, they are recombining fast and
the pH of the irradiated water remains neutral. The real corrosion damage of cyclo-
tron target entrance foils is caused by appearance of high local concentrations of
reactive species on the foil surface, fast diffusion through protective film toward
Havar� substrate and chemical interaction with the substrate. Thereby, the prelimi-
nary evaluation of the protective coating efficiency as diffusion barrier should be
done before the direct test of few final coated Havar� entrance foils on a cyclotron
facility. The most described in literature technique for diffusion barrier efficiency
evaluation [31,44] was based on observation of copper atoms penetration through
grain boundaries of metallic coatings at high temperatures. We propose two faster
and easier tests using diffusion of protons of hydrochloric acid solution and gallium
atoms through the inert protective film. Aluminum sputtered (2.5 lm) quartz sam-
ples 9 � 9 � 1 mm (optical finishing) were used as substrates for protective coating
deposition. Unlike aluminum, with its extreme susceptibility for both acid corrosion
and liquid gallium corrosion, refractory metals like tantalum, zirconium, and nio-
bium are chemically inert. Thus, the corrosion in the system aluminum covered
with the inert coating can identify poor barrier properties of the protective coating
(for more details see [45]).

The proton diffusion test was carried out by immersing the samples into 10%
hydrochloric acid at 30 �C during 10 min. The hydrogen bubbles appeared on the
surface of the coating reveal both macro porosity owing to macro particles genera-
tion during sputtering process and micro-voids and grain-boundaries depending on
the coating microstructure. The results were evaluated due to the number of
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hydrogen bubbles appeared on the surface of the coating. The acid test results were
evaluated numerically in a scale from ‘‘1’’ to ‘‘5’’, where ‘‘1’’ meant the smallest
amount of hydrogen bubbles and appropriately the best barrier quality of a coating.

The liquid gallium diffusion test was carried out by heating aluminated quartz
samples coated with investigated alloy coatings (the same preparation of samples
done in previous tests) with liquid gallium droplets during 40 h at 200 �C. Nb, Ta
and Zr are inert for liquid Ga, while aluminum is well-known to be corroded extre-
mely fast by liquid Ga causing the so called liquid–metal embrittlement. In the case
of diffusion of gallium atoms through the film, they interacted with aluminum
underlayer to form a liquid alloy and the protective film was ruined. That was what
we had visually detected.

The velocity of penetration of liquid Ga through the film depends also on
wettability. Wettability is the ability of a liquid to maintain the contact with a solid
surface, resulting from intermolecular interactions when the two are brought
together, and the force balance between the adhesive energy of the surface and
the cohesive energy of the liquid determines it. High wettability corresponds to a
low contact angle of a droplet and low wettability corresponds to a high contact
angle respectively.

2.3. Microstructure analysis

The microstructures of the alloy thin films onto 9 � 9 � 1 mm amorphous
quartz substrates were characterized by X-ray diffraction measurement in
Panalytical (ex-Philips) PW3040/60 Diffractometer with 1.54 Å Cu Ka X-ray. The
XRD investigation was carried out by performing the h–h Gonio scan in Bragg–
Brentano configuration with 2h from 10� to 100�. The XRD pattern of not covered
quartz substrates had no any peaks because of a fully amorphous structure of the
substrate. That is why the XRD patterns of investigated coatings had no additional
peaks related to the substrate.

X’Pert Highscore software was used for fitting in order to obtain the peak posi-
tion and the integral breadth. The average crystallite size D for the most intense
peak was determined using the Debye–Scherrer formula.

Composition of the sputtered alloys has been determined by the energy disper-
sive X-ray spectroscope (EDX) coupled with the Scanning Electron Microscope Vega
3 XM (TESCAN). The same Scanning Electron Microscope Vega 3 XM (TESCAN) was
used to observe the cross-sections of sputtered coatings.
3. Results

3.1. Nb–Zr alloy sputtering

The XRD patterns of 10 co-sputtered Nb–Zr alloy coatings of dif-
ferent composition deposited at 8�10�3 mbar Ar pressure are
shown in Fig. 2. In the case of maximum niobium content, several
crystalline diffraction peaks were detectable, and the strongest
peak was identified as (110)-line of bcc-Nb. The most intense peak
in the XRD patterns corresponding to Nb(110) was shifted toward
the lower angles with increasing zirconium content until it
attained the position corresponding to bcc-Zr(110). Alloying 50%
atomic zirconium and 50% atomic niobium leads to a broadening
of (110) diffraction peak but the crystallite size D110 calculated
Fig. 2. XRD spectrums of Nb–Zr alloys of different composition.
according to the Debye–Scherrer formula (see Table 1) did not
reach the critical value of 2.5 nm used for discrimination of amor-
phous and crystalline structure [46].

The most intense peak position was used to estimate the con-
tent of each metal in alloy according to the Vergard’s law.
Vegard’s law says that a linear relation exists between the
Crystal Lattice Parameter a and the concentrations of the con-
stituent elements at constant temperature.

According to the Vegard’s rule for Nb1�xZrx alloy the relation
connecting Cubic Lattice Parameter of alloy aNbZr with Cubic
Lattice Parameters of single metals aNb and aZr can be presented:

aNbZr ¼ ð1� xÞ � aNb þ x � aZr ð1Þ

Single metal niobium and zirconium films were sputtered at the
same pressure, current, on the same sample holder and during the
same time as Nb–Zr alloy films. The XRD patterns of single metal
films were analyzed and the Cubic Lattice Parameter (a110) values
were found to be aNb = 3.314 Å and aZr = 3.614 Å respectively. Thus,
the content of zirconium x in Nb–Zr alloy was calculated, found
from the linear equation:

aNbZr ¼ 3:314þ 0:3 � x ð2Þ

Fig. 3 gives the graphic representation of the use of Vegard’s
rule for Nb–Zr sputtered alloys. The graph shows the line drawn
through two points representing the Cubic Lattice Parameters for
niobium and zirconium: aNb = 3.314 Å, aZr = 3.614 Å. When the
Cubic Lattice Parameter for Nb–Zr alloy is postponed on Y-axis
the X coordinate of the point on the line corresponds to the atomic
percentage of zirconium.

Table 1 summarizes the most important parameters represent-
ing the correlation between the microstructure and the barrier
properties of Nb–Zr alloy coatings. Nb–Zr alloys with higher zirco-
nium content were found more resistant to the acid solution than
Nb-rich alloys.

According to the acid test Nb–Zr alloy films with more than 50%
zirconium showed better resistance. All compositions of Nb–Zr
alloys besides Nb–Zr 10 with maximum zirconium content showed
resistance to liquid gallium droplets. All Nb–Zr coatings showed
partial surface wettability by liquid gallium droplet (the contact
angle > 90�).

3.2. Nb–Ta alloy sputtering

Table 2 shows the key parameters describing the content,
microstructure and protective behavior of Nb–Ta alloy coatings
sputtered at 7�10�3 mbar. Similar to Nb–Zr alloy Nb–Ta alloy films
with less niobium content showed better resistance to the acid
test. All compositions of Nb–Ta alloys besides Nb–Ta 8 showed
resistance to the liquid gallium penetration. The liquid gallium sur-
face wettability of the Nb–Ta also seem to be in agreement with
the crystallite size measured.

The XRD patterns of Nb–Ta alloy coatings are presented in
Fig. 4. All Nb–Ta coatings were crystalline. The Ta(110) and
Nb(110) peaks appear at the same 2Theta angle �38–39�, there-
fore it is not possible to use the Vegard’s law for the alloy content
estimation. Both body centered cubic (bcc) a-Ta(110) and tetrago-
nal b-Ta(200) peaks are present in XRD spectrums of Nb–Ta alloys
with less than 13% atomic of niobium. The incorporation of higher
amounts of niobium stabilizes the bcc structure. Increasing the
niobium content in alloys > 13% atomic results in increasing the
amount of (211) crystalline phase.

During magnetron sputtering deposition processes, bcc a-phase
tantalum, hexagonal b-phase tantalum or mixed phase tantalum
grow on different substrates depending on specific deposition con-
ditions. Since sputtering is a non-equilibrium process, the meta-
stable b-phase Ta [47] or mixed phase Ta is more common to be



Table 1
Nb–Zr alloy coatings.

Sample number Nb–Zr 1 Nb–Zr 2 Nb–Zr 3 Nb–Zr 4 Nb–Zr 5 Nb–Zr 6 Nb–Zr 7 Nb–Zr 8 Nb–Zr 9 Nb–Zr 10

Zr atomic % 5 10 12 17 28 48 68 78 84 88
Film thickness (lm) 1.4 1.6 1.7 1.7 1.6 1.7 1.9 1.9 1.9 1.9
Deposition rate (nm/s) 0.4 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5
D110 (nm) 19 26 22 21 19 12 33 22 16 10
a110 (Å) 3.330 3.344 3.351 3.365 3.398 3.459 3.516 3.547 3.566 3.576
Liquid Ga corrosion Corroded Resists Resists Resists Resists Resists Resists Resists Resists Resists
Liquid Ga contact angle 100 90 100 110 120 130 110 110 120 110
Acid test 4 3 4 4 3 2 2 2 2 2

Fig. 3. Estimation of the content in Nb–Zr alloy according to the Vegard’s law.
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observed in sputter deposited thin films [48–51]. The b-to-a tran-
sition is promoted by heating up to 400 �C during deposition [52]
or to 650–1000 �C after deposition [53,54]. The ion bombardment
during deposition was shown to bring to different Ta phases
dependent on the deposition system and bombarded ions kinetic
energy and momentum [55–57]. The Ta phase formation was
shown to depend also on sputtering gas [56], substrate [58,59],
stress in the film [54], impurities level [60], deposition mechanics
[61]. Even after a number of investigations focused on the influ-
ence of sputter deposition parameters, the mechanism of Ta phase
growth is still unclear.

In a case of deposition of Nb–Ta alloy by sputtering the Ta phase
formation is guided mostly by presence of Nb. Presence of Nb was
shown to promote a-Ta phase formation [58,59], because Nb has
the same bcc structure as a-Ta. For samples Nb–Ta 2 and Nb–Ta
3, which were placed on axis of one planar magnetron (where
the plasma plum could touch the sample surface), other deposition
factors have promoted b-Ta phase stabilization. These could be

(1) Electron bombardment by plasma plum is usually causing
additional heating up to 250 �C. This temperature is not
enough for b-to-a Ta phase transition and in a low vacuum
conditions can promote oxidation by residual oxygen and
stabilization of b-Ta phase [60];
Table 2
Nb–Ta alloy coatings.

Sample number Nb–Ta 1 Nb–Ta 2 Nb–Ta 3 Nb–Ta 4

Ta atomic % 99 95 87 79
Film thickness (lm) 1.2 1.3 1.4 1.5
Deposition rate (nm/s) 0.3 0.4 0.4 0.4
D (nm) 20 44 38 10
Liquid Ga corrosion Resists Resists Resists Resists
Liquid Ga contact angle 120 135 140 135
Acid test 3 1 1 2
(2) Ion bombardment by plasma plum could suppress a-Ta
phase growth if the ion energy per deposited atom was
low enough [57].

3.3. Ta–Zr alloy sputtering

The key parameters describing the content, microstructure
and protective behavior of Ta–Zr alloy coatings sputtered at
8�10�3 mbar are presented in Table 3. The XRD-patterns of
sputtered Ta–Zr are presented in Fig. 5. According to the peak at
2Theta � 38�, that has the maximum intensity for all the alloys,
the preferential orientation is (110). The full XRD spectrum of pure
tantalum shows two crystalline peaks: (110) and (211) that
signify the presence of bcc-Ta and absence of hcp-Ta phases.
Substantial widening and intensity decrease of the (110) peak in
the XRD spectrums of Ta–Zr alloy with zirconium atomic content
from 30% to 70% signified formation of amorphous structure.

In order to prove the XRD results on alloys crystallinity Ta–Zr 2,
Ta–Zr 6 and Ta–Zr 9 were deposited onto Si substrates following
the same parameters as in previous deposition and the morphol-
ogy of each film fracture was evaluated with SEM.

Fig. 6 shows the fracture surface of Ta–Zr 2 film with 96%
atomic tantalum obtained with SEM. Clear columnar film morphol-
ogy is observed. Fig. 8 shows the cross-sectional SEM micrograph
of the fractured Ta–Zr 9 film with 88% atomic zirconium. Similar
to Ta-rich film (Fig. 6) the morphology of Ta–Zr 9 is columnar
but the size of the grains is significantly smaller.

Fig. 7 shows the cross-section of Ta–Zr 6 with 47% atomic Ta.
The film has a boundary-free glass-like fracture surface morphol-
ogy without observed grain boundaries.

Amorphous Ta–Zr alloy coatings showed superior resistance to
both acid test and liquid gallium test. All Nb–Ta coatings similar to
Nb–Zr showed incomplete surface wettability by liquid Ga. The
contact angles of liquid gallium droplet on Nb–Ta coatings were
bigger than those of Nb–Zr.
4. Discussion

4.1. Ability to form amorphous alloys

According to the empirical rules [62,63], the negative enthalpy
of mixing and high radius mismatch of constituting elements are
Nb–Ta 5 Nb–Ta 6 Nb–Ta 7 Nb–Ta 8 Nb–Ta 9 Nb–Ta 10

69 49 31 21 13 11
1.1 0.8 1.1 1.1 1.0 0.8
0.3 0.2 0.3 0.3 0.3 0.2
12 7 10 11 11 9
Resists Resists Resists Corroded Resists Resists
160 150 160 100 120 130
4 5 5 5 2 5



Fig. 4. XRD spectrums of Nb–Ta alloys. Fig. 5. XRD spectrums of Ta–Zr alloys.

Fig. 6. Cross-sectional SEM micrograph of fractured Ta–Zr 2.
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known to favor the formation of amorphous phases. Since the
enthalpies of formation of the solid solutions of Nb–Ta, Nb–Zr
and Ta–Zr are positive and the difference of atomic radiuses is rela-
tively small (RNb = 1.46 Å, RTa = 1.46 Å, RZr = 1.60 Å), all three binary
alloy systems are not capable of amorphous structure forming. But
the experimental results obtained in the current work and also by
other authors have shown the formation of amorphous Ta–Zr
alloys by co-sputtering [32] and co-condensation [30] in a range
of compositions.

From the thermodynamic point of view the stability of any
given phase is determined by its Gibbs free energy, with reference
to the competing phases. Thus, an amorphous phase will be stable
if its Gibbs free energy is lower than that of the competing
crystalline phase in the glass-forming alloy systems. The Gibbs free
energy of a system is defined as G = H � TS. In solid state the con-
tribution to the Gibbs energy from entropy is much smaller than
that from enthalpy, and therefore the entropy contribution to the
free energy term can be neglected, and only the enthalpy term
can be regarded as an indicator of the stability of an alloy [64].

In order to estimate the relative thermodynamic stability of the
phases in investigated binary alloys, the enthalpy of formation of
solid solution DHss and amorphous phase DHamorph were calcu-
lated according to the advanced Miedema’s model [65–67]. The
results of calculation are presented in Figs. 9–11.

As it was mentioned above, the Gibbs free energy of the
hypothetical amorphous phase DHamorph should be lower than that
of the competing crystalline phase DHss to provide the glass forma-
tion, so the value (DHamorph � DHss) should be negative. The driv-
ing force for amorphous structure forming is the �DHamorph: the
larger this value is, the easier is the glass formation. From the other
side the resistance to crystallization is dependent on the difference
in the Gibbs free energies of the amorphous and crystalline phases.
The smaller this difference (DHamorph � DHss) is, the higher is the
stability of the amorphous phase [68]. Based on this, a c⁄
Table 3
Ta–Zr alloy coatings.

Sample number Ta–Zr 1 Ta–Zr 2 Ta–Zr 3 Ta–Zr 4

Ta atomic % 97 96 95 89
Film thickness (lm) 1.3 1.7 1.9 1.4
Deposition rate (nm/s) 0.4 0.5 0.5 0.4
D110 (nm) 78 115 97 42
Liquid Ga corrosion Resists Resists Resists Resists
Liquid Ga contact angle 120 100 95 90
Acid test 1 2 1 2
parameter was proposed [69] as a measure of glass-forming ability
(GFA) of alloy systems, defined as
c� ¼ �DHamorph

DHamorph � DHss
ð3Þ

The greater is the value of c⁄ the higher is the stability of amor-
phous phase and so the glass-forming ability of the alloy is higher.

According to Fig. 9, the enthalpies of formation of the Nb–Ta
solid solution are near zero values. The c⁄ parameter is almost con-
stant ��1.003 for different alloy compositions. All these signify
low capability of formation of amorphous alloy and low resistance
to recrystallization. This hypothesis was correlated with experi-
ment that did not show the presence of sputtered amorphous
Nb–Ta alloys.
Ta–Zr 5 Ta–Zr 6 Ta–Zr 7 Ta–Zr 8 Ta–Zr 9 Ta–Zr 10

73 47 30 14 12 11
1.4 1.3 1.0 1.3 1.1 1.2
0.4 0.4 0.3 0.4 0.3 0.4
2 2 2 23 11 11
Resists Resists Resists Resists Resists Resists
95 120 130 130 120 130
1 1 1 2 1 5



Fig. 7. Cross-sectional SEM micrograph of fractured Ta–Zr 6.

Fig. 8. Cross-sectional SEM micrograph of fractured Ta–Zr 9.

Fig. 9. Enthalpies of the Nb–Ta system calculated by Miedema’s model.

Fig. 10. Enthalpies of the Nb–Zr system calculated by Miedema’s model.

Fig. 11. Enthalpies of the Ta–Zr system calculated by Miedema’s model.
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Both Nb–Zr and Ta–Zr in the middle of the content range
showed a region with DHamorph � DHss < 0 (see Figs. 10 and 11).
The driving force of the amorphous phase formation of these two
alloys is similar �DHamorph � 12 kJ/mol. Nevertheless, amorphous
Ta–Zr should have much higher resistance to recrystallization than
Nb–Zr. It can be demonstrated also by calculation of the GFA
parameter c⁄ (see Table 4). Nb–Zr can have more wide amorphous
forming phase composition range, but Ta–Zr present higher GFA
parameter.

Such process as sputtering can course recrystallization of
amorphous phase if the energy of atoms arriving to the
substrate is enough. Possible recrystallization can explain the fact
that we did not observe Nb–Zr amorphous alloys. Nevertheless
formation of amorphous Nb–Zr has been reported by another
technique as mechanical alloying [70] and IBM of multilayer thin
films [37].

In order to correlate the proposed thermodynamic models with
the experimental data on alloys amorphization ability the
average crystallite size values D (nm) calculated from the XRD
spectrums of corresponding binary alloys were added to the graphs
(see Figs. 9–11).



Table 4
Calculated GFA of Nb–Zr and Ta–Zr alloys.

Zr atomic % 10 20 30 40 50 60 70 80 90

cNb–Zr
⁄ �1.626 �3.334 �20.57 9.716 7.503 11.677 �14.69 �3.328 �1.682

cTa–Zr
⁄ �1.437 �2.391 �29.61 �39.72 50.333 �84.02 �6.777 �2.767 �1.578
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The Ta–Zr amorphous alloys were obtained in current work in a
wider range of composition 30–73% atomic tantalum than was pre-
dicted by Miedema’s model. Other authors also showed wider
range of amorphous phase formation for Ta–Zr alloy [30,32]. It
shows that for the sputtering process the thermodynamic model
cannot describe the situation properly because kinetics plays the
key role in the structure formation.
4.2. Diffusion barrier properties of binary alloy films

All the three coating systems Nb–Ta, Nb–Zr and Ta–Zr showed
resistance to gallium atoms diffusion at investigated conditions.
Small variations of liquid gallium droplet contact angles seem to
be more attributed to the different grain size and, correspondingly,
surface roughness rather than to gallium-coating chemical
interaction.

The increase of the atomic percentage of niobium in Nb–Ta and
Nb–Zr alloys showed the decreasing of the resistance to the acid
test, it means, higher proton diffusion through the films. This phe-
nomenon can be explained by a tendency of niobium-rich coatings
to grow in a columnar microstructure with prolonged grain bound-
aries through the film, as pure niobium is famous about [71–73].
High affinity of niobium to oxygen promotes adsorption of oxygen
and forming of niobium oxide in the grain boundaries [74] when
sputtering is performed not in ultra-high vacuum, without prelimi-
nary degassing of all the system by plasma bombardment [75] and
even exposure of pure sputtered niobium films to atmosphere was
proven to induce oxidation along the grain boundaries [76].
Probably such oxidized grain boundaries can affect faster transport
of the particles of the media through the film enlarging the dis-
tance between grains [74,77].

In general, Ta–Zr coatings showed higher resistance to acid pro-
ton diffusion than the other two systems Nb–Zr and Nb–Ta, that
can be explained by the same high grain boundary oxidation in
sputtered niobium.
5. Conclusions

The microstructure and diffusion barrier efficiency of co-sput-
tered Nb–Ta, Nb–Zr and Ta–Zr coatings were investigated. Co-sput-
tered Nb–Zr and Nb–Ta alloy coatings were found to be crystalline.
Our test showed that the diffusion barrier efficiency of Nb–Zr and
Nb–Ta decreased with the increase of Nb content.

Ta–Zr alloys showed to have higher amorphous phase forming
ability during magnetron co-sputtering than Nb–Zr and Nb–Ta
alloys. Dense amorphous Ta–Zr alloy coatings were obtained by
co-sputtering in a range of composition with 30–73 at.% Ta. As
far as sputtered amorphous Ta–Zr coatings showed superior diffu-
sion barrier efficiency, amorphous Ta55Zr45 was chosen for deposi-
tion onto Havar� target foil for the irradiation test under the
cyclotron accelerated proton beam.

Since amorphous Ta–Zr coatings showed also good resistance
for gallium penetration, they can be suggested for protection from
liquid metal corrosion, for example, for the high efficiency cyclo-
tron targets cooled by liquid metals or liquid metal 85Rb (m.p.:
39.3 �C) cyclotron targets for [82Sr] production.
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