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Prediction of streamflow regimes over large geographical areas: interpolated
flow–duration curves for the Danube region
A. Castellarin a, S. Persiano a, A. Pugliese a, A. Aloeb, J. O. Skøien b and A. Pistocchi b

aDepartment of Civil, Chemical, Environmental and Materials Engineering (DICAM), School of Civil Engineering, University of Bologna,
Bologna, Italy; bEuropean Commission, DG Joint Research Centre (JRC), Ispra, Italy

ABSTRACT
Flow–duration curves (FDCs) are essential to support decisions on water resources management, and
their regionalization is fundamental for the assessment of ungauged basins. In comparison with
calibrated rainfall–runoff models, statistical methods provide data-driven estimates representing a
useful benchmark. The objective of this work is the interpolation of FDCs from ~500 discharge gauging
stations in the Danube. To this aim we use total negative deviation top-kriging (TNDTK), as multi-
regression models are shown to be unsuitable for representing FDCs across all durations and sites.
TNDTK shows a high accuracy for the entire Danube region, with overall Nash-Sutcliffe efficiency values
computed in a leave-p-out cross-validation scheme (p equal to one site, one-third and half of the sites),
all above 0.88. A reliability measure based on kriging variance is attached to each interpolated FDC at
~4000 prediction nodes. The GIS layer of regionalized FDCs is made available for broader use in the
region.
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1 Introduction

The increasing accessibility of global datasets on soil, land
cover, morphology and weather forcing, and enhanced
computing capacity have backed the development of regio-
nal-, continental- and global-scale rainfall–runoff simula-
tionmodels over the past decade (see e.g. Collischonn et al.
2007, de Paiva et al. 2013, Bierkens et al. 2015).
Progressively accurate, large-scale models provide a wealth
of information for addressing a variety of water problems,
such as the prediction of streamflow regime in data-scarce
regions of the world (e.g. Pechlivanidis and Arheimer
2015) and the implementation of large-scale and trans-
boundary policies for water resources systemmanagement
(e.g. de Roo et al. 2012), or flood-risk mitigation (de Paiva
et al. 2013, Sampson et al. 2015, Falter et al. 2016).
However, the local performances are highly variable (see
e.g. de Paiva et al. 2013, Donnelly et al. 2016), reflecting the
quality of macroscale input data and the adequacy of the
conceptual scheme to accurately represent peculiar hydro-
logical processes that locally drive the rainfall–runoff
transformation.

An empirical characterization of the natural streamflow
regime over large areas could be used as a benchmark,
although the availability and accessibility of streamflow
observations can be limiting even in technologically
advanced regions of the world. This study presents a

statistical regionalization of streamflow regimes in the
Danube region, which is the largest watershed in Europe.

For a compilation of 511 discharge measurement
stations across the Danube river basin, streamflow
indices and empirical period-of-record flow–duration
curves (FDCs) were computed along with a set of
catchment descriptors. An FDC represents the prob-
ability for a given river cross-section of streamflow
being greater than or equal to a given discharge value;
as such an FDC is a hydrological signature of a given
catchment and its shape reflects climate conditions and
the hydrogeological characteristics of the catchment
itself (see e.g. Castellarin 2014, Westerberg et al.
2016). For this reason, FDCs are routinely used for
addressing water resources management problems
such as hydropower feasibility studies, classification of
streamflow regimes, design of water supply systems,
irrigation planning and management, definition of
environmental flows, habitat suitability studies, etc.
(see e.g. Vogel and Fennessey 1995, Yaeger et al. 2012).

We first conducted a comprehensive exploration of
the relationships between streamflow regime descrip-
tors and the characteristics of basins. The identified
relationships were used to develop multi-regression
models for predicting the streamflow indices of interest
and for quantifying their predictive accuracy.
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Subsequently, we interpolated the streamflow
regime over the whole Danube river basin, using the
recently proposed geostatistical procedure termed total
negative deviation top-kriging (TNDTK; Pugliese et al.
2014). Compared to regional regression models (see
e.g. Blöschl et al. 2013), the accuracy of which is gen-
erally unsatisfactory for large and highly heterogeneous
study regions, geostatistical procedures have been
shown to provide highly reliable predictions of stream-
flow indices over large study areas, such as FDCs (see
e.g. Pugliese et al. 2016), low flows (see e.g. Castiglioni
et al. 2011, Parajka et al. 2015), flood flows (see e.g.
Archfield et al. 2013), or the entire streamflow regime
(see e.g. Farmer 2016).

This contribution illustrates the performance of a
TNDTK geostatistical interpolation of the empirical
FDCs in the Danube region and discusses the uncer-
tainty of the interpolation.

2 Study area and database description

The present study uses a database compiled by the Joint
Research Centre of the European Commission (DG
JRC), consisting of 511 streamgauges across the
Danube Basin (see Fig. 1). Streamflow indices (mean
annual flow, MAF, and 15 streamflow quantiles asso-
ciated with durations of 1, 5, 10, 20, 30, 40, 50, 60, 70, 75,
80, 90, 95, 97 and 99.7%) were computed from the time
series of streamflow at each gauge, together with a set of

catchment descriptors. The streamflow data quality has
been classified as high quality (DQ1, blue open circles in
Fig. 1) and lower quality (DQ2, red solid dots in Fig. 1):
DQ1 refers to gauging stations with a precise position-
ing along the stream that are unique in their elementary
sub-basin (i.e. portion of basin directly drained by a
river stretch, between two confluences, or from the
headwater to the first confluence), whereas DQ2 refers
to cases in which more streamgauges are present in a
single elementary basin, hence potentially affected by
imprecise positioning along the stream. Together with
the above-mentioned streamgauges, the DG JRC identi-
fies 4381 prediction nodes over the Danube region, for
which we performed the prediction of FDCs described
herein.

We considered all catchment descriptors reported in
the DG JRC database: basin area (km2); minimum,
maximum and mean basin elevation (m a.s.l.); maxi-
mum and minimum average daily temperature (°C);
mean annual precipitation (mm); mean annual potential
evapotranspiration (mm); mean annual number of rainy
days (-); population density for the years 1980, 1990,
2000 and 2015 (inhab km−2); mean of population den-
sities (inhab km−2); fractions of Cropland, Grassland,
Shrub, Bare Soil, Forest, Water, Urban, Fertilized
Cropland and Fertilized Grassland within the total
basin area (-). Table 1 summarizes the empirical values
of a selection of streamflow indices and catchment
descriptors for the 511 study catchments.

Figure 1. Streamgauges considered in this study. Total of 511 streamgauges; blue open circles: high-quality data (DQ1, 138 gauges);
red solid dots: low-quality data (DQ2, 373 gauges).
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3 Relationships between streamflow indices
and catchment descriptors

3.1 Correlation analysis

We assessed the presence of statistically significant correla-
tion between streamflow indices and catchment descrip-
tors using Pearson and Spearman (rank) correlation
coefficients. The Spearman correlations are presented in
Figure 2 for all 511 gauges (DQ1+DQ2) and for the 138
DQ1 gauges in the Danube region. Size and colours of dots
in Figure 2 illustrate the empirical correlation coefficients
between streamflow regime indices and catchment
descriptors. Numbers in Figure 2 indicate the p-values
associated with the null hypothesis of no correlation
between two variables, obtained with the R-function
(R Core Team 2016) cor.test of the package corrplot
(Wei and Viliam 2016). The results of Pearson correlation
show slightly lower absolute values of correlation coeffi-
cients and generally higher p-values, as expected, since
Pearson correlation quantifies the degree of linear depen-
dence between pairs of observations. The results for
Pearson correlation are not illustrated here for conciseness.

As expected, the correlations become stronger if we
limit the analysis to high-quality data (DQ1 basins). In
particular, significant correlations can be seen between
unit streamflow quantiles Q95 and Q50 and annual
rainfall and number of rainy days. Lower positive

correlations can also be observed between Q95 and
Q50 and maximum and mean catchment elevation,
and fractions of total basin area characterized by grass-
land, bare soil, forest and water. The positive correla-
tion found between Q95 (low-flow index) and forested
area is somewhat surprising. Empirical evidence in
Brown et al. (2005), for instance, shows lower surface
water availability during low-flow periods for catch-
ments with fully developed forested areas, due to dee-
per root zones characterizing forests and tree
plantations relative to field and crops, and associated
higher evapotranspiration. However, the relation
between basin forest cover and streamflow is not uni-
vocal (see e.g. Calder 1998, Moore and Heilman 2011).

We can also observe a strong inverse correlation
between streamflow quantiles and mean daily maximum
and minimum temperature, annual potential evapotran-
spiration and fraction of fertilized cropland, which are all
expected due to the inverse correlation between runoff
production and potential evapotranspiration. Significant
but weaker inverse correlations were found between unit
streamflow percentiles and cropland. The 1st percentile
of unit daily streamflows (Q1/Area, representing high
flow) shows a weak negative correlation with population
density (years 1980, 1990, 2000, 2005 and mean value),
which is more unexpected. A possible explanation could
be the positive correlation between population density

Figure 2. Spearman correlation between streamflow regime indices and catchment descriptors of the basins in the Danube region.
Colour and radius of each circle is proportional to the value of the empirical correlation coefficient (see colour scale); numbers
indicate p-values of the null hypothesis: absence of correlation between the two variables. (a) 511 basins (DQ1+DQ2), and (b) 138
basins (DQ1), generated with R-package corrplot (Wei and Viliam 2016).

4 A. CASTELLARIN ET AL.



and catchment area (large cities are usually found in the
lower parts of the rivers), combined with the well-known
negative correlation between catchment size and unit
flood associated with a low exceedance probability (see
e.g. regional envelope curve of flood flows: Castellarin
et al. 2005, Castellarin 2007), which is also found in the
Danube region.

Concerning the selected descriptors of FDC shape (i.e.
slope and TND, total negative deviation, defined in Section
4.1, Equation (2) – the smaller the value the flatter the
curve in both cases), significant positive correlations were
found with mean daily maximum andminimum tempera-
ture and annual potential evapotranspiration, while nega-
tive correlations were found with the fraction of water and
urbanized area. All positive correlations listed above are to
be expected: usually higher temperature and evapotran-
spiration correspond to more arid climates, where river
basin water storage is reduced, causing steeper FDCs; the
larger the presence of inland water bodies (e.g. lakes) the
larger the natural capability to retard and dampen flood
peaks, the flatter the curve. The negative correlation
between urbanized area and FDC slope or TND could be
analogous to what was observed between high-flow regime
and population density; that is, the larger the catchment,
the larger the percentage of urbanized areas (big cities and
large urbanized area tend to cluster in floodplains, see e.g.
Di Baldassarre et al. 2013), the flatter the FDC, due to the
increased capability of the catchment to store water (see
Castellarin et al. 2013).

There are some additional statistically significant
dependencies, which are particularly pronounced if we
limit our attention to DQ1 data (Fig. 2(b)). For instance,
the analysis points out a significant positive correlation
between all unit streamflow percentiles (i.e. Q1/Area; Q50/
Area and Q95/Area) and minimum catchment elevation; it
also highlights an inverse correlation betweenQ1/Area and
population density, and a significant inverse correlation
between FDC slope and TND and maximum catchment
elevation, population density and fractions of grassland,
shrub and water. This is a sensible result as flatter
flow–duration curves are associated with higher capability
of the catchment to temporarily store water volumes; and
this capability generally increases with increasing elevation
(winter snowpack), presence of water bodies, or size of the
catchment.

3.2 Multi-regression models

Weused the above correlation analysis as a basis to identify
log-linear multi-regression models for predicting a given
dependent variable (i.e. a streamflow index) using catch-
ment descriptors. This was done by applying a stepwise
regression analysis (see Draper and Smith 1981, Weisberg

1985) using the R-function lm in R (RCore Team 2016, see
also Chambers 1992). We excluded multi-regression mod-
els associated with an adjusted R-squared, R2

adj � 0:50. To
enable a direct comparison to be made with the results
reported in Section 4 (i.e. geostatistical interpolation), the
accuracy of these models was assessed also in terms of
Nash-Sutcliffe efficiency computed for log-transformed
(LNSE) and natural (NSE) streamflow percentiles.

3.3 Results and discussion

We were only able to derive acceptable (i.e. R2
adj>0:50)

regression models for streamflow indices Q50 (median
discharge), Q1 (1st percentile) and Q95 (95th percentile),
using DQ1 class gauges only. The details of all models are
shown in Table 2.

The multi-regression model analysis highlights the
following aspects:

● it is not possible to identify effective (i.e.
R2
adj > 0:50) multi-regression models for all

streamflow indices of interest in the Danube
region;

● high- and low-flow percentiles (i.e. Q1 and Q95,
respectively) are more difficult to predict than
indices of typical streamflow conditions (i.e. Q50);

● including lower quality streamflow data (DQ2
basins) has a negative impact on model performance;

● multi-regression models are characterized by
rather limited accuracy despite significant correla-
tions between predictands and some of the pre-
dictors; and

● indices of the FDC shape (i.e. FDC slope and TND)
cannot be effectively regressed against any of the
available catchment descriptors (predictors).

In other words,multi-regressionmodels are not capable
of accurately representing streamflow quantiles across all
durations (fromhigh-flow to low-flow quantiles) and study
area (i.e. high- and low-quality gauges, DQ1+DQ2).
Moreover, the unsupervised stepwise regression procedure
used in the analysis does not select any catchment descrip-
tor (i.e. predictor) associated with anthropogenic pressure
or human presence in the catchment as an explanatory
variable in any of the models.

This makes rather evident that resorting to macro-
scale multi-regression models is not a viable approach
for predicting the streamflow regime in ungauged
basins located in the Danube region. For this reason,
we interpolated the empirical FDCs over the stream
network of the Danube basin using the geostatistical

HYDROLOGICAL SCIENCES JOURNAL 5



method recently proposed by Pugliese et al. (2014,
2016), outlined briefly in the next section.

4 Top-kriging interpolation of flow–duration
curves

4.1 Description of the geostatistical interpolation
procedure

Topological kriging (or top-kriging) is a geostatistical tool
for predicting streamflow indices at ungauged river
cross-sections as linear combinations of the empirical
information collected at neighbouring gauging stations
by taking the stream-network topology into account
(Skøien et al. 2006). Top-kriging can be described briefly
as a block-kriging with variable support area, in which the
support area coincides with a watershed of a given river
cross-section; further details on the method can be found
in Skøien et al. (2006, 2014).

The scientific literature illustrates successful applica-
tions of top-kriging for predicting a wide spectrum of
streamflow indices and variables: low flows (see e.g.
Castiglioni et al. 2011, Laaha et al. 2014); high flows and
floods (Merz et al. 2008, Archfield et al. 2013); stream
temperature (Laaha et al. 2013); habitat suitability indices

(Ceola and Pugliese 2014); and daily streamflow series
(Skøien and Blöschl 2007, de Lavenne et al. 2016,
Farmer 2016).

Pugliese et al. (2014, 2016) proposed a method for
using top-kriging to predict continuous FDCs at
ungauged locations, as opposed to regional regression
approaches, which model streamflow quantiles inde-
pendently of each other. They use an “index-flow”
strategy (see e.g. Castellarin et al. 2004) and standar-
dize the empirical FDC at location x, Ψ x; dÞð , where d
indicates the duration, for some reference value Q� xð Þ,
to yield a dimensionless FDC:

ψ x; dð Þ ¼ Ψ x; dð Þ
Q� xð Þ (1)

The term Q� xð Þ can be a given streamflow statistic,
such as the long-term average of the daily streamflow
series. Then, Pugliese et al. (2014) define an overall index
that effectively and objectively summarizes empirical
FDCs, differently from FDC slope which is subjectively
defined. They name this index total negative deviation
(TND), and it is derived by integrating the area between
the lower limb of the FDC and the reference streamflow
value Q� (see definition sketch in Fig. 3).

Table 2. Effective multi-regression models (i.e. adjusted R-squared, R2adj > 0:50) identified for the DQ1 class gauges in the Danube
region.
No. Model R2adj LNSE (NSE) Scatter plot

1 Q95

Area
¼ 1:03 � 10�12 � RainyDays3:46 � MaxElevation0:71 0.73 0.74 (0.62)

2 Q50

Area
¼ 3:74 � 10�10 � Rainfall0:97 � MeanElevation0:53 � MaxElevation0:34 � RainyDays0:92 0.80 0.80 (0.76)

3 Q1

Area
¼ 2:40 � RainyDays2:19 � ET0�2:22 0.66 0.66 (0.57)
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Empirical TND values result from:

TND xð Þ ¼
Xm
i¼1

q x; dið Þ � 1j jΔi (2)

where q x; dið Þ ¼ Q x;dið Þ
Q� xð Þ represents the ith empirical

dimensionless quantile standardized for the selected
reference value Q� xð Þ, Δi is half of the frequency inter-
val between the (i + 1)th and (i – 1)th quantiles and the
summation involves only the m standardized quantiles
≤1. The range of the summation, m, in Equation (2) is
set according to the minimum sample length in the
regional sample. Having calculated empirical TND
values, Pugliese et al. (2014, 2016) proposed using
them within top-kriging as a regionalized variable to
develop site-specific weighting schemes. The same
weights derived through the solution of the linear kri-
ging system for TND are then used for a batch predic-
tion of the continuous, dimensionless FDC for the
ungauged site, x0:

ψ̂ x0; dð Þ ¼
Xn
j¼1

λjψ xj; d
� �

;"d 2 0; 1ð Þ (3)

where λj, for j = 1, . . ., n, are the weights resulting from
the kriging interpolation of TNDs for the n neighbour-
ing gauged catchments; ψ xj; d

� �
is the dimensionless,

empirical FDC at the donor site xj, and ψ̂ x0; dð Þ is the
predicted dimensionless FDC. It is worth highlighting
that the computation of the kriging weights depends on
n, the number of neighbouring sites on which to base
the spatial interpolation.

Once a reliable model (e.g. a regional regression
model, or kriging model) for predicting Q� x0ð Þ at the
ungauged site x0 has been set up for the study region,

the prediction of the dimensional FDC, Ψ̂ x0; dð Þ, can
be obtained as:

Ψ̂ x0; dð Þ ¼ cQ� x0ð Þ ψ̂ x0; dð Þ (4)

where cQ� x0ð Þ is the prediction of Q� x0ð Þ at ungauged
location x0, and ψ̂ x0; dð Þ has the same meaning as in
Equation (3). For the sake of brevity, this prediction
method is referred to as total negative deviation
top-kriging (TNDTK). Additional details can be
found in Pugliese et al. (2014).

4.2 Implementation of TNDTK to the Danube
region

We applied the procedure presented above to the entire
Danube region. All analyses were carried out by applying
the R-package rtop (Skøien et al. 2014). We selected the
mean annual flow (MAF) as the reference streamflow
value Q� for standardizing empirical FDCs across the
study region. The MAF values are available from the
database as long-term average daily discharges.
Concerning DQ1 basins located in the Danube region,
the minimum value, 25th percentile, median, mean value,
75th percentile and maximum value of empirical MAF are
equal to 0.640, 5.90, 28.7, 527, 184 and 6380 m3/s, respec-
tively. Figure 4 illustrates the values of MAF standardized
by catchment area as a function of basin area for the study
region. Based on values illustrated in Figure 4 and some
preliminary TNDTK runs, we regarded as highly
discordant all values of MAF/Area outside the interval
0.0015–0.08 m3 s−1 km−2. All basins with empirical
MAF/Area values falling outside this interval were there-
fore excluded from further analyses. We can observe that
all but one of the 14 discarded basins are associated with

Figure 3. Schematic representation of the total negative deviation (TND, shaded area) for two flow–duration curves (FDCs): (a) a steep
FDC (fast responding catchment) and (b) a flat FDC (slow responding catchment).
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low-quality (DQ2) streamgauges, which further highlights
the low reliability of these outlying values.

Therefore, as the Danube region includes a large
number of low-quality measurement points (i.e. DQ2
streamgauges, see Fig. 1), we decided to perform all
analyses twice, first by focusing only on high-quality
data (i.e. DQ1 measuring points, or 137 catchments)
and then by considering low- and high-quality data
combined (i.e. DQ1+DQ2 measuring points, or 497
catchments). The results of both analyses are reported
in the figures in double-panel layouts.

Top-kriging has been applied by fitting the sample
variogram of the empirical TND values with a five-para-
meter fractal–exponential model (for details, see Skøien
et al. 2006) through a modified version of weighted least
squares regression (WLS; Cressie 1993; for details, see also
the neutral WLS method in rtop, Skøien et al. 2014). The
fitted variogram model was then used to evaluate the
kriging weights for all ungauged sub-basins, based on the
n closest neighbouring gauges. Standardized FDCs were
then predicted at locations of interest through Equation
(3). After a preliminary sensitivity analysis, we set n = 6 in
line with previous studies, suggesting to limit the size of the
kriging neighbourhood when interpolating streamflow
indices, and standardized FDCs in particular (see
Pugliese et al. 2014, 2016). The prediction of dimensional
FDCs at locations of interest via Equation (4) requires
prediction of the local MAF value, which we achieved via

a traditional application of top-kriging that uses the same
settings listed above (i.e. a modified exponential variogram
fitted via WLS regression, neighbourhood size n = 6).

4.3 Cross-validation procedures

We assessed the accuracy of TNDTK predictions in
ungauged sites by means of three different validation stra-
tegies, which also enabled us to better understand the
dependence of the prediction performance on the spatial
density of the empirical data. In particular, in order to
quantitatively test the reliability and robustness of (a)
top-kriging for predicting MAF values, and (b) TNDTK
for predicting FDCs in ungauged basins, we performed
three leave-p-out cross validation procedures (LPOCVs),
in which p coincides with: one site (LPOCV-1), one-third
of the sites (LPOCV-⅓) and one-half of the sites
(LPOCV-½). All three resampling procedures simulate
ungauged conditions at each and every site belonging to
the network of N measuring points. In particular,
LPOCV-1 drops, in turn, one site at a time and performs
the prediction of the streamflow indices of interest in that
very site on the basis of the remaining N – 1 measuring
points; LPOCV-⅓ (or LPOCV-½) randomly subdivides
the N gauged sites into three (or two) subsets and predicts
the streamflow indices of interest in all sites belonging to
one subset on the basis of the data available at the remain-
ing ⅔N (or ½N) gauging sites. LPOCV-1, LPOCV-⅓ and

Figure 4. Unit mean annual flow as a function of basin area for the Danube region and interval identifying extremely discordant
sites (0.08–0.0015 m3 s−1 km−2; dashed lines); shape and colour of dots indicate data quality: high (DQ1 - blue open circles) and low
(DQ2 - red solid dots).
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LPOCV-½ are applied for both DQ1 and DQ1+DQ2 sub-
sets. Finally, we combined LPOCV predictions of MAF
(i.e. cQ�) and dimensionless FDCs by using Equation (4) to
obtain cross-validation predictions of dimensional FDCs
at each gauging site in the Danube region. Concerning the
prediction of MAF, we quantified the regional accuracy in
terms of regional Nash-Sutcliffe efficiency between empiri-
cal and predicted log-transformed (LNSE) and natural
(NSE) MAF values; concerning the prediction of dimen-
sionless and dimensional FDCs we computed LNSE and
NSE values either globally (i.e. assessing overall LNSE and
NSE values across all sites and durations, or across all sites
but duration-wise) and locally (i.e. at each gauge on the
basis of the 15 interpolated streamflow quantiles). Note
that the comparison between LNSE and NSE values is
important for better understanding the efficiencies of
TNDTK for low flows (LNSE) and high flows (NSE).

4.4 Results and discussion

Figures 5, 6 and 7 present, in a similar fashion, the results
obtained relative toMAF, dimensionless FDCs and dimen-
sional FDCs (dimensionless and dimensional curves are
described through 15 streamflow quantiles). Scatter dia-
grams distinguish between DQ1 and DQ1+DQ2 subsets

and report empirical values vs predictions for the three
different resampling strategies used in the study.

Concerning cross-validated predictions of dimen-
sional FDCs, Figure 8 reports the distributions of local
LNSE and NSE values for both DQ1 and DQ1+DQ2
subsets and all resampling strategies, while Figure 9 illus-
trates LNSE values computed across all DQ1 (or DQ1
+DQ2) sites as a function of duration and resampling
strategy. Figure 10 shows the comparison between
observed and interpolated FDCs for the two gauges hav-
ing the best and the worst performances in terms of LNSE
values for DQ1 – LPOCV-1.

The FDCs are of paramount importance for many
water-resources management applications (see e.g.
Vogel and Fennessey 1995, Yaeger et al. 2012), and
therefore the accuracy of interpolated FDCs needs to be
properly assessed.

4.4.1 Viability of geostatistical prediction of FDCs
over large geographical regions
Figures 5–9 illustrate an overall good agreement between
empirical indices of streamflow regimes and their predic-
tions for all three resampling strategies used in cross-
validation. In particular, the scatter diagrams between
empirical and predicted MAF values in Figure 5 highlight

Figure 5. Top-kriging interpolation of mean annual flow (MAF) values in cross-validation: empirical (x-axes) vs predicted (y-axes) MAF
and Nash-Sutcliffe efficiency for log-transformed (LNSE) and natural (NSE) streamflows. See Section 4.4.2 for the three different
resampling strategies used in cross-validation: LPOCV-1 (a, d), LPOCV-⅓ (b, e) and LPOCV-½ (c, f). The LPOCV-1 cross-validated
predictions of MAF for the six DQ1 gauges associated with the worst prediction of dimensional FDCs are highlighted (solid dots, red).
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Figure 6. Top-kriging interpolation of standardized flow–duration curves (each empirical curve is standardized by local mean annual
flow) in cross-validation: empirical (x-axes) vs predicted (y-axes) dimensionless streamflow quantiles and overall Nash-Sutcliffe
efficiency for log-transformed (LNSE) and natural (NSE) streamflows. See Figure 5 caption for further explanation.

Figure 7. Top-kriging interpolation of dimensional flow–duration curves in cross-validation: empirical (x-axes) vs predicted (y-axes)
dimensionless streamflow quantiles and overall Nash-Sutcliffe efficiency for log-transformed (LNSE) and natural (NSE) streamflows.
See Figure 5 caption for further explanation.
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a very good agreement between observed and predicted
values, with the majority of points falling in the vicinity of
the one-to-one line; as a result, LNSE and NSE values are
rather high both for high-quality data (DQ1) and
high- and low-quality data (DQ1+DQ2). The overall pre-
diction performance appears almost independent of the
resampling strategy, and the detriment of cross-validation
predictions remains limited when moving from LPOCV-1
to leave-one-third-out LPOCV-⅓, or to LPOCV-½. It is
worth stressing here that the three cross-validation proce-
dures base all predictions only on 136, 68 and 45 measure-
ment points if we consider the DQ1 subset, and a

significantly larger number of streamgauges (i.e. 496, 248
and 165) when the DQ1+DQ2 subset is considered. As
top-kriging is a geostatistical procedure, its prediction
performance should increase with the density of the gau-
ging network. This effect is visible when looking at the
LNSEs and NSEs obtained for a single data subset, where
LNSE and NSE values slightly decrease for DQ1 (or DQ1
+DQ2) when moving from LPOCV-1 to LPOCV-⅓, and
LPOCV-½. Yet the same consideration does not hold
across datasets, that is, when comparing the results of the
same resampling strategy for DQ1 and DQ1+DQ2. The
higher number of streamgauges included in the DQ1

Figure 8. Cross-validation of predicted dimensional FDCs: box-plots of LNSE (red, left box in each box-plot pair) and NSE (blue, right
box in each box-plot pair) values computed for all (a) DQ1 and (b) DQ1+DQ2 measurement points for three different resampling
strategies used in the study (see Section 4.4.2). Each box shows 25th, 50th (i.e. median) and 75th percentiles; whiskers indicate the
most extreme data points that are no more than 1.5 times the inter-quartile range (difference between 75th and 25th percentiles)
from the box; outlying values are indicated as circles.

Figure 9. Cross-validation of predicted dimensional FDCs: LNSE values computed across all (a) DQ1 and (b) DQ1+DQ2 measurement
points as a function of duration; different curves refer to the three different resampling strategies (see Section 4.4.2).
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+DQ2 subset does not result in better MAF prediction due
to the lower quality of the streamflow data collected at the
additional measuring points.

Figure 6 illustrates the performance of TNDTK for
predicting dimensionless FDCs. These scatter plots
show an excellent agreement between predictions and
empirical data. Overall LNSE and NSE values are well
above 0.8 for both subsets and all three resampling
strategies. As for the results for MAF predictions,
changing the resampling strategy shows a very limited
impact on predicted dimensionless FDCs. Including
additional streamflow data of lower quality (i.e. DQ2
basins) does not have any significant effect on pre-
dicted MAF values and dimensionless FDCs, and
therefore the empirical streamflow regime is captured
equally well by DQ1 and DQ2 subsets.

Figure 7 shows the relationship between empirical and
predicted FDCs in a similar fashion to Figure 6. The
cross-validation exercise shows outstanding perfor-
mance, with overall LNSE and NSE values above 0.9,
and the detriment of prediction performance associated
with the reduction of gauging network density is, again,
very limited. In fact, the scatter plots of Figure 7 show that
the overall LNSE values might be significantly impacted
by a very limited number of dimensionless FDCs that are
poorly predicted. To further discuss this point, LPOCV-1
panels in Figures 5, 6 and 7 highlight (in red) the predic-
tions of MAF, dimensionless and dimensional FDCs
obtained for six DQ1 gauges associated with very poor
prediction of dimensional FDCs (i.e. the six predicted
FDCs are associated with the lowest at-site LNSE values).
Closer inspection reveals that these six gauging points are
all located in areas where the station density is high, and
therefore the low performance should not be attributed to
the lack of hydrological information. Figure 5 reveals that
poor predictions in terms of dimensional FDCs are

mainly associated with poor prediction of MAF, and
that five out of six catchments are associated with low
or very low empirical values of MAF. In fact, five out of
six discordant sites are headwater catchments, for which
top-kriging has been already shown to be less effective
than for medium to large catchments (see e.g. Castiglioni
et al. 2011, Laaha et al. 2014), and whose mean annual
flow is likely to be altered by e.g. manmade diversions.
The same consideration (i.e. significantly altered stream-
flow regime) may apply also to larger catchments.

Aside from a small number of peculiar sites, Figures 5,
6 and 7 show a generalized excellent agreement between
empirical and predicted streamflow indices and flow–
duration curves.

Figure 8 details the local prediction performances
through a box-plot representation of the distributions
of at-site LNSEs and NSEs between empirical and pre-
dicted dimensional FDCs (LNSE and NSE values are
computed on the basis of 15 streamflow quantiles;
box-plots are truncated at LNSE = 0 and NSE = 0,
respectively). It can be seen that, for both DQ1 and
DQ1+DQ2 datasets and all three resampling strategies,
more than 50% of the predictions are associated with at-
site LNSE and NSE values that are above 0.8; in almost
all cases 75% of predicted FDCs correspond to LNSE
and NSE values in excess of 0.5 (the one exception is for
LNSEs in LPOCV-½ for the DQ1 dataset). Figure 8 also
shows that there are outlying sites with very low, and
sometimes negative, LNSE and NSE values; in particular,
negative LNSE (NSE) values are obtained in a number of
cases varying from a minimum of 10.9% (12.3%) to a
maximum of 16.3% (16.1%) of sites, corresponding to
DQ1+DQ2-LPOCV-⅓ (DQ1+DQ2-LPOCV-1) and
DQ1-LPOCV-½ (DQ1-LPOCV-⅓), respectively. All
these cases are associated with poor predictions of
MAF (see also Fig. 5). The box-plots of Figure 8 clearly

Figure 10. Observed and predicted dimensional FDCs for the two catchments having (a) the best and (b) the worst performance in
terms of LNSE in LPOCV-1 for DQ1 measurement points.
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illustrate the decrease in prediction performance asso-
ciated with the three considered resampling procedures
(and the corresponding reduction of gauging network
resolution), which is more evident if results are analysed
on an at-site basis relative to the overall performance
illustrated in Figure 7.

Finally, the LNSE values computed by comparing
duration-wise predicted and empirical streamflow quan-
tiles across all sites for the 15 durations considered in
the study (Fig. 9) indicate very good performance in all
cases, slightly decreasing for increasing durations but
generally well above 0.9 and above 0.85 for all durations
and both subsets DQ1+DQ2 and DQ1. The results are
similar in terms of NSE values, but are not reported here
for the sake of conciseness. Figure 9 confirms the limited
impact of reducing the gauging network density through
the different resampling strategies; it indicates a high
robustness of TNDTK and shows a limited dependence
of prediction performance on duration. A slightly worse
performance can be noted in the low-flow section of the
curves, which was expected. The TNDTK approach
features a homogeneous prediction accuracy across all
durations, different from conventional quantile regres-
sion techniques (see e.g. Blöschl et al. 2013, Castellarin
et al. 2013), whose application to the study area resulted
in significantly lower efficiencies (see Table 2: LNSEs for
95th, 50th and 1st percentiles for DQ1 class gauges).

It is worth emphasising that the overall LNSE and
NSE values are 0.923 and 0.930, respectively, for 137
interpolated FDCs, which were predicted in cross-vali-
dation on the basis of 45 measuring points (i.e. less
than one gauge per 17 500 km2 in the study area),
which proves the effectiveness of TNDTK for interpo-
lation of FDCs over large regions (Pugliese et al. 2016).

Figures 5–8 do not show significant differences
between efficiencies computed in terms of LNSE or
NSE, meaning that TNDTK performances for high
and low flows are equivalent. In particular, discharge
values reported on y-axes in Figure 10 allow us to
confirm that TNDTK performs best for larger catch-
ments, while performance becomes lower for smaller
catchments, especially headwater ones (see e.g.
Castiglioni et al. 2011, Laaha et al. 2014). In both
cases (best and worst LNSE), comparison between the
lower tails of observed and predicted FDCs confirms
that TNDTK tends to overestimate low flows (see
Pugliese et al. 2016).

4.4.2 Indicators of the reliability of interpolated
FDCs over large areas
Given the similarity between results in terms of LNSE
and NSE, we decided to present the assessment of the
reliability of interpolated FDCs by referring to LNSE

values only. The maps in Figure 11 highlight the
LPOCV-1 for the gauged elementary sub-catchments
with an at-site efficiency of cross-validated FDCs
(LNSE) lower than 0, between 0 and 0.7, or higher
than 0.7. As expected, we can observe that the best
performances are typically obtained for nested catch-
ments, large and very large Danube sub-catchments
and nodes where station density is higher, while
lower performances are associated with headwater
catchments located in low-station-density areas.

It would be extremely useful if statements on the
expected accuracy were attached to all interpolated FDCs;
unfortunately, LNSE values for cross-validated flow–dura-
tion curves are available only for gauged elementary catch-
ments (see Fig. 11). A possible measure of prediction
uncertainty is the kriging variance (i.e. estimate of the
interpolation error), which can be derived for any kriging
interpolation scheme and, as such, is an output of each
top-kriging application. This statistic is a combination of
model uncertainty and configuration of observation loca-
tions; so that lower kriging variances are expected for large
prediction catchments that are surrounded by several
streamgauges, whereas higher variances are expected for
prediction nodes located in data-scarce sub-areas and in
upstream catchments.

Figure 12 illustrates standardized prediction variances
(y-axis) resulting from top-kriging interpolation of empiri-
cal TND values as a function of LNSE values of cross-
validated FDCs (LPOCV-1 cross-validation, x-axis).
Standardization of kriging variances was performed by
dividing each value by 0.073, which is the maximum kri-
ging variance computed for the study region and refers to
the DQ1+DQ2 dataset. Figure 12 also reports the rolling
mean for a subset of 30 catchments.

Figure 12 confirms that higher LNSE values are
associated with lower kriging variances; the relation-
ship is clearer for the DQ1+DQ2 subset due to the
larger sample size, but it is visible also for DQ1. Also,
despite the larger number of gauges, Figure 12 clearly
shows that the DQ1+DQ2 subset is associated with
higher kriging variances relative to DQ1, which is yet
another indication of the higher uncertainty and noise
of the streamflow information coming from DQ2
streamgauges.

Therefore, kriging variance can be used as a proxy for
uncertainty of predicted FDCs. Kriging variance is gra-
phically illustrated in Figure 11 for each ungauged ele-
mentary catchment belonging to the Danube region
using a colour scale (the darker the colour blue, the higher
the variance). It is evident that, in both cases, prediction
variance tends to be lower where station density is higher.
Comparison between the two maps points out that inte-
grating the gauging network withDQ2 streamgaugesmay
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enable one locally to reduce the prediction variance (see
e.g. the northeastern portion of the Danube region).
Nevertheless, a weighted average of the kriging variance
that weights the information proportionally to the size of
the considered elementary catchment is equal to 0.042 for
the DQ1 subset and to 0.060 for the DQ1+DQ2 subset,

and therefore significantly larger for the latter subset. This
is consistent with what is reported in Figure 11, which
shows that kriging variance for DQ1+DQ2 is significantly
larger than for DQ1 in the central portion of the Danube
region. Therefore, adding catchments with less accurate
streamflow data (DQ2 subset, see Fig. 1) negatively

Figure 11. Prediction variance and local cross-validation LNSE for Danube region elementary catchments: local LNSE values
obtained in cross-validation (LPOCV-1 sampling strategy, see Section 4.4.2) at (a) 137 DQ1 streamgauges and (b) 497 DQ1+DQ2
streamgauges are colour-coded; kriging variance is also illustrated.
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impacts the capability of the geostatistical interpolation
procedure to represent the streamflow regime in the
central portion of the study region.

This is effectively illustrated in Figure 13, which refers
to 360DQ2 catchments and shows scatter plots of empiri-
cal vs geostatistically predicted MAF values (top-kriging),

Figure 12. Standardized kriging variance for TNDTK interpolation procedure as a function of LNSE for (a) DQ1 and (b) DQ1+DQ2
subsets. LNSE values smaller than 0.7 are omitted. Dashed (red) lines represent the rolling mean computed with a rolling window of
30 catchments.

Figure 13. Top-kriging interpolation in cross-validation, empirical (x-axes) vs predicted (y-axes): (a) mean annual flow (MAF), (b)
dimensionless flow–duration curves (FDCs), (c) dimensional FDCs. Predictions refer to 360 DQ2 catchments and are based on
observations collected at 137 DQ1 measuring points.
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together with dimensional and dimensionless FDCs
(TNDTK procedure). These geostatistical predictions
are based entirely on the data collected at 137 DQ1
measuring points. As illustrated in Figure 13, the overall
performance is analogous to performances illustrated in
Figures 5, 6 and 7. The slight decrease in terms of pre-
diction accuracy relative to DQ1+DQ2-LPOCV-½ (i.e.
panel (f) in Figs. 5, 6 and 7) is to be expected, and results
on the one hand from the reduction of the available
empirical data on which interpolation is based (e.g. the
ratio between measuring and prediction points is equal to
137/360 = 0.38 in this case, while it is 1 for DQ1+DQ2-
LPOCV-½), and on the other hand from the poorer
quality of streamflow data collected at DQ2 measuring
points, which has been highlighted above.

On the basis of these considerations, we decided to use
the DQ1 subset to predict FDCs over the whole study
region (i.e. 4381 prediction nodes), andwe used the kriging
variance as an indicator of prediction uncertainty.

5 Conclusions

While streamflow indices are significantly correlated to
catchment characteristics within the Danube region, their
prediction usingmulti-regressionmodels may not be satis-
factory. A much improved regionalization of empirical
flow–duration curves has been obtained for more than
4000 sub-basins in the Danube river basin by using the
total negative deviation top-kriging method (TNDTK; see
Pugliese et al. 2014, 2016), which was shown to be an
effective and accurate interpolation technique across the
entire study region. Although the spatial density of the
streamgauging network affects the estimation variance of
interpolation, it has been proven that the regionalization
becomes more accurate when low-quality measurements
are discarded. The maps of streamflow quantiles presented
herein may be useful for the evaluation of water resources
availability at ungauged locations, and as a benchmark for
the development of hydrological macroscale models.
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