
Electronic Notes in Theoretical Computer Science �� No� � ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

On the Expressiveness of Linda�like Concurrent
Languages

Antonio Brogi �

Dipartimento di Informatica

Universit�a di Pisa

Pisa� Italy

Jean�Marie Jacquet �

Institut d�Informatique

Facult�es Universitaires de Namur

Namur� Belgium

Abstract

We compare the expressiveness of a class of concurrent languages that employ asyn�

chronous communication primitives �a la Linda� All the languages considered contain

sequential� parallel and choice operators� and they di�er from one another in the

set of communication primitives used� These primitives include tell� get and ask

operations for adding� deleting� and checking for the presence of data in a dataspace

shared by a number of concurrent processes� as well as a nask �negative ask� opera�

tion for checking for the absence of data in the shared dataspace� We use the notion

of modular embedding introduced by De Boer and Palamidessi in ��	 to compare

the relative expressive power of the languages� A 
rst result is the formalisation of

the intuitive separation result stating that the language with get and tell is strictly

more expressive than the language with ask and tell operations� An interesting

result is that the ability to check for the presence of information �ask� does not

increase the power of a language containing get and tell operations� whereas the

ability to check for the absence of information �nask� does increase the power of

such a language� Another interesting result shown is that the language containing

all the communication primitives considered is strictly more expressive than each

of its sub�languages� except for the redundancy of ask�

� This work has been partially supported by the INTAS Project ������ and by the Belgium�

Italy cooperation project no� ������

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Brogi and Jacquet

� Introduction

Most modern computing systems consist of large numbers of software com�

ponents that interact with one another� The constant expansion of computer

networks is promoting the development of distributed applications based on

the interaction of heterogeneous software components� which are generally

distributed on the net�

The paradigm shift from stand�alone to distributed computer systems has

made the issue of interaction ���� one of the central issues both in the theory

and in the practice of Computer Science� For instance� Wegner ���� recently

supported the provocative argument that 	interaction is more important than

algorithms
� namely that the way in which a software component interacts

with the environment is by far more important than what the component

alone is able to compute�

Increasing attention is being paid to the related issues of the coordination

of software components ������� Terms like 	coordination
 and 	interaction


have a wide meaning and are used to label a number of di�erent activities� For

instance� the term 	coordination
 is often used to denote the issues related

to the specic problem of how heterogeneous� existing software components

can be integrated together so as to coordinate their activities and to let them

interact with one other�

If on the one hand renewed attention is being paid to the issues of interac�

tion and coordination� on the other hand a substantial body of research has

been already devoted to study the issues of communication and synchronisa�

tion of concurrent processes� A lot of work has been done in the design of

concurrent languages �e�g�� CSP� concurrent constraint programming� Linda�

as well as in process algebras �e�g�� CCS� ��calculus� ACP�� just to mention

some examples from two large research bodies�

One of the intriguing questions that is still somehow open to the debate

in the scientic community is the following� Which is the �best� model for

expressing the coordination or the communication of concurrent components�

Of course the question depends on what we mean by the 	best
 model� A

formal way of making precise this question is to reformulate it in terms of the

expressive power of models and languages�

As pointed out in ���� from a computational point of view all 	reasonable


sequential programming languages are equivalent� as they express the same

class of functions� Still it is common practice to speak about the 	power
 of a

language on the basis of the expressibility or non�expressibility of programming

constructs� In general ����� a sequential language L is considered to be more

expressive than another sequential language L� if the constructs of L� can be

translated in L without requiring a 	global reorganisation of the program
�

that is� in a compositional way� Of course the translation must preserve the

meaning� at least in the weak sense of preserving termination�

When considering concurrent languages� the notion of termination must

�



Brogi and Jacquet

be reconsidered as each possible computation represents a possible di�erent

evolution of a system of interacting processes� Moreover deadlock represents

an additional case of termination� De Boer and Palamidessi introduced in ���

the notion of modular embedding as a method to compare the expressive power

of concurrent languages�

In this paper we use the notion of modular embedding to compare the

relative expressive power of a class of concurrent languages that employ asyn�

chronous communication primitives �a la Linda ���� All the languages consid�

ered contain sequential� parallel and choice operators� and they di�er from one

another in the set of communication primitives used� The set of communica�

tion primitives includes tell� get and ask primitives for adding� deleting� and

checking for the presence of data in a dataspace shared by a number of con�

current processes� A primitive nask �negative ask� is also considered� whose

meaning is the dual of ask� namely checking for the absence of data in the

shared dataspace�

We then compare the relative expressive power of languages using di�erent

sets of communication primitives from the set fask� nask� get� tellg� We shall

denote by L�X � the language containing the set X � fask� nask� get� tellg of

communication primitives �plus of course the sequential� parallel and choice

operators��

It is easy to see that a number of �modular� embeddings can be trivially

established by considering sub�languages� For instance�

L�ask� � L�ask� tell� � L�ask� get� tell� � L�ask� nask� get� tell�

where L� � L denotes that L� can be embedded into L�

The most interesting results are however separation results� where a lan�

guage is shown to be strictly more powerful than another language� and equiv�

alence results� where two languages are shown to have the same expressive

power� Consider for instance two languages L�X � and L�X ��� where the set of

primitives X � extends the set X with another primitive c �viz�� X � � X �fcg��
A separation result or an equivalence result on L�X � and L�X �� indicates

whether the inclusion of the new primitive c really increases �separation� the

expressive power of a language L�X �� or whether c is instead just 	syntactic

sugar
 added to L�X � �equivalence��

Our study of this class of languages is complete in the sense that all possible

relations between pairs of languages in the class have been analysed� For each

pair of languages we have established whether they have the same expressive

power �L � L��� or one is strictly more powerful than the other �L � L��� or

none of the above two cases holds �i�e�� L and L� are incomparable�� One of

the separation results is for instance that�

L�ask� tell� � L�ask� get� tell�

that is� the ability of deleting information from a dataspace �in addition to

adding and checking for the presence of information� strictly increases the ex�

pressive power of the language� This separation result can be for instance used

�



Brogi and Jacquet

for comparing concurrent constraint programming ���� with its non�monotonic

extensions ����

Another interesting result is that once we have the ability of adding �tell�

and deleting �get� information� the availability of primitives for checking for

the presence of information �ask� is only 	syntactic sugar
� formally�

L�get� tell� � L�ask� get� tell��

On the other hand� the ability of checking for the absence of information

�nask� does increase the expressive power in this context� namely�

L�get� tell� � L�nask� get� tell��

A consequence of these results is the formalisation of the intuitive separation

result stating that the language with get and tell is strictly more expressive

than the language with ask and tell operations� namely�

L�ask� tell� � L�get� tell��

Finally we show that the availability of all the above communication primitives

makes a language strictly more expressive than each of its sub�languages�

except for the redundancy of ask with respect to get� namely�

L�nask� get� tell� � L�ask� nask� get� tell�

and

L�X � � L�ask� nask� get� tell�

for any subset X of fask� nask� get� tellg di�erent from fnask� get� tellg�

The results presented in this paper provide a formal ground for reasoning

on the family of concurrent languages based on Linda�like communication

primitives� From a practical point of view� these results can be exploited when

evaluating whether it is worth or not to include a communication primitive

�e�g�� like nask� in a Linda�like language�

The paper is organised as follows� Section � introduces the notion of mod�

ular embedding proposed in ���� Section � formally denes syntax and oper�

ational semantics of the class of concurrent languages considered� Section �

contains an exhaustive comparison of the expressive power of the non�trivial

languages of the class� namely of all languages containing tell� This section

contains a large number of propositions� with a proof sketch associated with

each proposition� Figure � summarises the results presented in this section�

Finally section � contains a discussion of related work and some concluding

remarks�

For the sake of completeness� the analysis of the other languages in the class

�not containing tell� is reported in the Appendix� where gure � summarises

the whole set of results�

�



Brogi and Jacquet

L
�

L

O�

O�

�

�

�

S �

S

C D

Fig� �� Basic embedding�

� Modular embedding

We summarise here the method for language comparison� called modular em�

bedding� proposed by De Boer and Palamidessi in ����

A natural way to compare the expressive power of two languages is to see

whether all programs written in one language can be 	easily
 and 	equiva�

lently
 translated into the other language� where equivalent is intended in the

sense of the same observable behaviour�

The basic denition of embedding� given by Shapiro ���� is the following�

Consider two languages L and L
�� Assume given the semantics mappings

�observation criteria� S � L� O and S � � L� � O�� where O and O� are some

suitable domains� Then L can embed L
� if there exists a mapping C �compiler�

from the statements of L� to the statements of L� and a mapping D �decoder�

from O to O�� such that the diagram of Figure � commutes� namely such that

for every statement A � L��

D�S�C�A��� � S ��A�

The basic notion of embedding is too weak since� for instance� the above

equation is satised by any pair of Turing�complete languages� De Boer and

Palamidessi hence proposed in ��� to add three constraints on the coder C and

on the decoder D in order to obtain a notion of modular embedding usable for

concurrent languages� Namely D should be dened in an element�wise way

w�r�t� O�

�X � O � D�X� � fDel�x� j x � Xg �P��

for some appropriate mapping Del� Moreover the compiler C should be dened

in a compositional way w�r�t� the sequential� parallel and choice operators� �

C�A � B� � C�A� � C�B�

C�A jj B� � C�A� jj C�B�

C�A � B� � C�A� � C�B�

�P��

Finally� the embedding should preserve the behaviour of the original processes

� Actually� this is only required for the parallel and choice operators in 	�
�

�



Brogi and Jacquet

w�r�t� deadlock� failure and success �termination invariance��

�X � O� �x � X � tm�
�Del�x�� � tm�x� �P��

where tm and tm�
extract the information on termination from the observables

of L and L�
� respectively�

An embedding is then called modular if it satises properties P�� P�� and

P�� The existence of a modular embedding from L�
into L will be denoted by

L� � L� It is easy to see that � is a pre�order relation� Moreover if L� � L

then L� � L� that is� any language embeds all its sublanguages� This property

descends immediately from the denition of embedding� by setting C and D

equal to the identity function�

� The family of Linda�like concurrent languages

��� Syntax

We shall consider a family of languages L�X �� parameterised on the set of

communication primitives X � The set X consists of the basic Linda primitives

out� in� and rd primitives� for putting an object in a shared dataspace� getting

it and checking for its presence� respectively� together with a primitive testing

the absence of an object from the dataspace� The languages L�X � also include

sequential and parallel composition operators as well as a choice operator in

the style of CCS ����� However� for simplicity purposes� only nite processes

are treated here� under the observation that innite processes can be handled

by extending the results of this paper in the classical way� as exemplied for

instance in �����

The family of languages L�X � is formally dened by the following gram�

mar�

De�nition ���

�i� Let Stoken be a denumerable set� the elements of which are subsequently

called tokens and are typically represented by the letters t and u�

�ii� De�ne the set of communication actions Scom as

c ��� tell�t� j ask�t� j get�t� j nask�t�

where t is a token and c is a communication action�

�iii� Given a subset X of Scom� de�ne the set of agents Sagent by the follow�

ing rule� where A is an agent and c denotes a communication action of

X �

A ��� c j A � A j A jj A j A � A

De�ne then the language L�X � as the above set Sagent�

�



Brogi and Jacquet

��	 Operational semantics

��	�� Con�gurations�

For any X � computations in L�X � may be modelled by the following transition

system written in Plotkin�s style� Following the intuition� most of the cong�

urations consist of an agent together with a multi�set of tokens denoting the

tokens currently available for the computation� To easily express termination�

we shall introduce particular congurations composed of a special terminat�

ing symbol E together with a multi�set of tokens� For uniformity purposes�

we shall abuse language and qualify E as an agent� However� to meet the

intuition� we shall always rewrite agents of the form �E � A�� �E jj A�� and

�A jj E� as A� This is technically achieved by dening the extended set of

agents as follows� and by operating simplications by imposing a bimonoid

structure�

De�nition ��� De�ne the extended set of agents Seagent by the following

grammar

Ae ���E j c j A � A j A jj A j A � A

Moreover� we shall subsequently assert that the structure �Seagent� E� � � jj �

is a bimonoid and simplify elements of L�X � accordingly�

De�nition ��� De�ne the set of stores Sstore as the set of �nite multisets

with elements from Stoken�

De�nition ��� De�ne the set of con�gurations Sconf as Seagent� Sstore�

Con�gurations are denoted as hA j �i� where A is an 
extended� agent and �

is a multi�set of tokens�

��	�	 Transition rules�

The transition rules dening the operational semantics of the language are

reported in Figure ��

Rule �T� states that an atomic agent tell�t� can be executed in any store

�� and that its execution results in adding the token t to the store �� Rules

�A� and �N� state respectively that the atomic agents ask�t� and nask�t� can

be executed in any store containing the token t and not containing this token�

and that their execution does not modify the current store� Rule �G� also

states that an atomic agent get�t� can be executed in any store containing an

occurrence of t� but in the resulting store the occurrence of t has been deleted�

Rules �S�� �P�� and �C� describe the operational meaning of sequential� par�

allel and choice operators in the standard way ����� Note that� in the rst four

rules� the symbol � actually denotes multiset union�

��	�� Observables�

We are now in a position to dene the operational semantics�

�



Brogi and Jacquet

�T� htell�t� j �i �� hE j � � ftgi

�A� hask�t� j � � ftgi �� hE j � � ftgi

�N�
t �� �

hnask�t� j �i �� hE j �i

�G� hget�t� j � � ftgi �� hE j �i

�S�
hA j �i �� hA� j ��i

hA � B j �i �� hA� � B j ��i

�P�

hA j �i �� hA� j ��i

hA jj B j �i �� hA� jj B j ��i

hB jj A j �i �� hB jj A� j ��i

�C�

hA j �i �� hA� j ��i

hA � B j �i �� hA� j ��i

hB � A j �i �� hA� j ��i

Fig� �� Transition rules�

De�nition ���

�i� Let �� and �� be two fresh symbols denoting respectively success and

failure� De�ne the set of histories Shist as the set Sstore� f��� ��g�

�ii� De�ne the operational semantics O � Sagent � P�Shist� as the following

function� For any agent A�

O�A�� f��� ��� � hA j 	i �� hE j �ig

�

f��� ��� � hA j 	i �� hB j �i ��� B �� Eg

�



Brogi and Jacquet

L�tell�

L�nask� tell�

L�ask� nask� tell�

L�ask� nask� get� tell�

L�ask� tell�

L�get� tell� L�ask� get� tell�

L�nask� get� tell�

�
�

�
�

���

H
H
H
H
HHj

� �

��������������

� �

��

��

Fig� �� The hierarchy of languages�

��� Normal form

A classical result of concurrency theory is that modelling parallel composition
by interleaving� as we did� allows agents to be considered in a normal form�
We rst dene what this actually means� and then state the proposition that
agents and their normal forms are equivalent in the sense that they yield the
same computations�

De�nition ��	 Given a subset X of Scom� the set Snagent of agents in

normal form is de�ned by the following rule� where N is an agent in normal

form and c denotes a communication action of X �

N ��� c j c � N j N � N

Proposition ��
 For any agent A� there is an agent N in normal form such

that O�A� � O�N��

� Comparisons

We now perform an exhaustive comparison of the relative expressive power
of the family of Linda�like concurrent languages introduced in the previous
section�

We shall focus here on the non�trivial languages of the class� namely of
the languages containing the tell operation� The whole set of separation and
equivalence results are summarised in gure �� where an arrow from a language
L� to a language L� means that L� embeds L�� that is L� � L�� Notice that�
thanks to the transitivity of embedding� the gure contains only a minimal
amount of arrows� However� apart from these induced relations� no other
relation holds� In particular� when there is one arrow from L� to L� but there
is no arrow from L� to L�� then L� is strictly less expressive than L�� that is
L� � L��

The results of gure � are substantiated by the following propositions�

�



Brogi and Jacquet

Let us rst consider the languages L�ask�tell� and L�nask�tell� obtained

by extending L�tell� with the ability of checking for the presence and for the

absence of data� respectively� in the dataspace� It is easy to show that both

L�ask�tell� and L�nask�tell� are strictly more expressive than L�tell��

Proposition ���

�i� L�tell� � L�ask�tell�

�ii� L�tell� � L�nask�tell�

�iii� L�ask�tell� �� L�tell�

�iv� L�nask�tell� �� L�tell�

Proof� �i� and �ii�� Immediate since L�tell� � L�ask�tell� and L�tell� �

L�nask�tell�� �iii�� By contradiction suppose that L�ask�tell� � L�tell� and

consider the agent ask�a�� It is easy to see that O�ask�a�� � f�	� ���g while

any agent in L�tell� has only successful computations� Hence we have a contra�

diction by P�� �iv�� The proof is analogous to the proof of �iii�� by considering

the agent tell�a��nask�a�� �

We observe that while L�ask�tell� and L�nask�tell� are both strictly more

powerful than L�tell�� they are not comparable with each other�

Proposition ���

�i� L�ask�tell� �� L�nask�tell�

�ii� L�nask�tell� �� L�ask�tell�

Proof� �i�� By contradiction suppose that L�ask�tell� � L�nask�tell� and

consider the agent tell�a�� ask�a�� We show that while O�tell�a�� ask�a�� �

f�fag� ���g the agent C�tell�a� � ask�a�� � which is equivalent by P� to

C�tell�a�� � C�ask�a�� � has only failing computations� thus contradicting

P�� Indeed� any successful computation for C�tell�a�� � C�ask�a�� should start

with a successful computation for C�tell�a�� which should be followed by a suc�

cessful computation for C�ask�a��� However� as O�ask�a�� � f�	� ���g� any

computation of C�ask�a�� starting on the empty store fails� It follows that

any computation starting on any �arbitrary� store should fail since C�ask�a��

is composed of tell and nask primitives only� Hence� even if C�tell�a�� has a

successful computation� this computation cannot be continued by a successful

computation of C�ask�a��� �ii�� Let us again proceed by contradiction� Oth�

erwise� C�tell�a�� � C�nask�a�� has only successful computations� which� by

P� contradicts the fact that O�tell�a� � nask�a�� � f�fag� ���g� Indeed� since

O�tell�a�� � f�fag� ���g� by P� any computation of C�tell�a�� �starting on the

empty store� is successful� Similarly� it follows from O�nask�a�� � f�	� ���g

that any computation starting on the empty store is successful� and conse�

quently� so does any computation starting from any store� since C�nask�a�� is

composed of ask and tell primitives� Summing up� any �successful� computa�

��



Brogi and Jacquet

tion of C�tell�a�� starting on the empty store can be continued by a �successful�

computation of C�nask�a��� �

Let us now include the get primitive in the language� We rst prove the

intuitive separation result that L�get�tell� is strictly more expressive than

L�ask�tell��

Proposition ���

�i� L�ask�tell� � L�get�tell�

�ii� L�get�tell� �� L�ask�tell�

Proof� �i�� Indeed� it su�ces to code any ask�t� primitive into get�t� � tell�t��

�ii�� Assume that L�get� tell� � L�ask� tell� and consider tell�a� � get�a��

Since C is compositional and since O�tell�a� � get�a�� � f�	� ���g� the ter�

mination mark of any element of O�C�tell�a�� � C�get�a��� is successful� As

C�get�a�� is composed of ask and tell primitives only and since ask and tell

primitives do not destroy elements� it follows that any element of

O�C�tell�a�� � C�get�a�� � C�get�a��� has a successful termination mark� How�

ever� O�tell�a� � get�a� � get�a�� � f�	� ���g which contradicts property P���

We observe that L�get�tell� and L�nask�tell� are not comparable with each

other�

Proposition ���

�i� L�nask�tell� �� L�get�tell�

�ii� L�get�tell� �� L�nask�tell�

Proof� �i�� The proof proceeds as for proposition ����ii�� �ii�� Otherwise�

by proposition ����i�� L�ask� tell� � L�nask� tell�� which contradicts proposi�

tion ����i�� �

We now show that ask is redundant when the language contains get and

tell�

Proposition ���

�i� L�get�tell� � L�ask�get�tell�

�ii� L�ask�get�tell� � L�get�tell�

Proof� �i�� Immediate since L�get�tell� � L�ask�get�tell�� �ii�� Immediate by

translating each get and tell primitive to itself and each ask�t� primitive in

get�t� � tell�t�� �

It is worth observing that while adding ask to L�get�tell� does not increase

the expressive power of the language� adding nask does�

��



Brogi and Jacquet

Proposition ��	

�i� L�get�tell� � L�nask�get�tell�

�ii� L�nask�get�tell� �� L�get�tell�

Proof� �i�� Immediate since L�get�tell� � L�nask�get�tell�� �ii�� Otherwise�
it is possible to prove that any computation of C�tell�t�� � C�nask�t�� start�
ing in the empty store is successful� which contradicts by P� the fact that
O�tell�t� � nask�t�� � f�ftg� ���g� Indeed� any computation of C�tell�t��
starting on the empty store succeeds since O�tell�t�� � f�ftg� ���g� Simi�
larly� any computation of C�nask�t�� starting on the empty store succeeds
and consequently so does any general computation starting on any store since
C�nask�t�� is composed of get and tell primitives only� It follows that any
computation of C�tell�t�� starting on the empty store can be continued by
�successful� computations of C�nask�t��� �

Let us now consider the language L�ask�nask�tell�� We rst observe that
L�ask�nask�tell� is strictly more expressive of both L�nask�tell� and L�ask�tell��

Proposition ��


�i� L�nask�tell� � L�ask�nask�tell�

�ii� L�ask�tell� � L�ask�nask�tell�

�iii� L�ask�nask�tell� �� L�nask�tell�

�iv� L�ask�nask�tell� �� L�ask�tell�

Proof� �i� and �ii�� Immediate since L�nask�tell� � L�ask�nask�tell� and
L�ask�tell� � L�ask�nask�tell�� �iii�� Indeed if L�ask�nask�tell� � L�nask�tell�
then� by �ii� and by the transitivity of embedding� L�ask�tell� � L�nask�tell�
would hold� but this would contradict proposition ����i�� �iv�� Similarly if
L�ask�nask�tell� � L�ask�tell� then� by �i� and by the transitivity of embed�
ding� we would have that L�nask�tell� � L�ask�tell�� which contradicts propo�
sition ����ii�� �

Moreover the languages L�ask�nask�tell� and L�get�tell� are incomparable�

Proposition ���

�i� L�ask�nask�tell� �� L�get�tell�

�ii� L�get�tell� �� L�ask�nask�tell�

Proof� �i�� Indeed if L�ask�nask�tell� � L�get�tell� then� since L�nask�tell� �
L�ask�nask�tell�� we would have that L�nask�tell� � L�get�tell� by the transi�
tivity of embedding� which contradicts proposition ����i�� �ii�� Let us proceed
by contradiction and assume that L�get� tell� � L�ask� nask� tell�� Then� as
O�tell�t� � get�t�� � f�	� ���g any computation of A � C�tell�t�� � C�get�t��

��



Brogi and Jacquet

starting in the empty store is successful by P�� Our claim is that� as a conse�

quence� any computation of B � C�tell�t�� � C�get�t�� � C�get�t�� starting in

the empty store is successful� which contradicts� by P� and P�� the fact that

O�tell�t� � get�t� � get�t�� � f�	� ���g� Indeed� assume B has a failing compu�

tation from the empty store� This computation should start with a computa�

tion of A which� as seen above is successful� Moreover� since L�ask� nask� tell�

contains no destructive operation� the contents of the store can only increase

at each computation step� It follows that there are stores �� � � � and an agent

C such that

hC�tell�t�� � C�get�t�� � C�get�t�� j 	i

��� hC�get�t�� � C�get�t�� j �i

��� hC�get�t�� j � � � i

��� hC j � � � � �i ��

Moreover� one may assume that C is in normal form� Since C is blocked� it

cannot contain alternative lead by tell primitives and thus rewrites as

C � ask�u�� � C�� 
 
 
�ask�um� � Cm�nask�v�� � D�� 
 
 
�nask�vn� � Dn�

Again� as C is blocked then� for i � �� 
 
 
 � m� one has ui �� � � � � � and for

j � �� 
 
 
 � n� vj � �� � ��� As� C is compositional� the following computation

steps are valid�

hC�tell�t�� � C�tell�t�� � C�get�t�� � C�get�t�� j 	i

��� hC�tell�t�� � C�get�t�� � C�get�t�� j �i

��� hC�get�t�� � C�get�t�� j � � �i

��� hC�get�t�� j � � � � �i

��� hC j � � � � � � �i

Moreover� as ui �� ����� ��� for i � �� 
 
 
 � m� and vj � ����� ��� for j �

�� 
 
 
 � n� hC j � � � � �i ��� Then C�tell�t�� � C�tell�t�� � C�get�t�� � C�get�t��

has a failing computation starting in the empty store� which contradicts by

P�� the fact that O�tell�t� � tell�t� � get�t� � get�t�� � f�	� ���g� �

Let us now consider the language containing all primitives� We prove that

ask is redundant in the full language�

Proposition ���

�i� L�nask�get�tell� � L�ask�nask�get�tell�

�ii� L�ask�nask�get�tell� � L�nask�get�tell�

Proof� �i�� Immediate since L�nask�get�tell� � L�ask�nask�get�tell�� �ii�� To

establish the second inequality� let us rst code any token t by a pair of tokens

which we denote �t��t��� This can be done because Stoken is denumerable�

for instance� it su�ces to associate the token associated with the integer n to

the tokens associated with the integers �n and ��n� ��� Given such a coding

of tokens� we dene the coder C as follows�

C�ask�t��� get�t�� � tell�t��

��



Brogi and Jacquet

C�nask�t���nask�t��

C�get�t��� get�t�� � get�t��

C�tell�t�� � tell�t�� � tell�t��

Moreover� the decoder D is dened as follows�

Del���� ��� � ��� ��

where � is composed of the tokens t for which t� and t� are in �� the multiplicity
of occurrences of t being that of pairs �t�� t�� in �� To conclude� it remains to
establish that O�A� � D�O�C�A���� for any agent A of L�ask� nask� get� tell��
The key point for this proof consists of rst establishing that if� A� denotes
C�A�� for any agent A� and� if �� denotes the store obtained by coding the
tokens of �� for any store �� then hA j �i �� hB j �i if and only if hA� j

�
�i ��� hB� j � �i� for any agents A� B and any stores �� � � This in turn

is proved by inductively reasoning on the structure of the agent A and for
parallelly composed agents by reasoning on their normal forms� �

Finally� we prove that L�nask� get� tell� and L�ask� nask� get� tell� are
strictly more expressive than any other sublanguage�

Proposition ���

�i� L�ask�nask�tell� � L�ask�nask�get�tell�

�ii� L�ask�nask�get�tell� �� L�ask�nask�tell�

Proof� �i�� Immediate since L�ask�nask�tell� � L�ask�nask�get�tell��
�ii�� Indeed if L�ask�nask�get�tell� � L�ask�nask�tell� then� since L�get�tell� �
L�nask�get�tell� and since L�nask�get�tell� � L�ask�nask�get�tell� by proposi�
tion ����i�� we would have that L�get�tell� � L�ask�nask�tell� by the transitiv�
ity of embedding� But this contradicts proposition ����ii�� �

� Concluding remarks

The notion of modular embedding was introduced and used by De Boer and
Palamidessi in ��� to prove separation results for the class of concurrent logic
languages� namely to prove that Flat CP cannot be embedded into Flat GHC�
and that Flat GHC cannot be embedded into a language without communi�
cation primitives in the guards� while the converse results hold� De Boer and
Palamidessi also showed in ��� a similar separation result for CSP with input
guards w�r�t� full CSP� We have used this notion of modular embedding to
compare the expressive power of a family of Linda�like concurrent languages�
However� the di�erence of languages has required novel proofs and treatments�
as will be appreciated by the reader�

The notion of modular embedding is not of course the only means for
comparing the relative expressive power of formalisms� As we already men�
tioned� the notion of Turing�completeness is for instance a classical yard�stick
for comparing the expressive power of sequential languages� In the eld of

��



Brogi and Jacquet

process algebras� for instance� Vaandrager ���� classied various notions of ex�

pressiveness� ranging from the capability of simulating Turing machines� to the

capability of expressing e�ective operations on graphs� A comparison of di�er�

ent methodologies for comparing the relative expressive power of formalisms

is however outside the scope of this paper� and can be found for instance in

����

Busi� Gorrieri and Zavattaro have recently presented in ��� a process alge�

braic treatment of a family of Linda�like concurrent languages� Besides ask�

get and tell� they consider two other primitives� getp and askp �using our nam�

ing�� for conditional get and conditional ask� Intuitively speaking� the agent

getp�t��P Q tests whether the tuple t is present in the dataspace� If t belongs

to the dataspace then t is removed and the agent chooses P to continue� oth�

erwise the agent directly evolves in Q� The denition of askp is analogous�

with the di�erence that if t belongs to the dataspace it is not removed� It

is worth noting that the primitives getp and askp can be expressed in terms

of the nask operation by rewriting getp�t��P Q as �get�t��P � � �nask�t��Q��

and askp�t��P Q as �ask�t��P � � �nask�t��Q�� Busi� Gorrieri and Zavattaro

build in ��� a lattice of eight languages obtained by considering di�erent sets of

primitives and by taking as observational semantics the coarsest congruence

contained in the barbed semantics� They also show that the lattice of eight

languages collapses to a smaller four�points lattice of di�erent bisimulation�

based semantics� It is interesting to observe for instance that in ��� L�get�tell�

is distinguished from L�ask�get�tell�� as well as L�getp�get�tell� is distinguished

from L�askp�getp�get�tell�� While the point of view of ��� is di�erent from ours�

it would be very interesting to further investigate the relations between the

two approaches� Such a future work may also provide some insights on the

comparison between bisimulation and modular embedding as yard�sticks for

measuring the expressive power of languages�

Busi� Gorrieri and Zavattaro also recently studied in ��� the issue of Turing�

completeness in Linda�like concurrent languages� They dened a process alge�

bra containing Linda�s communication primitives and compared two possible

semantics for the output operation �tell�� They considered an ordered seman�

tics for tell� where the operation returns only when the data have reached the

dataspace� and an unordered semantics for tell� where the operation returns

just after sending the insertion request to the dataspace� The main result

presented in ��� is that the process algebra is not Turing�complete under the

second interpretation of tell� while it is so under the rst interpretation� The

work ��� and ours are somehow orthogonal� While in ��� they studied the

absolute expressive power of di�erent variants of Linda�like languages �using

Turing�completeness as a yard�stick�� we studied the relative expressive power

of di�erent variants of such languages �using modular embedding as a yard�

stick��

One might however argue that Turing�completeness is not probably the

	right
 yard�stick for measuring the �absolute� expressive power of coordi�

��



Brogi and Jacquet

nation languages� like Linda�like languages� Indeed coordination languages

���� are intended to be used for expressing the interaction or coordination of

computational components� rather than for expressing computations in the

Turing�completeness sense� An intriguing question in this perspective might

then be how to formally characterise the absolute expressive power of a coor�

dination language�

Finally� it is worth observing that the so�called generative communication

of Linda bears strong similarities with other well�known interaction models�

like the blackboard model of problem solving in A�I� ����� the GAMMA co�

ordination model ���� or the concurrent constraint paradigm ����� All these

models rely on a notion of abstract shared store via which concurrent agents

synchronise and communicate by performing forms of ask� tell� and get oper�

ations� We plan to devote future work to better analyse the relation between

these models so as to try to get a clearer understanding of the relations be�

tween di�erent coordination models based on �multi��set rewriting operations�

In this direction� ongoing work by Zavattaro ���� is aimed at showing that the

expressive powers of Gamma and Linda are not comparable with each other�

as there seems to be no encoding of one language into the other that preserves

program distribution properties�

Another interesting direction for future work is to investigate the expres�

siveness of Linda�based languages that have been recently proposed by De

Nicola� Ferrari and Pugliese ������ for programming agents capable of migrat�

ing across di�erent computing environments�

References

��	 J� Banatre and D� LeMetayer� Programming by multiset transformation�
Communications of the ACM� ������������ �����

��	 E� Best� F�S� de Boer and C� Palamidessi� Partial Order and SOS Semantics
for Linear Constraint Programs� In D� Garlan and D� Le Metayer� editors�
Coordination ���� LNCS� �����

��	 F�S� de Boer and C� Palamidessi� Embedding as a Tool for Language
Comparison� Information and Computation� ��������������� �����

��	 F�S� de Boer and C� Palamidessi� Embedding as a tool for language comparison�
On the CSP hierarchy� In J�C�M� Baeten and J�F� Groote� editors� Proc� of
CONCUR ��� volume ��� of Lecture Notes in Computer Science� pages ����
���� Springer�Verlag� �����

��	 N� Busi� R� Gorrieri and G� Zavattaro� On the Turing equivalence of Linda
coordination primitives� In C� Palamidessi and J� Parrow �editors� EXPRESS
��� Proceedings of the 	th workshop on Expressiveness in Concurrency� Volume
� of Electronic Notes in Theoretical Computer Science� �����

��



Brogi and Jacquet

�	 N� Busi� R� Gorrieri and G� Zavattaro� A Process Algebraic View of Linda
Coordination Primitives� Theoretical Computer Science� �������������� �����

��	 N� Carriero and D� Gelernter� Linda in Context� Communications of the ACM�
�������������� �����

��	 P� Ciancarini and C� Hankin �editors�� Coordination��� Proceedings of
The First International Conference on Coordination Models and Languages�
Number ��� in LNCS� Springer�Verlag� ����

��	 R� De Nicola� G� Ferrari and R� Pugliese� Coordinating mobile agents via
blackboards and access rights� In D� Garlan and D� Le Metayer �editors��
Coordination���� Proceedings of The Second International Conference on

Coordination Models and Languages� pages �������� LNCS� Springer�Verlag�
�����

���	 R� De Nicola� G� Ferrari and R� Pugliese� KLAIM� a kernel language for agents
interaction and mobility� To appear in IEEE Trans� on Software Engineering�
Special Issue on Mobility and Network Aware Computing �Catalin Roman and
Ghezzi Eds�� �����

���	 D� Garlan and D� Le Metayer �editors�� Coordination���� Proceedings of
The Second International Conference on Coordination Models and Languages�
LNCS� Springer�Verlag� �����

���	 D� Gelernter and N� Carriero� Coordination Languages and Their Signi
cance�
Communications of the ACM� ������������� �����

���	 M� Felleisen� On the expressive power of programming languages� In N� Jones
�editor� �Proceedings European Symposium on Programming�� LNCS ����
pages �������� Springer�Verlag� �����

���	 E� Horita� J�W� de Bakker� and J�J�M�M� Rutten� Fully abstract denotational
models for nonuniform concurrent languages� Information and computation�
��������������� �����

���	 R� Milner� A Calculus of communicating systems� Springer�Verlag� �����

��	 R� Milner� Elements of interaction� Communications of the ACM� �����������
�����

���	 H� P� Nii� Blackboard systems� The blackboard model of problem solving and
the evolution of blackboard architecture� Part �� AI Magazine� ���� pages ������
����

���	 V�A� Saraswat� Concurrent Constraint Programming� The MIT Press� �����

���	 E�Y� Shapiro� Embeddings among concurrent programming languages� In
W�R� Cleaveland �editor�� �Proceedings of CONCUR����� LNCS ��� pages
������� Springer�Verlag� �����

���	 P� Wegner� Why Interaction Is More Powerful Than Algorithms�
Communications of the ACM� May �����

��



Brogi and Jacquet

���	 G� Zavattaro� On the incomparability of Gamma and Linda� Personal
communication� March �����

���	 F� Vaandrager� Expressiveness results for process algebras� In �Proceedings
REX workshop on �Semantics� Foundations and applications��� LNCS� Springer�
Verlag� �����

��



Brogi and Jacquet

L�	�

L�nask� L�ask� L�get� L�ask� get�

L�tell� L�ask� nask� L�nask� get� L�ask�nask�get�

L�nask� tell� L�ask� tell�

L�ask� nask� tell� L�get� tell� L�ask� get� tell�

L�nask� get� tell�L�ask�nask�get�tell�

�
�
�

�
���

H
H
H
H
HHj

�

XXXXXXXXXXXXXz
�

����

����

�

XXXXXXXXXXXXXz
�

��������������

� �

��������������

��

� �
��

Fig� �� The complete hierarchy of languages�

Appendix

For the sake of completeness� we report here also the analysis of the languages
in the class not containing tell� Figure � summarises the complete set of results
for the whole class of languages� The presented results are substantiated by
the following propositions�

Proposition ���

�i� L�	� � L�nask�

�ii� L�	� � L�ask�

�iii� L�nask� �� L�	�

�iv� L�ask� �� L�	�

Proof� �i� and �ii�� Immediate since L�	� � L�nask� and L�	� � L�ask��
�iii� and �iv�� Descend from the fact that� by P�� D is dened elementwise��

Proposition ���

�i� L�ask� �� L�nask�

�ii� L�nask� �� L�ask�

Proof� Indeed� by property P�� termination marks should be preserved� How�
ever� O�A� � f�	� ���g for any agent A of L�nask� and O�B� � f�	� ���g for
any agent B of L�ask�� �

��



Brogi and Jacquet

Proposition ���

�i� L�nask� � L�tell�

�ii� L�tell� �� L�nask�

Proof� �i�� Indeed� it is su�cient to code any primitive nask�t� as tell�t�
and to use as decoder the function which preserves termination marks and
which transforms any store in the empty store� �ii�� Assume by contradiction
that L�tell� � L�nask�� Consider tell�a� and tell�b�� Obviously O�tell�a�� �
f�fag� ���g and O�tell�b�� � f�fbg� ���g� Moreover� since C�tell�a�� and
C�tell�b�� are composed of nask primitives only� O�C�tell�a��� � f�	� ���g
and O�C�tell�b��� � f�	� ���g� Therefore� since O�tell�a�� � D�O�C�tell�a����
and O�tell�b�� � D�O�C�tell�b����� we have that D��	� ���� � �fag� ��� and
D��	� ���� � �fbg� ��� which contradicts the fact that D is a function� �

Proposition ���

�i� L�ask� �� L�tell�

�ii� L�tell� �� L�ask�

Proof� Indeed� by property P�� termination marks should be preserved� How�
ever� O�A� � f�	� ���g for any agent A of L�tell� and O�B� � f�	� ���g for
any agent B of L�ask�� �

Proposition ���

�i� L�ask� � L�get�

�ii� L�get� � L�ask�get�

�iii� L�ask�get� � L�ask�

Proof� Indeed� since for any token t� O�ask�t�� � f�	� ���g � O�get�t��� it
is su�cient to code any ask�t� primitive in the get�t� primitive and vice�versa
and to use the identity as decoding function� �

Proposition ��	

�i� L�nask� � L�ask�nask�

�ii� L�ask� � L�ask�nask�

�iii� L�ask�nask� �� L�nask�

�iv� L�ask�nask� �� L�ask�

Proof� �i� and �ii�� Immediate since L�nask� � L�ask�nask� and L�ask� �
L�ask�nask�� �iii�� By contradiction� if L�ask�nask� � L�nask� then by �ii�
and by transitivity of embedding we would have that L�ask� � L�nask�� which
contradicts proposition ����i�� �iv�� By contradiction� if L�ask�nask� � L�ask�
then by �i� and by transitivity of embedding we would have that L�nask� �
L�ask�� which contradicts proposition ����ii�� �

��



Brogi and Jacquet

Proposition ��


�i� L�ask�nask� � L�nask�get�

�ii� L�nask�get� � L�ask�nask�get�

�iii� L�ask�nask�get� � L�ask�nask�

Proof� Indeed� as for proposition ���� it su�ces to code any ask�t� into get�t�
and vice�versa� �

Proposition ���

�i� L�tell� �� L�ask�nask�

�ii� L�ask�nask� �� L�tell�

Proof� �i�� The proof proceeds as for proposition ����ii� but by stating that
O�C�tell�x��� � f�	� ���g because� on the one hand� ask and nask primitives
cannot update the initial store 	 and� on the other hand� termination marks are
preserved by D� �ii�� Indeed� otherwise� L�ask� � L�tell�� which contradicts
proposition ����i�� �

Proposition ���

�i� L�ask�nask� � L�nask�tell�

�ii� L�nask�tell� �� L�ask�nask�

Proof� �i�� Indeed� since ask and nask primitives do not update the store�
ask and nask primitives may be coded as follows�

C�ask�t��� tell�t� � nask�t�

C�nask�t���nask�t�

for any token t� The decoding function to be used is then dened by

Del���� ��� � �	� ���

�ii�� Indeed� otherwise since L�tell� � L�nask�tell� then L�tell� � L�ask� nask�
which contradicts proposition ����i�� �

Proposition ���

�i� L�ask�nask� � L�ask�tell�

�ii� L�ask�tell� �� L�ask�nask�

Proof� �i�� Let us rst observe that� no A � L�ask� nask� updates the initial
store 	� Moreover� in these conditions� any ask primitive always fails whereas
any nask primitive always succeeds� Since the set of tokens is denumerable�
let us code any token t by its successor� say t�� with respect to some numbering
function� Furthermore� let t� be the rst token in this numbering� The coder
C is then dened as follows�

��



Brogi and Jacquet

C�ask�t��� ask�t��

C�nask�t��� tell�t��

The decoder is the function which preserves termination marks and which
transforms any store into the empty store� �ii�� Assume by contradiction
that L�ask� tell� � L�ask� nask�� Consider tell�a� and tell�b�� Obviously
O�tell�a�� � f�fag� ���g and O�tell�b�� � f�fbg� ���g� Since C�tell�a�� and
C�tell�b�� are composed of ask and nask primitives only and since the decoder
should preserve termination marks by property P�� O�C�tell�a��� � f�	� ���g
and O�C�tell�b��� � f�	� ���g� Therefore� since O�tell�a�� � D�O�C�tell�a����
and O�tell�b�� � D�O�C�tell�b����� we have that D��	� ���� � �fag� ��� and
D��	� ���� � �fbg� ��� which contradicts the fact that D is a function� �

��


