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DiscussionsOn the identification of Dragon Kings among extreme-valued
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Abstract. Extreme values of earth, environmental, ecolog-
ical, physical, biological, financial and other variables of-
ten form outliers to heavy tails of empirical frequency dis-
tributions. Quite commonly such tails are approximated by
stretched exponential, log-normal or power functions. Re-
cently there has been an interest in distinguishing between
extreme-valued outliers that belong to the parent population
of most data in a sample and those that do not. The first type,
called Gray Swans by Nassim Nicholas Taleb (often con-
fused in the literature with Taleb’s totally unknowable Black
Swans), is drawn from a known distribution of the tails which
can thus be extrapolated beyond the range of sampled values.
However, the magnitudes and/or space–time locations of un-
sampled Gray Swans cannot be foretold. The second type
of extreme-valued outliers, termed Dragon Kings by Didier
Sornette, may in his view be sometimes predicted based on
how other data in the sample behave. This intriguing prospect
has recently motivated some authors to propose statistical
tests capable of identifying Dragon Kings in a given ran-
dom sample. Here we apply three such tests to log air per-
meability data measured on the faces of a Berea sandstone
block and to synthetic data generated in a manner statistically
consistent with these measurements. We interpret the mea-
surements to be, and generate synthetic data that are, sam-
ples fromα-stable sub-Gaussian random fields subordinated
to truncated fractional Gaussian noise (tfGn). All these data
have frequency distributions characterized by power-law tails
with extreme-valued outliers about the tail edges.

1 Introduction

The statistics of extremes has been of central interest in many
fields (see examples below) including hydrology (Katz et al.,
2002) where the subject continues to be the focus of active re-
search (Benson et al., 2007; Clarke, 2007; Bara et al., 2009;
El Adlouni and Ouarda, 2009; Laio et al., 2009; Langousis
et al., 2009; Veneziano et al., 2009; Ebtehaj and Foufoula-
Georgiou, 2010; Fernandes et al., 2010; Katz, 2010; Lee
and Ouarda, 2010; Li et al., 2010; Towler et al., 2010; Ver-
hoest et al., 2010; Ailliot et al., 2011; De Michele et al.,
2011; Ribereau et al., 2011; Rojas et al., 2011; Zhang et al.,
2011; Lee et al., 2012; Viglione et al., 2012). Extreme val-
ues commonly cluster around heavy tails of data frequency
distributions which are often approximated by stretched ex-
ponential, log-normal or power functions. Discrimination be-
tween these functional representations is difficult due to the
rarity of extreme events (Clauset et al., 2009; Golosovsky
and Solomon, 2012) and the ubiquitous presence of run-
aways, or outliers, among them (e.g. Barnett and Lewis,
1994; Johansen and Sornette, 1998; Sornette, 2003). Re-
cently there has been an interest in distinguishing between
extreme-valued outliers that belong to the parent popula-
tion of most data in a sample and those that do not (Sor-
nette, 2009). The first type, termed Gray Swans by Taleb
(2007), is inherently unpredictable (often confused in the lit-
erature with Taleb’s totally unknowable Black Swans). Elim-
inating the second type, called Dragon Kings by Sornette
(2009), may help minimize ambiguity in defining (and ex-
trapolating) the tails. More intriguing is Sornette’s sugges-
tion that Dragon Kings may sometimes be predicted on the
basis of precursors lurking in the data (Sornette and Ouil-
lon, 2012). The prospect has motivated some authors to
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examine closely, in a special issue of the European Physi-
cal Journal, the nature of extreme-valued outliers associated
with a wide range of phenomena including rainfall events
(Peters et al., 2012); snow avalanches on mountain slopes
(Ancey, 2012); rupture events associated with the propaga-
tion of cracks or sliding along faults in brittle materials in-
cluding rock failure, landslides and earthquakes (Amitrano,
2012; Lei, 2012; Main and Naylor, 2012) as well as vol-
canic eruptions, landslides, wildfires and floods (Sachs et
al., 2012; Schoenberg and Patel, 2012; Süveges and Davi-
son, 2012); demographic and financial crises (Akaev et al.,
2012; Janczura and Weron, 2012); neuronal avalanches and
coherence potentials in the mammalian cerebral cortex (de
Arcangelis, 2012; Plenz, 2012); citations of scientific papers
(Golosovsky and Solomon, 2012); distributions of city sizes
(Pisarenko and Sornette, 2012); and others. The prospect of
predicting Dragon Kings has further motivated Janczura and
Weron (2012) and Pisarenko and Sornette (2012) to propose
statistical tests capable of identifying (not predicting) such
outliers in a given data set.

In this paper we apply the latter three tests to log air per-
meability data measured on the faces of a Berea sandstone
block and to synthetic data generated in a manner statistically
consistent with these measurements. We focus on identify-
ing Dragon Kings in a given sample, if and after they have
occurred, as opposed to predicting the future occurrence of
Dragon Kings as proposed by Sornette and Ouillon (2012).
We interpret the measurements to be, and generate synthetic
data that are, samples ofα-stable sub-Gaussian random fields
(Samorodnitsky and Taqqu, 1994) subordinated to truncated
fractional Gaussian noise (tfGn). All these data have fre-
quency distributions characterized by power-law tails with
extreme-valued outliers about the tail edges.

2 Statistical tests to diagnose Dragon Kings

As noted in our introduction, there is no unique way to di-
agnose Dragon Kings in a sample. Statistical tests proposed
in the literature for this purpose have been devised with in-
dependent identically distributed (iid) random variables in
mind. Below we present versions of these tests tailored to
stable distributions of the kind we deal with in this paper.

2.1 Rank-ordering plots

The most common way of identifying Dragon Kings (DKs)
has been a visual examination of rank-ordering plots (Sor-
nette, 2009). In these, events are ordered by magnitude from
highest to lowest and plotted versus rank-order on semi-log
or log-log scale. Highest ranked events that deviate markedly
from a model fitted to the majority of extreme values, typ-
ically (but not exclusively) a power model, are designated
DKs. Rank ordering plots differ from empirical cumulative
distributions or survival functions merely by a transposition
of their axes.

2.2 Confidence interval test

In the confidence interval test proposed by Janczura and
Weron (2012), one considers the empirical cumulative dis-
tribution function, ecdf(x), of a random variableX, defined
as

ecdf(x) =
1

n + 1

n∑
i=1

I{xi≤x}, (1)

wheren is the number of observations,xi , andI is an indi-
cator function. Denoting the cumulative distribution function
of X by cdf(x) and making use of the central limit theorem
yields the asymptotic (n → ∞) relationship

√
n

ecdf(x) − cdf(x)
√

cdf(x)(1− cdf(x))

d
−→ N [0,1] , (2)

where N [0,1] is the standard normal distribution. From
Eq. (2) it follows that

P

(
zω/2 <

√
n

ecdf(x) − cdf(x)
√

cdf(x)(1− cdf(x))
< z1−ω/2

)
= 1− ω

n → ∞ (3)

wherezω/2 andz1−ω/2 are theω/2 and 1− ω/2 quantiles of
N [0,1], respectively. Sincez1−ω/2 = −zω/2 Eq. (3) leads to

P

(
cdf(x) +

√
cdf(x)(1−cdf(x))

n
zω/2 < ecdf(x) < cdf(x)

−

√
cdf(x)(1− cdf(x))

n
zω/2

)
= 1− ω n → ∞. (4)

Equation (4) provides, with probability 1−ω, the confidence
intervals within which each point of the empirical cumulative
distribution function lies for any given cdf model fitted to
the data. Janczura and Weron (2012) consider Eq. (4) to be
accurate for sample sizes,n, on the order of several hundred.

In this paper, we considerα-stable probability distribu-
tions characterized by four parameters: stability indexα ∈

(0,2], skewnessβ ∈ [−1,1], scaleσ > 0 and shiftµ. The
distribution is defined by its characteristic function which,
following Samorodnitsky and Taqqu (1994), we write as

ln
〈
eiφX

〉
= iµφ − σα

|φ|
α
[
1+ iβsign(φ)ω(φ,α)

]
;

ω(φ,α) =

{
− tanπα

2 if α 6= 1

2
π

ln |φ| if α = 1
, (5)

where〈〉 represents expected value (ensemble mean),φ is
a real-valued parameter and sign(φ) = 1,0,−1 if φ > 0,=

0,< 0, respectively. Whenα = 2, the distribution becomes
Gaussian. Whenα < 2, one cannot compute confidence in-
tervals explicitly on the basis of Eq. (4). For these cases one
can solve Eq. (4) numerically. As we are concerned mainly
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with power-law tails of the stable distribution in cases char-
acterized byα > 1 and skewness parameterβ 6= 1, we take
advantage of its asymptotic power-law limits

lim
x→∞

P (X > x) = lim
x→∞

1− cdf(x) → σαCα (1+ β)x−α, (6)

lim
x→−∞

P (X < x) = lim
x→−∞

cdf(x) → σαCα (1− β) |x|
−α , (7)

where Cα = 0(α)sin(πα/2)/π , 0(α) being the gamma
function. Substituting Eqs. (6) and (7) into Eq. (4) yields

P

(
1+

√
1− σαCα (1+ β)x−α

nσαCα (1+ β)x−α
zω/2 <

1− ecdf(x)

σαCα (1+ β)x−α

< 1−

√
1− σαCα (1+ β)x−α

nσαCα (1+ β)x
zω/2

)
= 1−ω n → ∞ (8)

P

1+

√
1− σαCα (1− β) |x|

−α

nσαCα (1− β) |x|
−α

zω/2 <
ecdf(x)

σαCα (1− β) |x|
−α

< 1−

√
1− σαCα (1− β) |x|

−α

nσαCα (1− β) |x|
−α

zω/2

= 1−ω n→∞ (9)

for the right and left tails of the stable distribution, respec-
tively.

2.3 DK test

For the right tail of a stable distribution, one has, from
Eq. (6),

lim
x→∞

cdf(x) → 1− σαCα (1+ β)x−α (10)

which is the same as a Pareto distribution with threshold,h,
equal toσ [Cα (1+ β)]1/α. The corresponding DK test (Pis-
arenko and Sornette, 2012) would aim to verify the null hy-
pothesis that all large values of a sample are generated by this
distribution. Suppose thatn∗ sampled values,x, of X exceed
h. Then the normalized random variableV = ln(X/h) has
an exponential distribution

lim
v→∞

cdf(v) → 1− exp(−αv) . (11)

One arranges the corresponding sample values,v, of V in
decreasing order,v1 > v2 > .. . > vn∗

, and evaluates corre-
sponding sample values,z, of a random variableZ according
to

zk = k (vk − vk+1) k = 1. . . (n∗
− 1)

zn∗ = kvn∗. (12)

SinceV is exponentially distributed,Z has aχ2 distribution

with two degrees of freedom. Associate ther (< n∗) largest
values ofzi with a random variableT defined as

T =

1
r

r∑
k=1

zk

1
n∗−r

n∗∑
k=r+1

zk

. (13)

As the numerator in Eq. (13) is the sum ofr random vari-
ables, each of which has aχ2 distribution with two degrees
of freedom, the numerator has aχ2 distribution with 2r de-
grees of freedom. Correspondingly, the denominator has a
χ2 distribution with 2(n∗

− r) degrees of freedom. It follows
thatT has anf distribution with [2r, 2(n∗

− r)] degrees of
freedom. Thep value of the null hypothesis is thus

p = 1− F
[
T ,2r,2(n∗

− r)
]
, (14)

whereF
[
T ,2r,2(n∗

− r)
]

is the cdf of thef distribution.
The null hypothesis is rejected (i.e. the DK test diagnoses
the existence ofr positive DKs) whenp is less than a given
significance level. Pisarenko and Sornette suggest testing at
a significance level of 0.1. Note that each but the largest DK
is preceded in rank order by another DK. Pisarenko and Sor-
nette observe that the outcomes of the DK test should not
depend onh. They suggest conducting the test for a num-
ber ofn∗ values, starting withn∗

= r + 1 but not exceeding
20–30, to avoid small values of(vk − vk+1) and large values
of zk. A similar test applies to the left power-law tail of the
stable distribution.

2.4 U test

The U test, proposed by Pisarenko and Sornette (2012),
makes use of the observation that if a continuous random
variable is inserted into its own distribution, then the result-
ing random variable is uniformly distributed in the interval
[0, 1]. Hence if the variableV defined earlier is introduced
into Eq. (11), the resulting variableU = 1− exp(−αV ) is
uniformly distributed in the interval [0, 1]. Consequently the
m-th order term,Um, in an ordered setU1 < U2 < .. . < Un∗

of U values has a beta distribution with parametersm and
n∗

− m + 1 according to

pdf(um) =
1

B (m,n∗ − m + 1)
um−1

m (1− um)n
∗
−m , (15)

whereB (m,n∗
− m + 1) is the beta function

B
(
m,n∗

− m + 1
)
=

(m − 1)!(n∗
− m)!

n∗!
. (16)

The cumulative distribution ofUm is

cdf(um) =
Bum (m,n∗

− m + 1)

B (k,n∗ − m + 1)
= Ium

(
m,n∗

− m + 1
)
, (17)
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whereBum (m,n∗
− m + 1) is the incomplete beta function,

Bum

(
m,n∗

− m + 1
)
=

um∫
0

xm−1 (1− x)n−m dx, (18)

and Ium (m,n∗
− m + 1) is a regularized incomplete beta

function. Thep value ofUm (i.e. the probability of exceeding
um) is

P (Um > um) = pum = 1−cdf(um) = 1−Ium

(
m,n∗

−m + 1
)
. (19)

We find it convenient to rephrase Eq. (19) in terms of rank-
ing orderk in a sequenceu1 > u2 > .. .un∗ according to

P (Uk > uk) = puk
= 1− cdf(uk) = 1−Iuk

(
n∗

− k + 1,k
)
, (20)

which represents the probability of exceeding the observed
valueuk under the null hypothesis. Ifpuk

is below a given
significance level, one concludes at confidence level 1− puk

thatuk (and thusvk) is a (positive) DK. Pisarenko and Sor-
nette suggest conducting the test at significance level 0.1. In
contrast to the DK test, theU test does not require that a DK
be preceded in ranking order by a larger DK.

3 Analysis of synthetic signals

3.1 Stable random fields subordinated to truncated
fractional Gaussian noise

Even though all three DK tests in Sect. 2 are theoretically
limited to iid random variables, their stated purpose is to
identify DKs in real data, which are seldom such. This mo-
tivates our application of the tests to Berea sandstone data
in Sect. 4 and to synthetic data, statistically consistent with
the latter, in this section. We start with the synthetic data be-
cause, by providing full control of parameters describing the
underlying population, they allow us to examine the DK tests
under various conditions, including iid. Whereas the CI test
has been applied by its authors to both synthetic and real data,
we are not aware of published attempts to apply theU and
DK tests to synthetic signals.

Increments of the Berea sandstone data as well as of sev-
eral other earth variables have been shown by us elsewhere
(Guadagnini et al., 2012; Siena et al., 2012; Riva et al.,
2013a, b) to be consistent withα-stable random fields sub-
ordinated to truncated fractional Gaussian noise (tfGn). We
express these fields as (e.g. Neuman et al., 2013)

1Y (x,s;λl,λu) = W1/2 [G′ (x;λl,λu)−G′ (x + s;λl,λu)
]

= W1/21G(x,s;λl,λu) , (21)

wherex is distance in a given direction,s the lag in the
same direction, andW an α/2-stable random variable to-
tally skewed to the right of zero with scale parameterσW =(
cosπα

4

)2/α, unit skewnessβ = 1 and zero shift, independent

of G′ (x;λl,λu). The latter represents a zero-mean Gaus-
sian random field (or process) that renders1Y sub-Gaussian
(Samorodnitsky and Taqqu, 1994). The fieldG′ possesses a
truncated power variogram (TPV; Di Federico and Neuman,
1997)

γ 2
i (s;λl,λu) = γ 2

i (s;λu) − γ 2
i (s;λl) , (22)

wherei = 1 or 2 and, form = l or u,

γ 2
i (s;λm) = σ 2

G (λm)ρi (s/λm) , (23)

σ 2
G (λm) = Aλ2H

m /2H, (24)

ρ1 (s/λm) =

[
1− exp(−s/λm) + (s/λm)2H

0(1− 2H,s/λm)] 0 < H < 0.5, (25)

ρ2 (s/λm) =

[
1− exp

(
−π (s/λm)2/4

)
+

(
π (s/λm)2/4

)H

0
(
1− H,π (s/λm)2/4

)]
0 < H < 1. (26)

A is a constant,H a Hurst scaling exponent,0(·, ·) the in-
complete gamma function,λl a lower cut-off proportional to
the scale of data measurement or resolution, andλu an upper
cut-off proportional to the scale of the sampling domain. For
λu < ∞, the increments1Y (s;λl,λu) are stationary with
zero-mean symmetric stable distribution characterized by a
lag-dependent scale parameter

σα (s;λl,λu) =

[
γ 2
i (s;λl,λu)

]α/2
. (27)

In the limitsλl → 0 andλu → ∞, the TPVγ 2
i (s;λl,λu) con-

verges to a power variogram (PV)γ 2
i (s) = Ais

2H where

A1 = A0(1− 2H)/2H

and

A2 = A(π/4)2H/20(1− 2H/2)/2H.

3.2 Generation of synthetic signals

We generate realizations1y (x,s;λl,λu) of 1Y (x,s;λl,λu),
subordinated to truncated fractional Gaussian noise
1G(x,s;λl,λu) according to Eq. (21), using parameters
similar to those we infer with this model from Berea sand-
stone data in Sect. 4. The generating algorithm is described
by Riva et al. (2013a). Here we start by creating a realization
1g(x,s;λl,λu) of 1G(x,s;λl,λu) at 5×104 discrete points
on an interval of lengthLu = 5 along thex axis, spaced a
distanceδ = 10−4 (measured in arbitrary consistent length
units) apart, using a TPV of exponential modes defined in
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Eqs. (23)–(25) withA = 1, H = 0.25,λl = 10−4 andλu = 1
or 10. Varying λu in this manner affects the component
σ 2

G (λu) of the variance,σ 2
G, of G′ (x;λl,λu) in Eq. (24). The

variance, obtained upon settings = 0 in Eqs. (23)–(24), is
given by

σ 2
G (λl,λu) =

A

2H

(
λ2H

u − λ2H
l

)
. (28)

With the above parameters,σ 2
G = 1.98 for λu = 1 and

σ 2
G = 6.30 for λu = 10. We then multiply each discrete

1g(x,s;λl,λu) value by a random value,w, of W to yield a
discrete signal1y (x,s;λl,λu) characterized by stability in-
dicesα = 1.2 or 1.5. Figure 1 illustrates signals correspond-
ing to four combinations of the parametersλu andα, and to
β = µ = 0, at lags = 10−2. The signals are seen to be highly
intermittent, punctuated by numerous (positive and negative)
spikes about a near-zero sample mean. The intermittency is
qualitatively similar to that exhibited by many earth, environ-
mental, ecological, biological, physical, social and financial
variables including several discussed by Sornette (2009) and
Janczura and Weron (2012). Since we have generated all sig-
nals with a given model, we know that its spikes represent
the same population as the rest of the synthetic data and are
thus not DKs. We now apply the above statistical tests of di-
agnosing DKs to these signals with the hope that they would
confirm this prior knowledge.

3.3 Diagnostic tests of synthetic signals

Table 1 lists maximum likelihood (ML) estimateŝθ =(
α̂, β̂, σ̂, µ̂

)T

of the parameter vectorθ = (α,β,σ,µ)T for

12 signals we have generated withβ = µ = 0 and all possible
combinations ofλu = 1 and 10,α = 1.2 and 1.5,s = 10−3,
10−2, and 10−1 including those in Fig. 1. ML estimation was
performed with code STABLE of Nolan (2001) by maximiz-
ing an equivalent form of the likelihood

l (θ) =

n∑
i=1

logf (Yi |θ) , (29)

with respect toθ wheren is sample size andf (Y |θ) the
univariate conditionalα-stable probability density function
(pdf) of Y . Also listed are corresponding 95 % confidence
intervals of the estimates, confirming that the univariate pa-
rameter estimates are reasonably close to their generating
(true) multivariate counterparts. The quality of the ML fits
is illustrated graphically fors = 10−2 in Figs. 2–5, which
plot cumulative distributions of|1y| for 1y < 0 and sur-
vival functions of1y for 1y > 0 together with ML estimates
(based on all generated values) and confidence intervals (CIs)
at three confidence levels. The main part of each figure em-
phasizes behaviour at the tails, indicating a slight breakdown
in power-law distribution of the data near the edges. Will the
DK tests in Sect. 2 recognize these outliers to be members of

1 

 

 
 

  

TC3

α = 1.2

λu = 10.0 

x

∆
y

x

TC4

α = 1.5

λu = 10.0 

TC1

α = 1.2

λu = 1.0 

∆
y

TC2

α = 1.5

λu = 1.0 

s = 10-2

x

∆
y

∆
y

x

s = 10-2

s = 10-2
s = 10-2

(a) (b)

(c) (d)

Fig. 1. Increments1y (x,s;λl ,λu) evaluated ats = 10−2 for two
values ofα andλu.

the modelled population even if visually some may appear to
be DKs?

Before addressing this question, it is important to clarify
that just because a sample is inferred by ML to fit anα-stable
distribution, this does not necessarily imply that it might not
fit other heavy-tailed distributions equally well or better. Our
aim is not to identify the best fitting distribution for a set
of data but to verify that (a) the data are consistent with an
α-stable distribution having power-law tails and that (b) the
DK tests identify the correct nature of outliers falling above
or below this tail.

We start addressing the above question by applying the
confidence interval test to the 12 test cases listed in Table 1.
Table 2 lists the number (N ) of points in each case that lie
outside 90 %, 95 % and 99 % confidence intervals in Figs. 2–
5 and their equivalents (not shown). There is not one case
in which a point (or several points) would not fall outside
one (or more) of these confidence intervals. Table 2 lists the
smallest (kmin) and largest (kmax) rank orders of allN outliers
and the ratio betweenkmax and sample size in each case. The
largest of these ratios being 0.3 % qualifies all outliers as rare
large events; whenkmin = 1, the largest value in the sample
forms an outlier.

Next we try theU test with thresholdsh = 10 and 20, be-
yond which the fitted stable distributions in all 12 test cases
are well represented by their asymptotic power-law tails. We
find the outcomes to depend only in a minor way on the
choice ofh and to agree quite closely with those of the confi-
dence interval test. In way of illustration we plot in Fig. 6ap

values for the left tail of the distribution associated with test
case TC1 ats = 10−2 versus rank orderk for both thresholds.
Following the suggestion of Pisarenko and Sornette (2012)
to test for DKs at a significance level of 0.1, we identify the
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Table 1.True and ML-estimated parameters of tfGn signals. True values ofβ andµ are equal to zero in all test cases.

True values α̂ β̂ σ̂ µ̂

T
C

1 s = 10−3: α = 1.20,σ = 0.30 1.19± 0.01 0.00± 0.02 0.30± 0.00 0.00± 0.00
s = 10−2: α = 1.20,σ = 0.56 1.21± 0.01 0.01± 0.02 0.59± 0.01 0.02± 0.01
s = 10−1: α = 1.20,σ = 0.95 1.20± 0.01 0.00± 0.02 1.00± 0.01 0.03± 0.01

T
C

2 s = 10−3: α = 1.50,σ = 0.30 1.48± 0.01 −0.01± 0.03 0.30± 0.00 0.00± 0.00
s = 10−2: α = 1.50,σ = 0.56 1.51± 0.01 −0.01± 0.03 0.59± 0.01 −0.01± 0.01
s = 10−1: α = 1.50,σ = 0.95 1.50± 0.01 −0.02± 0.03 1.01± 0.01 −0.02± 0.02

T
C

3 s = 10−3: α = 1.20,σ = 0.30 1.20± 0.01 0.00± 0.02 0.30± 0.00 0.00± 0.00
s = 10−2: α = 1.20,σ = 0.57 1.19± 0.01 0.02± 0.02 0.59± 0.01 0.05± 0.01
s = 10−1: α = 1.20,σ = 1.02 1.21± 0.01 0.09± 0.02 1.01± 0.01 0.33± 0.01

T
C

4 s = 10−3: α = 1.50,σ = 0.30 1.50± 0.01 0.03± 0.03 0.30± 0.00 0.01± 0.00
s = 10−2: α = 1.50,σ = 0.57 1.49± 0.01 0.03± 0.03 0.59± 0.01 0.02± 0.01
s = 10−1: α = 1.50,σ = 1.02 1.52± 0.01 0.10± 0.03 1.01± 0.01 0.16± 0.02
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Fig. 2.Cumulative distribution versus|1y| for 1y < 0 and survival
function versus1y for 1y > 0 of TC1 ats = 10−2. Main figure
emphasizes behaviour at tails. Solid curves represent ML fitted sta-
ble distribution; dashed curves indicate confidence intervals, CIs.

fifth (k = 5) largest value as DK; so did the confidence inter-
val test (Table 2 and Fig. 2). Strangely, theU test suggests
the presence of DKs at relatively largek values (> 100).
The same test does not identify any DKs on the right tail;
nor did the confidence interval test (Fig. 2). A similar plot
at s = 10−1 in Fig. 6b does not identify the highest ranked
(k = 1) outlier as a DK even though it was diagnosed as
such by the confidence interval test; this outlier would, how-
ever, be diagnosed as a DK by theU test at just a slightly
higher significance level of 0.15. A plot ofp versusk for
the right tail of the distribution associated with test case TC2
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Fig. 3.Cumulative distribution versus|1y| for 1y < 0 and survival
function versus1y for 1y > 0 of TC2 ats = 10−2. Main figure
emphasizes behaviour at tails. Solid curves represent ML fitted sta-
ble distribution; dashed curves indicate confidence intervals, CIs.

at s = 10−2, in Fig. 7a, identifies the first two (k = 1 and 2)
highest ranking outliers as DKs; so did the confidence inter-
val test (Table 2 and Fig. 3). A similar plot for the left tail at
s = 10−1, in Fig. 7b, diagnoses the outlier atk = 1 as a DK;
the same applies for the confidence interval test (Table 2).
Plots ofp versusk for the left tail associated with TC4 at
s = 10−2 ands = 10−1, respectively, in Fig. 8a and b, iden-
tify the first three (k = 1−3) and first (k = 1) highest ranking
outliers as DKs, in accord with the confidence interval test
(Table 2).
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Table 2.Confidence interval test.N is number of outliers,kmin and
kmax being rank orders of first and last outlier, respectively. Ratios
betweenkmax and sample size are in parentheses.

CI N kmin kmax

T
C

1

s = 10−3 90 % 51 5 57 (0.23 %)
95 % 43 9 55 (0.22 %)
99 % 23 10 33 (0.13 %)

s = 10−2 90 % 19 5 45 (0.18 %)
95 % 8 5 15 (0.06 %)
99 % 0 – –

s = 10−1 90 % 12 1 30 (0.13 %)
95 % 5 1 16 (0.07 %)
99 % 0 – –

T
C

2

s = 10−3 90 % 8 17 31 (0.12 %)
95 % 2 18 22 (0.09 %)
99 % 0 – –

s = 10−2 90 % 7 1, 2 11 (0.04 %)
95 % 4 1, 2 10 (0.04 %)
99 % 1 1 –

s = 10−1 90 % 6 1 27 (0.11 %)
95 % 1 1 –
99 % 1 1 –

T
C

3

s = 10−3 90 % 21 5 21 (0.08 %)
95 % 15 8 21 (0.08 %)
99 % 1 14 14 (0.06 %)

s = 10−2 90 % 20 3 40 (0.16 %)
95 % 8 3 11 (0.04 %)
99 % 1 10 10 (0.04 %)

s = 10−1 90 % 62 2 77 (0.30 %)
95 % 18 2 77 (0.30 %)
99 % 0 – –

T
C

4

s = 10−3 90 % 3 4 8 (0.03 %)
95 % 0 – –

s = 10−2 90 % 3 1, 2 3 (0.01 %)
95 % 3 1, 2 3 (0.01 %)
99 % 2 1 3 (0.01 %)

s = 10−1 90 % 5 1 22 (0.09 %)
95 % 1 1
99 % 1 1

We end this analysis with an application of the DK test to
our 12 synthetic test cases. As this test requires that each DK
(except the highest ranked) be preceded (in rank order) by
another DK, we apply it only to cases in which the highest
ranked outlier was previously diagnosed to be a DK. Since
outcomes obtained withh = 10 are identical to those ob-
tained withh = 20, we present below only the former. In test
case TC1 ats = 10−1, the highest ranked value on the left tail
of the distribution was diagnosed by the confidence interval
test as a DK; theU test would have indicated the same at a
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emphasizes behaviour at tails. Solid curves represent ML fitted sta-
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significance level of 0.15 but not at 0.1. Accordingly we set
r = 1 and plot in Fig. 9p values obtained with the DK test for
various numbersn∗ of events on the left tail exceedingh. The
plot confirms the diagnosis of theU test, thep values being
slightly larger than 0.1. In TC2 ats = 10−2 the two highest
ranked events on the right tail were identified as DKs by both
the confidence interval and theU tests. Correspondingly we
setr = 2 and plot in Fig. 10ap values obtained with the DK
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test on the right tail for various numbersn∗ of events exceed-
ingh. The plot clearly confirms the previous findings. In TC2
ats = 10−1 the highest ranked event on the left tail was iden-
tified by both previous tests as a DK, in agreement with DK
test results in Fig. 10b. In TC4 ats = 10−2 the three highest
ranked events on the left tail were identified as DKs by both
previous tests; settingr = 3 in the DK test yields a plot ofp
values versusn∗ (Fig. 11a) that are generally larger than 0.1,
in contrast to these previous tests. In TC4 ats = 10−1 the
highest ranked value on the left tail of the distribution was
diagnosed by the confidence interval andU tests as a DK, in
agreement with the DK test results in Fig. 11b.

We conclude that the three statistical tests (confidence in-
terval,U and DK) yield similar outcomes in most but not all
cases. All three tests identify Dragon Kings where none ex-
ists, casting doubt on their robustness. We found the same to
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be true for synthetic samples of iidα-stable random variables
characterized by the same values of parametersα, β, σ , and
µ (not shown).

4 Analysis of Berea sandstone data

4.1 Statistical analysis of Berea sandstone data

Our air permeability (K) data consist of measurements con-
ducted with a multi-support permeameter (MSP) by Tidwell
and Wilson (1997, 1999) on six faces of a Berea sandstone
block extending 30 cm on each side. Measurements were
taken at intervals of1 = 0.85 cm on a grid of 24×24= 576
points along each face covering a surface of 20×20 cm2. We
(Riva et al., 2013b) analysed natural logK values measured
with the smallest inner radius of the MSP equal to 0.15 cm.
Upon fitting a stable distribution to logK increments paral-
lel to stratification by the maximum likelihood method, we
found the shift and skewness parameters to be virtually zero,
the stability (Ĺevy) indexα to vary little with separation dis-
tance or lag, and scale parameterσ to increase systemati-
cally with lag. We concluded that the increments are consis-
tent withα-stable fields subordinated to tfGn, similar to those
generated in the previous section.

Figure 12a plots all 1344 available logK increments,
1y, computed along directionx parallel to stratification
on four faces of the block (two parallel and two normal
to stratification) at lags = 101. Figure 12b depicts their
sample cumulative distribution together with corresponding
maximum likelihood (ML) estimates, obtained by fittingα-
stable (Nolan, 2001) and Gaussian models to the correspond-
ing sample frequency distribution. The sample distribution
is evidently non-Gaussian, being represented closely by a
near-symmetricα-stable distribution with stability indexα =

1.39±0.08, skewnessβ = 0.09±0.14, scaleσ = 0.26±0.02
and shiftµ = 0.05±0.02. Figure 12c and d compare the sam-
ple frequency distribution of the increments with ML esti-
mates ofα-stable and Gaussian probability density functions
in natural and semi-log coordinates, respectively. The semi-
log plot accentuates oscillations near the tails of the distribu-
tion, which are difficult to discern in natural coordinates.

Figure 13 shows in log-log coordinates how the sample
cumulative distribution and its ML equivalent vary with ab-
solute values,|1y|, of negative increments1y < 0 along
the left tail and how the sample survival function and its
ML equivalent vary with positive increments1y > 0 along
the right tail. In both cases the data fall below the straight
line, or power law, portion of each tail in a way that re-
sembles negative Dragon Kings as defined by Pisarenko
and Sornette (2012). While negative Dragon Kings are not
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commonly discussed in the literature, they are of potential
interest to hydrologists concerned with the possible effects
of low-permeability geologic materials on resource extrac-
tion from, and contaminant migration through, the subsur-
face. The number of points falling below the power-law tails

of the stable distribution in Fig. 13 constitutes less than 2 %
of all incremental data, justifying our ML fit of a stable dis-
tribution to all the data, including the former. Whether or not
these outliers form Dragon Kings will be addressed next.

Nonlin. Processes Geophys., 20, 549–561, 2013 www.nonlin-processes-geophys.net/20/549/2013/



M. Riva et al.: On the identification of Dragon Kings 559

 

 

 

 

 
 

 

 

  

0.0001

0.001

0.01

0.1

1

0.1 1 10

0.0001

0.001

0.01

0.1

1

0.1 1 10

C
u

m
u

la
ti

v
e 

d
is

tr
ib

u
ti

o
n (a) (b)

|∆y (s = 10 ∆)|

� Data

Left tail Right tail 

∆y (s = 10 ∆)

S
u

rv
iv

al
 f
u

n
ct

io
n

ML Stable

90% CIs

95% CIs

99% CIs

Fig. 14.Tails of (a) cumulative distribution versus|1y| for 1y < 0 and(b) survival function versus1y for 1y > 0 of increments evaluated
alongx direction on Berea sandstone block ats = 101. Solid curves represent ML fitted stable distribution; dashed curves indicate CIs.

 

 

 

 

 
  

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

1 10 100

� h = 1

× h = 0.5

Left tail

p
-v

al
u

es
 o

f 
U

-t
es

t (a) (b)
Right tail

p
-v

al
u

es
 o

f 
U

-t
es

t

k k

Fig. 15.U testp values for(a) left and(b) right tails of increments alongx direction on the Berea sandstone block ats = 101.

 

 

 

 
 

 

0.001

0.01

0.1

1

0 20 40 60 80 100

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100

p
-v

al
u

es
 o

f 
 D

K
-t

es
t

n*

Left tail

h = 0.5

p
-v

al
u

es
 o

f 
 D

K
-t

es
t

n*

Right tail

h = 0.5

(a) (b)

× r = 4

∆ r = 6

� r = 8
� r = 4

× r = 5

Fig. 16.DK testp values of increments alongx direction on Berea sandstone block ats = 101: (a) left tail andr = 4,6,8, (b) right tail and
r = 4,5.

4.2 Diagnostic tests of Berea sandstone data

We end by applying the DK tests to our Berea sandstone
data. As seen in Fig. 14, the confidence interval test diag-
noses 13 DKs (8 on the left tail, 5 on the right tail, totaling
fewer than 1 % of the sample) at a significance level of 0.1,
10 DKs (6 on the left tail, 4 on the right tail) at a significance
level of 0.05, and 2 DKs (on the left tail) at significance level

of 0.01. This is in close agreement with results of theU test
in Fig. 15 and those of the DK test (applied tor extreme val-
ues identified by the confidence interval test) in Fig. 16. As
here our tests concern negative DKs, thep values for theU
test and for the DK test are

p = F
[
T ,2r,2

(
n∗

− r
)]

and puk
= Iuk

(
n∗

− k + 1,k
)

(30)

respectively.
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In other words, all statistical tests infer the existence
of negative DKs among the Berea sandstone incremental
log permeability data. Our previous analysis of synthetic
signals generated with a probabilistic model that appears
to capture quite closely observed statistical scaling prop-
erties of the Berea sandstone data, and the lack of any
visual evidence for aberrant geologic structure within the
block, suggests to us that the inferred DKs are not real but
rather artefacts of sampling.

5 Conclusions

We have tested the ability of three recently proposed statisti-
cal tests to diagnose the occurrence of Dragon Kings (DKs)
in a random signal. Our tests relied on (a) synthetically gen-
erated signals extracted fromα-stable sub-Gaussian random
fields subordinated to truncated fractional Gaussian noise
(tfGn) and on (b) natural log air permeabilities measured on
the faces of a 30× 30× 30 cm block of Berea sandstone.
Though we know extreme-valued outliers in the synthetic
signals to be part of the parent population, all three tests iden-
tify some of them (erroneously) as Dragon Kings (members
of a different population). The same happens when the gener-
ated signals are independent and identically distributed (iid)
as required formally by the tests. Application of the same
statistical tests to the Berea data suggests the presence of
negative DKs, for which there appears to be no independent
hydrogeologic evidence. We conclude that existing statisti-
cal tests are not robust enough to reliably diagnose Dragon
Kings in a sample.
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