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Abstract 

In the latest version of the International Centre for Theoretical Physics’ regional climate 

model, RegCM4, CLM was introduced as a new land surface scheme. The performance over 

China of RegCM4-CLM with different convection schemes is analyzed in this study, based 

on a series of short-term experiments. The model is driven by ERA-Interim data at a grid 

spacing of 25 km. The convection schemes employed are: Emanuel; Grell; Emanuel over 

land and Grell over ocean; Grell over land and Emanuel over ocean; and Tietdke. The 

simulated mean surface air temperature and precipitation in December–February–January and 

June–July–August are compared against observation. In general, better performance of 

Emanuel is found both for temperature and precipitation, and in both seasons. Thus, the 

model physics of CLM and Emanuel for the land surface processes and convection, 

respectively, are recommended for further application of RegCM4 over the China region. The 

deficiencies that remain in the model are also outlined and discussed. 
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区域气候模式 RegCM 最新版中引入了新的陆面模式 CLM，为了考察在选用 CLM 时不

同对流参数化方案在中国地区的表现，本文进行了五种不同对流参数化方案下—Grell、

Emanuel、Tietdke，Mix（陆地上位 Emanuel 方案，海洋上为 Grell 方案）和 Mix2（陆

地上为 Grell 方案，海洋上为 Emanuel 方案）的模拟试验。将模拟的冬、夏季平均气温

和降水与观测进行了对比分析，结果表明，Emanuel 方案是综合模拟效果最好的。在使

用 RegCM-CLM 进行中国区域模拟研究时，对流参数化方案推荐选为 Emanuel。 

 

1. Introduction 

Previous studies have shown that model resolution is very important in reproducing present 

climate in China more successfully, and high resolution RCMs in particular can improve the 

simulation of East Asian monsoon climate, compared with the driving GCM (Gao et al. 2006, 

2012; Yu, Wang, and Sun 2010). In climate change projections, high resolution RCMs can 

introduce a fine-scale topography-induced structure in the climate change signal. In addition, 

they can also simulate different patterns of change compared with the driving GCM. The 

differences are mainly due to the stronger and more realistic topographic forcings in the RCM, 

and the resulting circulation and moisture flux changes (Gao et al. 2008). This further 

emphasizes the importance of using RCMs for climate change projections and to produce 

better impact assessments. 

Of the various RCMs that have been applied over the China region, the RegCM series 

(Giorgi, Marinucci, and Bates 1993; Giorgi et al. 1993; Pal et al. 2007; Giorgi et al. 2012) is 

the most commonly used. As the first limited-area model developed for long-term regional 

climate simulation, its application over East Asia can be dated back to the early 1990s (e.g., 

Liu, Giorgi, and Washington 1994), and has since been widely used in a variety of studies 

(e.g., Zhang et al. 2015). As a community model, RegCM is a public, open source, and 

user-friendly tool, with portable code, that can be easily applied to any region of the world. It 

is also supported through the Regional Climate Research Network, or RegCNET, which is a 

widespread network of scientists coordinated by the Abdus Salam International Centre for 

Theoretical Physics (http://users.ictp.it/ RegCNET/). 

Compared with the previous version (RegCM3; Pal et al. 2007), the latest release 

(RegCM4) has undergone substantial development both in terms of its software code and 

physical representations (Giorgi et al. 2012). One of the most important improvements in the 

model physics is the introduction of CLM (Dai et al. 2003; Oleson et al. 2008) as an option to 
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describe land surface processes, i.e., in addition to BATS (Dickinson, Henderson-Sellers, and 

Kennedy 1993), which had been used solely for many years in the model. A brief introduction 

to BATS and CLM in RegCM4 can be found in Giorgi et al. (2012) and Halder, Dirmeyer, 

and Saha (2015). 

Previous studies have shown that the model performs well when using BATS over the 

East Asia region (e.g., Gao et al. 2012). Furthermore, while CLM offers improvements in 

terms of land–atmosphere exchanges of moisture and energy and associated surface climate 

feedbacks compared with BATS (Steiner et al. 2009), its use may lead to a poorer 

performance of RegCM compared with the relatively simple land-surface model of BATS; for 

example, over India, as reported by Halder, Dirmeyer, and Saha (2015). Thus, the 

performance of RegCM4 when using CLM (RegCM4-CLM) needs to be evaluated before its 

further application in climate and climate change simulations. 

Among the different physical processes in climate models, convective parameterization 

is usually considered the most important when simulating monsoon rainfall (Giorgi 1991; 

Leung et al. 2004; Im et al. 2008). Therefore, in the present study, based on a series of 1-yr 

long simulations, we examine the performance of RegCM4-CLM over East Asia when using 

different convection schemes, and try to identify the “best” option for future long-term 

climate change projections. 

The paper is structured as follows: The model, experimental design, and datasets 

employed in the study are described in section 2; section 3 analyzes the model’s performance 

when using the different convection processes; and section 4 provides a brief summary and 

discussion. 

2. Model, data, and experimental design 

Since the release of RegCM4 (http://gforge.ictp.it/gf/project/regcm/), its physical 

representations have been subject to a continuous process of development and 

implementation. The version employed in the present study is RegCM4.4. The version of 

CLM in RegCM4.4 is CLM3.5 (Oleson et al. 2008), and the convection scheme options 

include a simplified version of the Kuo-type scheme of Anthes (Anthes, Hsie, and Kuo 1987), 

the Grell scheme (Grell 1993), the MIT-Emanuel scheme (Emanuel 1991), and the Tiedtke 

scheme (Tiedtke 1989). RegCM4.4 also has the option to run different convection schemes 

over land and ocean, referred to as ‘mixed convection’. More detailed information about the 

convection schemes employed can be found in Giorgi et al. (2012) and Im et al. (2008). 

In the experiments, the Phase II East Asia domain of the Coordinated Regional Climate 
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Downscaling Experiment (CORDEX; Giorgi, Jones, and Asrar 2009) is used, which 

encompasses the whole of continental China and adjacent areas at a horizontal resolution of 

25 km (http://www.cordex.org/index.php?option=com_ 

content&view=article&id=88&Itemid=625). The model is run at its standard configuration of 

18 vertical sigma layers, with the model top at 50 hPa. ERA-Interim data (Uppala et al. 2008) 

at a resolution of 1.5° latitude × 1.5° longitude are used to derive the initial and six-hourly 

updated lateral meteorological boundary conditions needed to drive the model. 

Five experiments using the convection schemes of (1) Emanuel, (2) Grell, (3) Emanuel 

over land and Grell over ocean (Mix), (4) Grell over land and Emanuel over ocean (Mix2), 

and (5) Tiedtke (TDK), are conducted using RegCM4-CLM for the period 1 November 1999 

to 30 November 2000. The first month is used for model spin-up and not included in the 

analysis. The simulations are compared against observation to select the “best” convection 

scheme for the model over the region. Based on previous experience, a 1-yr simulation is in 

general adequate to evaluate model performance, and the year 2000 has been randomly 

selected in this study. 

Other model physics adopted in the experiments include PBL computations employing 

the non-local formulation of Holtslag, Bruijn, and Pan (1990), resolvable scale precipitation 

represented via the scheme of Pal, Small, and Eltahir (2000), and the atmospheric radiative 

transfer computed using the radiation package from CCM3 (Kiehl et al. 1998). 

We focus our analysis on the mean surface air temperature and precipitation in the boreal 

winter of December–January–February (DJF) and summer of June–July–August (JJA) over 

mainland China. The observational dataset employed to validate the model simulations is 

CN05.1 (resolution: 0.25°×0.25°), developed by Wu and Gao (2013), which is an 

augmentation of CN05 (Xu et al. 2009). The model simulations are interpolated bilinearly to 

the same 0.25°×0.25° grids of CN05.1 to facilitate the comparisons. 

3. Results 

3.1 Temperature 

We begin by validating the mean temperature in DJF simulated by RegCM4-CLM when 

using the different convection schemes (Figure 1). A distinct latitudinal distribution of the 

observed temperature is found in eastern China, with over 10°C in southern China and 

dropping to below −18°C in the northeast (Figure 1a). The temperature in western China 

shows a strong dependence on topography. Over the mountains in the northwest and the 

Tibetan Plateau, temperatures are lower than −18°C, but close to zero in the Tarim Basin. 
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In the model simulations, a dominant cold bias over most of China and a warm bias in 

the high latitude areas of Northeast and Northwest China are found (Figures 1b–f). The 

magnitude of the cold bias generally varies within the range 1°C–5°C, with the largest biases 

(exceeding 5°C) found mainly in the Tibetan Plateau. The above pattern of bias is broadly 

consistent to those reported for previous versions of RegCM over the same region (e.g., 

Zhang et al. 2008). It is noted that similar bias also exists in different generations of GCMs 

(e.g., Xu, Gao, and Giorgi 2010; Chen 2014; Jiang, Tian, and Lang 2015). 

The mean temperature in JJA from observation and the bias in the simulations are 

provided in Figure 2. In JJA, the observed temperature shows a much weaker latitudinal 

distribution in eastern China, as compared to DJF. The temperature across the large area 

extending from the southern part of the northeast to the southern coast ranges from 24°C to 

27°C, with more values of less than 30°C found in portions of North China, the middle and 

lower reaches of the Yangtze River, and Hua’nan along the southern coast. Temperatures 

warmer than 27°C are found in the basins in the northwest, and the lowest temperatures in the 

northern part of the Tibetan Plateau are found in western China. 

The model bias in JJA is in general smaller than in DJF, and more sensitive to the choice 

of convection scheme, as can be expected (Figures 2b–f). Both the magnitude and 

distribution of bias show differences across the simulations. A mixture of warm and cold bias 

within ±2.5°C for Emanuel can be found, aside from the larger warm bias over the basins in 

the northwest where observations are lacking due to the sparse distribution of weather 

stations. The bias of Mix shows a similar pattern to that of Emanuel, but with larger values. A 

cold bias generally occurs over the region with Grell, reaching −2.5°C to −5.0°C in southern 

China and the Tibetan Plateau, and to a lesser extent in Mix2 also. The model produces 

results that are in general too warm when using TDK. An overall better performance when 

using the Emanuel scheme is evident in the figure. 

The correlation coefficients between the model simulations and observation for 

temperature are high, at around 0.95 for DJF and 0.98 for JJA. For a better quantitative 

evaluation, the PDF distributions of the temperature bias in DJF and JJA are shown in Figure 

3, and the percentages of grid points with bias within ±1°C over the region are summarized in 

Table 1. As shown in Figure 3a, a dominant cold bias in DJF is evident under the different 

convective schemes, with Emanuel and Mix showing lower magnitudes of bias compared to 

the others. For JJA, consistent with Figure 2, a large warm bias can be found for TDK, and a 

cold bias for Grell and Mix2 (Figure 3b). A normal mode type distribution of bias is apparent 

for the Emanuel and Mix experiments, indicative of relatively better performance. In terms of 
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the bias within ±1°C (Table 1), generally more than double the amount of grid points are well 

simulated in JJA compared with DJF. The largest values in DJF are 26% (Emanuel) and 25% 

(Mix), while in JJA they are 55% (Emanuel) and 48% (Mix). Thus, the Emanuel scheme is 

further confirmed as the “best” with respect to temperature simulation. 

3.2 Precipitation 

The precipitation amounts in DJF from observation and the simulations are presented in 

Figure 4. In DJF, the winter monsoon brings cold and dry air to China from the polar regions, 

leading to very low precipitation over broad areas in the north, except the mountains. 

Precipitation greater than 50 mm is found along and south of the Yangtze River, with maxima 

of over 200 mm in the southeast (Figure 4a). 

The model simulations in general capture the observed precipitation pattern, with an 

increasing gradient from the north to southeast (Figures 4b–f). However, substantial 

overestimation by up to a few factors are found over most of the northern areas, although the 

large values over the mountain chains may relate to uncertainties in the observational dataset 

(Wu et al. 2011). Conversely, the model underestimates the precipitation center in the 

southeast, both in magnitude and spread, except when employing TDK. The spatial 

correlation coefficients between the model simulations and observation are low, in the range 

of 0.16–0.27 (Table 1). Again, it is noted that these discrepancies have also been reported for 

previous versions of RegCM, using BATS, as well as in most GCM simulations (Zhang et al. 

2008; Xu, Gao, and Giorgi 2010; Chen 2014; Jiang, Tian, and Lang 2015). 

JJA is the monsoon season, with precipitation amounts of greater than 500 mm found in 

the south, and decreasing towards the north and northwest (Figure 5a). The pattern is in 

general simulated well by the model using the different convection schemes. The spatial 

detail in terms of the peak precipitation centers over smaller scale mountains versus the 

dryness in the nearby basins in the northwest are also reproduced well by the model. 

A wetter than observed precipitation pattern in northern China is found when using 

Emanuel and Mix, while the model produces results that are too dry when using the Grell 

scheme. The TDK simulation shows considerable overestimation along the southern coast 

and over southwestern China, but underestimation in the northern part of the region. The 

largest values of spatial correlation coefficients for the simulations are found with Emanuel 

and Mix2, both at 0.64, followed by Mix at 0.60 (Table 1). Considering the good performance 

in the temperature simulation when employing Emanuel, we consider it to be the “best” 

convection scheme of RegCM4-CLM over the region. 
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Based on previous experience and studies, it is noted that use of the Emanuel convection 

scheme in RegCM3 and 4 tends to simulate too much precipitation when using BATS as the 

land surface scheme. This is mainly due to the fact that the Emanuel scheme responds quite 

strongly to heating from the surface and, once convection is triggered, it tends to become 

quite strong. BATS maximizes this response because, using a force–restore method with only 

two soil levels of depth up to some tens of centimeters, the surface temperatures respond 

quite strongly to the solar heating and thus the soil pumps sensible heat to the convection 

scheme. By contrast, CLM uses several soil layers down to a depth of several meters; 

therefore, the upper soil temperatures have more inertia and respond less strongly to the solar 

heating. In this way, the pumping of surface heat is lower and the Emanuel scheme is kept 

more stable, ultimately leading to a better performance in the combination of CLM with 

Emanuel. The combination of BATS with Grell also shows good performance; however, 

CLM tends to reduce the forcing of convection and this inhibits the triggering of the Grell 

scheme, which is less “reactive” than Emanuel to surface heating. Therefore, the precipitation 

amount is much reduced when using CLM, which is good for Emanuel but not good for 

Grell. 

4. Summary and discussion 

A series of experiments have been conducted by the newly released RegCM4 to evaluate its 

performance, when using CLM as the land surface process scheme, in simulating the present 

climatology over China. The sensitivity of the model to different convection schemes has also 

been tested and compared with observation. The main findings and conclusions can be 

summarized as follows: 

(1) Compared with the previous version of RegCM, RegCM4-CLM also shows a general 

warm bias in the high latitudes and a cold bias elsewhere in the cold season of DJF. It tends to 

overestimate precipitation in the north and underestimate it in the southeast. These are also 

common features in many GCM simulations. The introduction of CLM does not significantly 

change the model’s behavior in this season. The Emanuel scheme shows generally better 

performance than the other schemes in RegCM4-CLM for DJF, in particular for temperature. 

(2) For JJA, the Grell convection scheme, which also performs well in RegCM3 with 

BATS as the land surface scheme, exhibits a generally cold and dry bias in RegCM4-CLM 

(e.g. Gao et al. 2001, 2012; Gao, Wang, and Giorgi 2013). However, the model’s use of 

Emanuel with CLM agrees better with observed precipitation, as compared to the other 

schemes. Similar to RegCM3, better performance of RegCM4 over the region in JJA, 
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compared with DJF, is found both for temperature and precipitation. 

(3) As a more advanced package compared to the previously used BATS, CLM can be 

considered as the primary land surface processes option in RegCM4. Therein, the use of the 

Emanuel convection scheme is recommended over the China region. We plan to use this 

configuration in long-term, multi-decadal simulations, to further evaluate the model’s 

capability in reproducing the mean climatology, as well as the variability and extremes over 

the region. Following this, we then intend to conduct climate change simulations under the 

CORDEX framework. 

(4) It is important to note that climate models possess common deficiencies in their 

winter simulations for this region, characterized by a warm bias in high latitudes and 

underestimation of precipitation in the southeast. For RegCM4, a better performance in 

summer than in winter can be found. Substantial effort is needed in the future, including more 

extensive analysis of simulations, implementation, and testing of new physical processes in 

models, and more numerical experiments, to better understand and further improve climate 

models. 

Funding 

This study was jointly supported by the National Natural Science Foundation of China 

(41375104) and the Climate Change Specific Fund of China (CCSF201509). 

Acknowledgements 

We thank the three anonymous reviewers for their useful comments, which helped to improve 

the quality of this paper. 

References 

Anthes, R., E.-Y. Hsie, and Y.-H. Kuo. 1987. "Description of the Penn State/NCAR 

mesoscale model version 4 (MM4)." NCAR Technical Note, NCAR/TN-282+STR, 66 pp. 

Chen, X. 2014. "Assessment of the precipitation over China simulated by CMIP5 

multi-models." Chinese Academy of Meteorological Science, 97pp. 

Dai, Y., X. Zeng, R. Dickinson, I. Baker, G. Bona, M. Bosilovich, A. Denning, et al. 2003. 

"The Common Land Model." Bulletin of the American Meteorological Society 84: 

1013-1023. 

Dickinson, R., A. Henderson-Sellers, and P. Kennedy. 1993. "Biosphere-atmosphere Transfer 

Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model." 

NCAR Technical Note, NCAR/TN-387+ STR, 72 pp. 

A
tm

os
ph

er
ic

 a
nd

 O
ce

an
ic

 S
ci

en
ce

 L
et

te
rs

 



  
 

9

Emanuel, K. 1991. "A Scheme for Representing Cumulus Convection in Large-Scale 

Models." Journalof the Atmospheric Sciences 48: 2313-2329. 

Gao, X., Z. Zhao, Y. Ding, R. Huang, and F. Giorgi. 2001. "Climate change due to 

greenhouse effects in China as simulated by a regional climate model." Advances in 

Atmospheric Sciences 18: 1224-1230. 

Gao, X., Y. Xu, Z. Zhao, J. Pal, and F. Giorgi. 2006. "On the role of resolution and 

topography in the simulation of East Asia precipitation." Theoretical and Applied 

Climatology 86: 173-185. 

Gao, X., Y. Shi, R. Song, F. Girogi, Y. Wang, and D. Zhang. 2008. "Reduction of future 

monsoon precipitation over China: comparison between a high resolution RCM 

simulation and the driving GCM." Meteorology and Atmospheric Physics 100: 73-86. 

Gao, X., Y. Shi, D. Zhang, J. Wu, F. Giorgi, Z. Ji, and Y. Wang. 2012. "Uncertainties of 

monsoon precipitation projection over China: results from two high resolution RCM 

simulations." Climate Research 52: 213-226. 

Gao, X., M. Wang, and F. Giorgi. 2013. "Climate change over China in the 21st century as 

simulated by BCC_CSM1.1-RegCM4.0." Atmospheric and Oceanic Science Letters 6: 

381-386. 

Giorgi, F. 1991. "Sensitivity of Simulated Summertime Precipitation over the Western United 

States to Different Physics Parameterizations." Monthly Weather Review 119: 2870-2888. 

Giorgi, F., M. Marinucci, and G. Bates. 1993. "Development of a second generation regional 

climate model (REGCM2). Part I: Boundary layer and radiative transfer processes." 

Monthly Weather Review 121: 2794-2813. 

Giorgi, F., M. Marinucci, G. Bates, and G. Canio. 1993. "Development of a second 

generation regional climate model (REGCM2). Part II: Convective processes and 

assimilation of lateral boundary conditions." Monthly Weather Review 121: 2814-2832. 

Giorgi, F., C. Jones, and G. Asrar. 2009. "Addressing climate information needs at the 

regional level: the CORDEX framework." WMO Bulletin 58: 175-183. 

Giorgi, F., E. Coppola, F. Solmon, L. Mariotti, M. Sylla, X. Bi, N. Elguindi, et al. 2012. 

"RegCM4: model description and preliminary tests over multiple CORDEX domains." 

Climate Research 52: 7-29. 

Grell, G. 1993. "Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations." 

Monthly Weather Review 121: 764-787. 

Halder, S., P. Dirmeyer, and K. Saha. 2015. "Sensitivity of the mean and variability of Indian 

summer monsoon to land surface schemes in RegCM4: Understanding coupled 

A
tm

os
ph

er
ic

 a
nd

 O
ce

an
ic

 S
ci

en
ce

 L
et

te
rs

 



  
 

10

land-atmosphere feedbacks." Journal of Geophysical Research 120: 9437-9458. 

Holtslag, A., E. De Bruijn, and H. Pan. 1990. "A High Resolution Air Mass Transformation 

Model for Short-Range Weather Forecasting." Monthly Weather Review 118: 1561-1575. 

Im, E., J. Ahn, A. Remedio, and W.-T. Kwon. 2008. "Sensitivity of the regional climate of 

East/Southeast Asia to convective parameterizations in the RegCM3 modelling system. 

Part 1: Focus on the Korean peninsula." International Journal of Climatology 28: 

1861-1877. 

Jiang, D., Z. Tian, and X. Lang. 2016. "Reliability of climate models for China through the 

IPCC Third to Fifth Assessment Reports." International Journal of Climatology 36: 

1114-1133. 

Kiehl, J., J. Hack, G. Bonan, B. Boville, D. Williamson and P. Rasch. 1998. "The National 

Center for Atmospheric Research Community Climate Model: CCM3." Journal of 

Climate 11: 1131-1149. 

Leung, L., S. Zhong, Y. Qian, and Y. Liu. 2004. "Evaluation of Regional Climate Simulations 

of the 1998 and 1999 East Asian Summer Monsoon Using the GAME/HUBEX 

Observational Data." Journal of the Meteorological Society of Japan 82: 1695-1713. 

Liu, Y., F. Giorgi, and W. Washington. 1994. "Simulation of summer monsoon climate over 

East Asia with an NCAR regional climate model." Monthly Weather Review122: 

2331-2348. 

Oleson, K., G. Niu, Z. Yang, D. Lawrence, P. Thornton, P. Lawrence, et al. 2008. 

"Improvements to the Community Land Model and their impact on the hydrological 

cycle."  Journal of Geophysical Research 113: G01021, doi:10.1029/2007JG 000563. 

Pal, J., E. Small, and E. Eltahir. 2000. "Simulation of regional-scale water and energy budgets: 

Representation of subgrid cloud and precipitation processes within RegCM."  Journal of 

Geophysical Research 105: 29579-29594. 

Pal, J., F. Giorgi, X. Bi, N. Elguindi, F. Solmon, S. Rauscher, X. Gao, et al. 2007. "Regional 

climate modeling for the developing world: the ICTP RegCM3 and RegCNET." Bulletin 

of the American Meteorological Society 88: 1395-1409. 

Steiner, A., J. Pal, S. Rauscher, J. Bell, N. Diffenbaugh, A. Boone, L. Sloan, et al. 2009. 

"Land surface coupling in regional climate simulations of the West African monsoon." 

Clim. Dyn. 33: 869-892. 

Tiedtke, M. 1989. "A comprehensive mass flux scheme for cumulus parameterization in 

large-scale models." Monthly Weather Review 117: 1779-1800. 

Uppala, S., D. Dee, S. Kobayashi, and A. Simmons. 2008. "Towards a climate data 

A
tm

os
ph

er
ic

 a
nd

 O
ce

an
ic

 S
ci

en
ce

 L
et

te
rs

 



  
 

11

assimilation system: Status update of ERA-Interim." ECMWF newsletter 115: 12-18. 

Wu, J., X. Gao, Y. Shi, and F. Giorgi. 2011. "Climate change simulation over Xinjiang region 

in 21st century by a high resolution RCM." Journal of Glaciology and Geocrylogy (in 

Chinese) 33: 479-487. 

Wu, J., and X. Gao. 2013. "A gridded daily observation dataset over China region and 

comparison with the other datasets." Chinese Journal of Geophysics (in Chinese), 56: 

1102-1111. 

Xu, Y., X. Gao, Y. Shen, C. Xu, Y. Shi, and F. Giorgi. 2009. "A daily temperature dataset over 

China and its application in validating a RCM simulation." Advances in Atmospheric 

Sciences 26: 763-772. 

Xu, Y., X. Gao, and F. Giorgi. 2010. "Upgrades to the reliability ensemble averaging method 

for producing probabilistic climate-change projections." Climate Research 41: 61-81. 

Yu, E., H. Wang, and J. Sun. 2010. "A quick report on a dynamical downscaling simulation 

over China using the nested model." Atmospheric and Oceanic Science Letters 3: 

325-329. 

Zhang, D., X. Gao, and W. Dong. 2008. "Simulation of present climate over China by a 

regional climate model." Journal of Tropical Meteorology 14: 19-23. 

Zhang, D., X. Gao, Y. Luo, J. Xia, and F. Giorgi. 2015. "Downscaling a 20th century climate 

change of a global model for China from RegCM4.0: Attributable contributions of 

greenhouse gas emissions and natural climate variability." Chinese Science Bulletin 60: 

1631-1642. 

A
tm

os
ph

er
ic

 a
nd

 O
ce

an
ic

 S
ci

en
ce

 L
et

te
rs

 



  
 

12

Table 1. Percentages of grid points with a temperature bias of less than ±1°C, and spatial 

correlation coefficients between simulated and observed precipitation, in DJF and JJA, under 

the different convection schemes. 

 Temperature (%) Precipitation
 DJF JJA DJF JJA 

Emanuel 26 55 0.21 0.64 
Grell 14 32 0.16 0.44 
Mix 25 48 0.19 0.60 
Mix2 15 36 0.22 0.64 
TDK 17 41 0.27 0.50 

 

 

 

Figure 1. The (a) observed mean temperature in DJF, 1999–2000, over China, and (b–f) bias 

in the model when using different convection schemes (land only; units: °C): (b) Emanuel; (c) 

Grell; (d) Mix; (e) Mix2; (f) TDK. 

 

Figure 2. The (a) observed mean temperature in JJA, 1999–2000, over China, and (b–f) bias 

in the model when using different convection schemes (land only; units: °C): (b) Emanuel; (c) 

Grell; (d) Mix; (e) Mix2; (f) TDK. 

 

Figure 3. PDF distributions (%) of temperature bias in (a) DJF and (b) JJA, over China, 

derived from the model simulations using different convection schemes (land only; 

units: °C). 

 

Figure 4. The (a) observed and (b–f) simulated mean precipitation in DJF, 1999–2000, over 

China (land only; units: mm): (b) Emanuel; (c) Grell; (d) Mix; (e) Mix2; (f) TDK. 

 

Figure 5. The (a) observed and (b–f) simulated mean precipitation in JJA, 1999–2000, over 

China (land only; units: mm): (b) Emanuel; (c) Grell; (d) Mix; (e) Mix2; (f) TDK.  
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