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Abstract
The San Leo village, located near to Rimini (northern Italy), was built in the medieval period 
on the top of a calcarenite and sandstone plateau, affected by lateral spreading associated 
with secondary rock falls and topples. In fact, a number of landslides endangered the 
historical town since centuries. In order to describe the structural features driving these slope 
instability phenomena, a complete Terrestrial Laser Scanner (TLS) survey all around the 
San Leo cliff was performed. Moreover, Close-Range Photogrammetric (CRP) surveys and 
conventional geomechanical surveys on scanlines have been carried out. The 3D geometry 
of the cliffs was extracted and critical areas have been investigated in detail using dense 
Digital Surface Models (DSMs) obtained from CRP or TLS. The results were used to define 
the structural features of the plateau, to recognize more fractured areas, and to perform 
kinematic analyses, in order to assess the joint sets predisposing to slope instability at the 
cliff scale. The creation of a 3D model was also fundamental for the implementation of the 
geological model to be used in numerical modelling for hydrogeological characterization 
and slope stability analyses.
Keywords: Terrestrial Laser Scanner, Close-Range Photogrammetry, geomechanical 
survey, landslides, San Leo, Italy.

Introduction
In the northern Apennines, historical towns were often built on the top of isolated rock 
plateaux, for defense purposes. The typical geological setting of these slabs, with a brittle 
rock unit lying on a ductile substratum, can promote slope instability phenomena, known 
as lateral spreading. Their evolution can pose a severe risk to the towns themselves and 
to their notable cultural heritage. Several Authors investigated similar rock spreading 
phenomena, indicating among the main influencing factors the deformability contrast 
between the involved units [Casagli, 1994], the overburden weight of the rock slab [Pasuto 
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and Soldati, 2013] and the erosion of the softer material [Bozzano et al., 2008]. As stated 
by Pasuto and Soldati [2013] for similar contexts, the presence of a well-developed system 
of joints can be considered as a controlling factor for the evolution of the phenomena. 
Besides the structural setting of the slab, a further predisposing factor is the groundwater 
flow developing inside the rock mass. The presence of perennial and ephemeral springs at 
the base of the cliffs can lead to accelerated erosion processes causing, together with minor 
landslides, the progressive undermining of the rock slab [Borgatti et al., 2015; Spreafico 
et al., 2015a; Spreafico et al., 2015b]. Even in this case, the discontinuity network plays a 
primary role, allowing the groundwater flow inside the slab and driving its direction and 
velocity. Therefore, the structural characterization of the rock mass is fundamental in the 
frame of landslide hazard assessment procedure.
Usually, the analyses of the geological structures are performed by geomechanical field 
surveys. These can be challenging, due to the difficulty to access steep, high and dangerous 
rock faces or due to the large dimensions of the area to be surveyed. Terrestrial remote 
sensing techniques, including both Terrestrial Laser Scanning (TLS) and Close-Range 
Photogrammetry (CRP), represent a useful complement to conventional field mapping and 
rock mass discontinuity characterization [Coggan et al., 2007; Ferrero et al., 2009; Bistacchi 
et al., 2011; De Souza et al., 2013]. Both these techniques were proven to be useful in the 
study of rock slopes by several Authors [Bitelli et al., 2004; Abellan et al., 2006; Oppikofer 
et al., 2009; Sturzenegger et al., 2009a; Jaboyedoff et al., 2010; Nguyen et al., 2011; Giardino 
et al., 2011; Matasci et al., 2012; Humair et al., 2013; Wolter et al., 2013; Barbarella and 
Fiani, 2013; Di Salvo and Lo Brutto, 2014]. The comprehension of the main strengths and 
limitations of the survey techniques (i.e., geomechanical survey, TLS and CRP) permits to 
understand how they can be complemented to achieve a better characterization of the rock 
mass. This can be done analyzing the workflow and comparing the results. For example 
Assali et al. [2014] compared data sets obtained in a limestone quarry in the French Alps, 
assessing the higher accuracy of TLS and photogrammetry, while Sturzenegger et al. [2009b] 
provide recommendations for optimizing the use of these techniques.
In order to assess the effectiveness of these survey techniques, the San Leo rock slab was 
chosen as a case study (Fig. 1). The particular interest of this case study comes from a number of 
different reasons: i) the distinctive geological and geomorphological settings; ii) the possibility 
to build the full model in three dimensions of a complex geological object with subvertical and 
overhanging cliffs; iii) the landslide risk condition affecting valuable cultural heritage assets.
Data extracted through fracture mapping techniques were used to perform kinematic analyses, 
in order to investigate the possible failure mechanisms in critical areas. Furthermore, the 
results of the analyses permitted to recognize the most fractured areas and to relate these 
zones with the main structural lineaments. This allowed the initial hypotheses about the 
structural features of the plateau to be strengthened. The results of the presented work lay 
the groundwork for understanding the mechanisms promoting the slope instability in the 
plateau, providing the data for further and more advanced slope stability analyses.

Geological context and typical slope instability phenomena
The San Leo rock slab is formed by rocky Epiligurian geological units, named the San 
Marino limestone and the Monte Fumaiolo sandstone units (Fig. 1). The rock mass lies on 
Ligurian Argille Varicolori scaly clays [CARG project, 2013].
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Figure 1 - Views of the (a) 2006 (b) 2014 landslides. (c) Geological/Structural map of the 
area (2007).

The San Leo slab is about 500 m wide and 600 m long and has a general north-westward 
dipping with an angle of about 10°. The subvertical and overhanging cliffs, up to 100 m 
high, which border the slab, are the product of subsequent rock falls and topples [Benedetti 
et al., 2013]. The slab is severely tectonized and crossed by a number of joint sets and 
faults. The overall slope deformation can be described as a rock spreading with associated 
rock falls and topples, partly developing along pre-existing discontinuities. Moreover, the 
underlying scaly clays and loose deposits are involved in earth slides and flows, which 
progressively undermine the foot of the slab. Rock falls and topples, occurring along 
the perimeter of the slab may involve volumes of rock variable from a few m3 to several 
thousand of m3. In particular, detachments of rock blocks along pre-existing discontinuities 
occurred frequently in the cliff underneath the castle and at the entrance of the town. 
One recent example is the landslide occurred the night between the 29th and the 30th of 
November 2008, when a small-scale rock fall (volume equal to about 6 m3) affected the cliff 
overlooking the only access road to the town, blocking the transit for several days. Major 
slope instability events involved the collapse of large portions of rocks mass, often in areas 
undermined by the removal of the underlying clay-rich terrains. These kind of phenomena 
are typical in the northern cliffs, e.g. the 2006 and 2014 landslides (Fig. 1). In particular, in 
2006 the detachment of 50,000 m3 of material caused the reactivation of an earth flow-earth 



Spreafico et al.  Terrestrial Remote Sensing techniques complementing conventional geomechanical surveys

642

slide [Benedetti et al., 2013]. At the end of February 2014, another large event occurred 
in the north-eastern side of the slab, with an estimated volume of approximately 300,000 
m3 [Spreafico et al., 2014]. It caused a retrogression of the cliff of 30 m, threatening some 
private and public buildings located on the top of the slab near to the scarp and again 
reactivating an earth flow-earth slide.
In these major events, the presence of subvertical discontinuities, joined with the undermining 
of the cliff, was proven to control the onset of slope instability and the volume of the failure 
[Spreafico et al., 2015b]. In general, for both minor and major events, the discontinuity 
network assumes a key role in the evolution of slope instability phenomena at different 
spatial and temporal scales, controlling both the groundwater infiltration and flow inside 
the slab and the kinematics of slope failure.

Data collection
The extraction of object geometries from laser scans and photogrammetric images has been 
a topic of research for several years. Both techniques offer the opportunity to collect reliable 
and dense 3D point data over objects or surfaces. In particular, soon after the laser scanner 
devices had been developed to a commercial level, it was speculated that photogrammetry 
would be totally replaced by laser scanners. On the other hand, it was asserted that image 
matching techniques would be able to produce the same point clouds of LiDAR instruments 
without using expensive devices. However, it has afterwards become more clear that the 
methods are complementary and can be deployed also according to the project and site 
specifics [Nex and Rinaudo, 2011].
In this work, based on these issues and with the aim of defining the 3D geometry of the slab 
and to characterize the discontinuity network, all the cliffs were surveyed using a TLS. CRP 
and conventional geomechanical surveys have been carried out in selected areas of the cliff 
in order to compare the geo-structural features extraction capabilities of the three different 
techniques (Fig. 2).

Conventional geomechanical surveys
Conventional geomechanical surveys were carried out along scanlines, according to the methods 
suggested by the International Society for Rock Mechanics [ISRM, 1978]. In particular, the 
position, orientation, spacing, aperture and frequency of the fracture planes or traces intersecting 
the scanline were reported. Moreover, the infilling material was examined and some basic 
parameters, as the rock wall strength (Joint Compression Strength JCS) and roughness profiles 
(Joint Roughness Coefficient JRC) were measured, to derive the strength properties of the 
discontinuities [Barton and Choubey, 1977]. A summary of the possible sampling bias, i.e. 
censoring, truncation, length and f-bias, with proposed corrections is reported in Zhang and 
Einstein [1998, 2000]. This permitted to infer some of the mechanical properties, e.g. cohesion 
and friction angle, and hydraulic properties related to the discontinuities characteristics, e.g. the 
equivalent hydraulic conductivity of the rock mass.
Surveys were conducted in different parts of the plateau, and two of them were considered 
for comparison and validation of remote sensing techniques. The first of these surveys took 
place on the northern side of the slab, in the scarp of the 2006 landslide, while the second 
surveyed area is located on the southern cliff, below the unique access road to the town of 
San Leo (Fig. 3).
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Figure 2 - Localization of the TLS, CRP and geomechanical surveys.

Figure 3 - Areas surveyed along scanlines, a) scanline 1 on the northern cliff and b) scanline 2 on 
the southern cliff. See Figure 2 for location

Terrestrial Laser Scanner (TLS)
TLS surveys were undertaken using a Riegl VZ-400 system coupled with a calibrated 
digital camera. Due to the topography of the area, to the lack of intervisibility between 
survey positions and to the difficulties to access to certain areas, a careful planning of the 
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survey was essential. A series of scans of north and east San Leo cliffs were already taken 
in 2008 and 2011 with a Riegl Z420i laser scanning system. The survey all around the rock 
slab was completed in 2013, scanning the south and west cliff from 16 positions around 
the slab, with a sampling step of about 20 mm on the rock surface (Fig. 4). Due to the 
topography of the area to be surveyed, it was not always possible to perform a close-range 
survey, therefore the long-range mode of the system was also used.
Images were also collected during the surveys with a high resolution calibrated digital 
camera, obtaining an average Ground Sample Distance (GSD) of 2-3 cm, in the areas 
described by high density cloud (point spacing about 2 cm). These images were used to 
colour the point clouds, obtaining over 900 million points with associated RGB value (Fig. 
4a). Point cloud alignment and georeferencing were performed using natural and artificial 
targets (spheres or retro-reflective target tape) surveyed through a three dimensional 
network measured by integrated topographical and GNSS techniques, to obtain the absolute 
ETRF2000 (2008.0 epoch) position of total station standpoints. In the global georeferencing 
process, a GNSS station, located below the castle, was used as master station to frame the 
TLS survey to a global reference system. Its coordinates were derived using the permanent 
GNSS stations of Firenze, San Marino, Perugia and Medicina. The 3D geocentric positions 
were finally projected in the cartographic system UTM-WGS84 (zone 33); the ellipsoidal 
heights were converted in the orthometric ones by means of a model provided by Emilia-
Romagna Region. An overall accuracy of 2-3 cm may be estimated.

Figure 4 - a) TLS point cloud of the south cliff; b) view of the south cliff.

Close-Range Photogrammetry (CRP)
The photogrammetric survey was carried out in two selected areas, applying the Structure 
for Motion (SfM) technique. SfM, mainly developed in the Computer Vision community, 
operates under the same basic principles as stereoscopic photogrammetry: structure can 
be resolved from a series of overlapping, offset images. However, data acquisition differs 
from conventional photogrammetry as far as geometry of the scene, camera positions 
and orientation are concerned, together with the number of images acquired. Orientation 
parameters are solved simultaneously using a highly redundant iterative bundle adjustment 
procedure, based on automatic feature extraction from a set of multiple overlapping images 
[Westoby, 2012]. One of the key issues is related to the use of linear versus non-linear 
techniques to approach the geometric accuracy [Jebara et al., 1999].
The 3D models are generated, in the first step of SfM workflow, in a relative ‘image-
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space’ coordinate system, which must be aligned to a real world, ‘object-space’, coordinate 
system. As well as photogrammetry, the transformation of SfM image-space coordinates to 
an absolute coordinate system can be achieved using known Ground Control Points (GCPs) 
with known object-space coordinates. In this work, in order to optimize survey costs, the 
GCPs were derived from features clearly identifiable in the TLS point cloud. This method 
is less precise with respect to the use of a dedicated topographic survey (i.e., with targets), 
but the final absolute accuracy can be considered adequate considering the objectives of the 
study. Indeed one of the goals of this study is to test a relatively low-cost procedure beside 
the TLS in order to perform geostructural analyses.
The scheme adopted in the image acquisition, using nadiral and convergent images, is 
shown in Figure 5. For both areas a Nikon D300 with 24 mm calibrated prime lens was 
used. In the northern cliff, three camera positions were chosen with a 10 m interspace and a 
distance of about 60 meters from the cliff. In the southern area it was possible to place the 
camera less than 25 m far from the cliff and the distance between the positions was about 9.3 
m. Following the approach detailed above, for each position five photo acquisitions were 
made, focused to infinity and with different angles between the line of sight of the camera 
and the perpendicular to the cliff (0°/-5°/-10°/+5°/+10°). According to SfM guidelines, the 
maximum redundancy (and overlap) of images and a good angle for point extraction can 
be reached. For the northern cliff, 16 photographs were taken with final GSD of about 6.3 
cm and horizontal overlap about 70%. For the southern cliff, 33 photographs were taken 
with final GSD of about 6.2 cm and horizontal overlap about 70% across the site. Relative 
accuracy was estimated in 0.5 pixel for both sites.
The commercial software Agisoft Photoscan Pro [Agisoft, 2014] has been used. During the 
image workflow processing, a properly-distributed network of 10 GCPs (extracted from TLS 
point cloud) was used in the bundle adjustment in order to obtain georeferenced models.

Figure 5 - Agisoft Photoscan software: a) Northern cliff: survey configuration with meshed model 
and GCPs; b) Southern cliff: camera positions, textured point cloud and GCPs.

The final root mean square total error referred to the point cloud georeferencing was about 
0.27 m for the northern cliff and 0.40 m for the southern cliff. The northern cliff point 
cloud is composed by about 4.6 million points, while the southern cliff consists of about 
3 million points. After model creation the consistence of the cliff model was checked by 
visual analysis. The models were exported as point clouds, and the georeferencing was 
refined applying the dedicated procedure in the CloudCompare [Girardeau-Montaut, 2014] 
software. Then the same procedure illustrated for the fracture mapping on TLS point clouds 
was adopted.
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Discontinuity mapping
The structural characterization was performed directly on the 3D point clouds (both from 
TLS and CRP) using two different software, COLTOP 3D [Jaboyedoff et al., 2007] and 
Polyworks [Innovmetric, 2014]. The first displays the orientation of each vertex of the 
point cloud using an Intensity-Hue-Saturation coding in a stereographic projection; the 
result is a coloured shaded relief map combining both terrain slope angle and slope aspect 
(direction of slope) in a unique representation, which can assist in the characterization of 
potentially unstable slopes. In the Polyworks software, a manual method was used, fitting 
the recognized discontinuities with planes; the best-fit algorithm which performs a pure 
least-squares approach on all selected element points was used. This planar regression 
method is shown to be effective in calculating the orientation of planes from selected points 
of a point-cloud [De Souza et al., 2013]. Dip and dip direction were calculated from the 
equation planes coefficients.

Results and data comparison 
The rock mass characterization was performed for each sector of the cliff. In the location 
where geomechanical, CRP and TLS surveys were performed (part of the northern 
and southern cliffs), a comparison between the outcomes of the different techniques is 
presented.

Conventional geomechanical survey
Results for the northern cliffs are shown in Table 1: three main joint sets plus several vertical 
discontinuities were identified. The Joint Roughness Coefficient (JRC) was deducted 
from the roughness profiles measured directly on discontinuities. The Schmidt hammer 
measurements permit to identify the Joint Compression Strength (JCS). Joint sets mean 
aperture and the presence of infilling are also reported. Similar results were produced for 
the southern area. In both cases the bedding was not identified.

Table 1 - Results of the conventional geomechanical survey carried on in the northern side of the 
slab. In the set name the first letter indicates the technique (Geomechanical survey), the second 
one the area (North).The set named TNV group all the identified vertical discontinuities.

ID Set  
SOUTH 
CLIFF

Dip [°]
Dip 

direction 
[°]

Variability 
angle 

(68%) [°]

Mean 
JRC

Mean 
JCS

Mean 
aperture 

[mm]
Infilling

Mean 
spacing 

[m]

GS1a 62 234 27 15 24.5 0.01 no 2.3

GS2 53 334 20 10 23.2 0.01 no 2.3

GS4 48 48 15 11 37.4 0.01 yes 1.4

ID Set  
NORTH 
CLIFF

Dip [°]
Dip 

direction 
[°]

Variability 
angle 

(68%) [°]68%) [°]

Mean 
JRC

Mean 
JCS

Mean 
aperture 

[mm]
Infilling

Mean 
spacing 

[m]

GN2 65 272 23 8.6 40.3 1.7 yes 0.5

GN3 75 25 19 9.0 38.3 0.01 no 1.9

GN4 67 67 16 10.0 39.7 0.6 yes 0.6

GNV 90 270 10 7 26.3 0.6 yes 1.25
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TLS survey
Using the TLS point clouds, six main discontinuity sets were identified in the northern 
cliff, while five discontinuity sets were highlighted in the southern cliff. The bedding was 
detected in the two areas. Dip and dip direction of these sets are reported in Table 2.

Table 2 - Results of the discontinuity mapping on TLS point clouds. In the set name the first letter 
indicates the technique (terrestrial Laser scanner), the last one the area (North or South).

ID Set - SOUTH 
CLIFF Dip [°] Dip direction [°] Variability angle 

(68%) [°]
LS1a 76 219 14
LS1b 64 256 12
LS2 65 298 17
LS3 74 179 16
LS4 56 43 15

LS6- bedding plane 25 25 16
ID Set - NORTH 

CLIFF Dip [°] Dip direction [°] Variability angle 
(68%) [°]

LN1 62 240 17
LN2 72 293 9
LN3 83 10 12
LN4 63 42 20
LN5 64 95 17

LN6 - bedding plane 11 144 6
LN7 79 160 7

CRP survey
In the southern cliff, six sets plus the bedding planes were identified, while in the northern 
cliff six sets were grouped. The bedding planes were also measured. Results for the two 
areas are shown in Table 3.

Table 3 - Results of the discontinuity mapping on CRP point clouds. In the set name the first letter 
indicates the technique (Close-Range Photogrammetry), the last one the area (North or South).

ID Set – SOUTH 
CLIFF Dip [°] Dip direction [°] Variability angle 

(68%) [°]
PS1a 82 214 12
PS1b 73 236 13
PS2 66 320 20
PS3 85 177 7°
PS4 55 31 18

PS6 - bedding plane 10 25 18
ID Set - NORTH 

CLIFF Dip [°] Dip direction [°] Variability angle 
(68%)

PN1 67 227 14
PN2 73 295 6
PN3 84 11 13
PN4 59 38 21
PN5 65 104 20

PN6 - bedding plane 26 149 22
PN7 83 165 7
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Comparison
The joint sets obtained from the three methods were compared (Fig. 6). Firstly, it is clear 
how certain features can be obtained only from a specific survey technique, e.g. the JCS can 
be measured only through geomechanical surveys, while the 3D model of the cliffs can be 
made available only using the remote sensing techniques.
Regarding the orientation of the discontinuities, some of the sets are recognized with all the 
techniques (sets 1a, 2 and 4 for the southern cliff; sets 2, 4, and 3 for the northern cliff, see 
Fig. 6), and not all of them were detected using the geomechanical survey alone.

Figure 6 - Comparison between geomechanical survey, CRP and TLS in 
fracture mapping, for the south and north cliffs (equal angle stereonet).

This is probably due to the reduced extension of the area which can be investigated 
with geomechanical scanlines. As an example, the bedding plane was not identified by 
geomechanical surveys, probably because it is clearly visible only in inaccessible areas, at 
the top of the cliff. Instead, the conventional survey can be more effective in recognizing the 
fractures not clearly visible from the remote sensing surveys, e.g. when the fractures appear as 
traces and don’t have an adequate relief [Sturzenegger and Stead, 2009a], or the visible plane 
is too small compared to the point spacing of the cloud or to the GSD. Results from the TLS 
and CRP are similar. A comparison between sections extracted from the two point clouds is 
presented in Figure 7. The TLS section (in red) is rougher, well describing the real asperity of 
the rock cliff, while the one from photogrammetry (in blue) is smoother, only approximating 
the real cliff face. The differences between surfaces can be due to many reasons, mainly related 
to the geometry of the acquisition scheme, to the presence of vegetation and to illumination 
factors in topographically complex surfaces, which are better captured by TLS systems. An 
alternative could be a UAV flight, which would permit horizontal acquisitions along the cliff 
[Tonkin et al., 2014; Genchi et al., 2015]. The final result is a less accurate surface compared 
to the one produced by the TLS: considering the whole point clouds of the southern cliff, an 
average distance of 0.03 m and a maximum distance of 1.40 m were measured using a nearest 
neighbor procedure in the CloudCompare software [Girardeau-Montaut, 2014].
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Beside the above-mentioned issue of transforming the relative 3D model in one absolute 
system, model accuracy is also related to image texture and to a non-linear deformation 
which can limit the potential accuracy of SfM photogrammetry. Here, the aim is not to 
provide a full quantitative test of the accuracy and precision capabilities of the SfM, but to 
propose an application in the field of the geomechanical characterization of steep cliff faces. 
Indeed, it is still unclear how SfM-derived DEMs would perform in this field [Rango et al., 
2009; Fonstad et al., 2013; Mancini et al., 2013]. More robust and quantitatively precise 
investigations under a wide range of geomorphic conditions will be necessary to establish the 
quality of SfM-derived DEMs for these purposes. Moreover, in the field of photogrammetry 
a number of further limitations are due to sunlight exposure over topographically complex 
surfaces (e.g., cavities, depressions, overhanging cliffs), which might be better tackled by 
laser scanning systems. Anyhow, the results are promising and show that the main issue is 
the smoothing effect on limited sectors of the point clouds (Fig. 7).

Figure 7 - a) Example of sections extracted from the CRP (purple) and TLS (red) 
point clouds; b, c) photoand DTM of the area with the sections localization.

Applications in the field of geological characterization
The 3D datasets obtained from the surveys were used in order to build a 3D model of the 
slab, to formulate hypotheses on its structural features at different scales and to perform a 
first assessment of slope stability. Hereafter two examples are presented: the first about the 
construction of a 3D model of the slab and the second in the field of slope stability analysis.

3D model of the slab 
The TLS scans acquired on all the sides of the slab permit to reconstruct a full 3D model. 
The first alignment process was performed through the TLS software, Riscan Pro 2 [Riegl, 
2014], using the target point coordinates obtained by the auxiliary survey and applying a 
rototraslation to the scans.
The root mean squares achieved during the alignment process are of the same order of 
magnitude of the GPS survey.
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Due to the presence of a dense vegetation covering the cliffs, the Full Wave Form technology, 
implemented in the Riegl VZ-400 TLS, was adopted. This technology permits to discriminate 
and register different echo signals; point clouds can be then filtered, preserving only the 
single and last echos, which are more likely to match the real terrain. In this case study, the 
Full Wave Form technology was mostly effective in order to remove trees and bushes from 
the clouds, but for the grass and in general for small-scale vegetation covering the cliff, a 
heavy manual editing was still necessary. 
The data were exported to Rapidform XOR3 [Inus Technology, 2012] software for the 
alignment refinement. The Iterative Closest Point (ICP) algorithm, which iteratively 
recomputes the transformation needed to minimize the distance between the points of two 
raw scans, was used. Then the scans of the 2013 surveys were joined with the ones from 
previous surveys, permitting to obtain a complete model of the cliffs.
Using this procedure, the 3D model of the San Leo slab was obtained. An attempt to assign 
an overall quality index to the whole model was made, although it was not straightforward, 
due to the complexity of the process and to the extension of the surveyed object. Regarding 
the accuracy achieved in the GNSS survey and in the alignment process, in the area 
surveyed between 2013 and 2014 (south and west cliffs) a maximum error around 2-3 
centimeters can be considered. In the previous survey (north and east cliffs) the error could 
be higher, due to the instrumentation characteristics and the datum conversion needed to 
import the scans from the Gauss Boaga reference system into the UTM-WGS84 reference 
system. After cleaning and optimization procedures, the whole model is composed of 
618,084,619 points. The obtained point cloud was subdivided in subsets, depending on the 
cliff orientation, to allow a more convenient use (Fig. 8). The 3D model of the cliff allows 
direct measurements to be made, to extract sections and prospects, making the rock slope 
analysis easier. Examples of sections are shown in Figure 7.

Figure 8 - Views of the TLS point cloud of the rock slab.

Structural characterization of the cliffs
The rock mass characterization was performed for each sector of the cliff. In Figure 9 a 
summary of the discontinuities mapped by means of TLS and CRP is reported. Surveys 
performed in the same cliff were grouped together, to offer a more general perspective. The 
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high number of discontinuities reported for the northern cliff is mostly due to the number of 
surveys conducted on this area (location of the last two main landslide events). Generally 
5 or 6 joint sets plus the bedding plane were measured in all the areas, except for the more 
compact south-western sector. In particular, some areas were recognized as highly fractured 
with respect to the rest of the rock slab. These are closely related to the main structural 
lineaments recognized in the field. In particular, the south-eastern edge can be linked to 
the presence of a EW subvertical fault. Two highly fractured areas were recognized in the 
western side of the slab, in the southern and in the northern cliffs. They can be related to 
the NNW-SSE fault mapped in the field, also driving groundwater flow at the slab scale. 
As anticipated, the south-western part of the slab was instead recognized as less fractured: 
only scattered discontinuities and the bedding plane orientation were mapped. The different 
degree of fracturing between the northern and the southern area of the west cliff can suggest 
the presence of a WSW-ENE structural lineament.

Figure 9 - Summary of the fracture mapping for each side of the slab. The 
high number of discontinuities reported for the North cliff is mostly due to 
the number of surveys conducted on this area (location of the last two main 
landslide events).The red circles represent the most fractured areas.

Some considerations can be drawn from the spatial distribution of the discontinuities. In 
the northern cliff most of the mapped discontinuities dip towards NNE or SSW. In the 
eastern cliff, fractures are mainly dipping ENE or WSW. In the southern cliff, fracture 
poles are mainly located in the NE sector of the stereographic projection. Thus, in almost 
all the sectors, a large percentage of discontinuities are dipping parallel to the cliff face. It 
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is worth to mention that, as discussed in Sturzenegger and Stead [2009a], some planes can 
be not clearly visible from the remote sensing surveys, e.g. when the fractures appear as 
traces (normal vector of the discontinuity plane parallel to the cliff face) and do not have 
an adequate relief. Therefore, the high percentage of discontinuities dipping parallel to 
the cliff faces can be due or to the characteristics of the adopted terrestrial remote sensing 
techniques or to the presence of subvertical discontinuities due to unloading and stress 
relief at the borders of the slab. For example, the sets LN3 and LS3, subvertical and parallel 
to the cliff orientation, can be interpreted as unloading joints. The presence of these features 
can assume a primary role in the developing of major slope instability events, e.g. the one 
occurred in 2014. In fact, Spreafico et al. [2015b] highlighted the importance of an almost 
vertical joint set, striking sub-parallel to the cliff orientation, in the onset of the 2014 failure. 
Furthermore, the same Authors showed how the collapse itself may lead to the development 
of tension cracks and to the aperture of joints with a similar orientation, predisposing the 
slope to further instability of the same type Spreafico et al. [2015b].

Kinematic analysis
The joint sets obtained by processing the TLS point clouds have been used together with the 
ones from geomechanical surveys to perform kinematic analyses. These were carried out 
using the Markland test procedure implemented in the Dips Software [Rocscience, 2014]. 
The method allows the kinematics driving the slope instability processes affecting the cliffs 
to be assessed among sliding, toppling and wedging. More in detail, results were able to 
evidence the joint sets influencing the instability in the 2006 landslide area, in the northern 
side of the slab. Several orientations can be recognized in each cliff, e.g. in the northern 
cliff slope dip direction varies from 15° to 330°. A classical analysis was conducted using 
an averaged value for the slope orientation (Fig. 10). Then, to account for this variation, the 
kinematic analyses were repeated maintaining a fixed dip angle (90°) and varying the slope 
dip direction between the actual range (Fig. 11). The percentage of discontinuity poles 
included in the critical area were reported as an indication of the probability of failure. The 
percentage was calculated separately for each joint set (number of critical joint in set N/
total number of joint in set N) and considering the amount of all the mapped discontinuities 
(total, represented in black). This permitted to highlight the most critical joint sets for each 
slope orientation. For the wedge sliding only the total results are reported.

Figure 10 - Kinematic analysis (north cliff).
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Discontinuities grouped in LN7 set could induce toppling phenomena as the poles cluster is 
included in the failure area. Set LN3 can both cause toppling or sliding. This dual behaviour 
depends on their almost vertical orientation; anyway, most of the discontinuities belonging 
to this subset are potential sliding surfaces.
Observing the point clouds, set LN5 and LN1 seem to behave as lateral release surfaces. 
Wedge sliding can occur due to the intersection of several subsets, namely LN1, LN2, LN3 
(subvertical), LN4 and LN5. They allow the development of several wedges at the base of 
2006 failure cliff, which are recognizable at different scales (Fig. 12). Examining the point 
cloud, it is clear that most of the existing wedges are formed by the intersection of two 
about 60° dip - subsets (LN5 and LN1) and the contemporary presence of the subvertical 
set LN3 and of a basal sliding surface. The two discontinuities do not intersect within the 
wedge sliding envelope in the kinematic analyses (Fig. 10), in fact the failure cannot be 
described through the classical wedge sliding definition, e.g. sliding along the intersection 
line of the two planes or on one of these. In this situation the sliding surface is represented 
by a failure plane developing within the underlying scaly clays, while the joints defining 
the wedge act as release surfaces.

Figure 11 - Representation of the percentage of discontinuity poles included in the critical area 
for different slope dip directions (slope dip was fixed to 90°). The percentage was calculated 
separately for each joint set (number of critical joint in set N/total number of joint in set N) and 
considering the amount of all the mapped discontinuities (total).
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Figure 12 - Examples of wedges: a) recognized in the point cloud using the Coltop software and b) 
in the field.

Discussion
The results highlight the importance of the integration of different survey techniques to 
obtain a full representation of the 3D geometry of a geological object and a characterization 
of its discontinuities. The comparison of the results allows the main strength and limitations 
of each procedure to be confirmed. The TLS and CRP surveys permitted to obtain, at 
different scales, the 3D geometry of the cliff, which is not possible to determine with the 
conventional methods.
As discussed beforehand, due to the limited extension of the accessible areas, data from 
conventional surveys are often scarce. This limitation can assume a particular importance in 
case of irregularly jointed rock masses, where discontinuities measured in a small areas cannot 
be representative of the whole rock mass [Sturzenegger and Stead, 2009a]. Comparing these 
surveys with the most extensive TLS and CRP data, some discontinuities characteristics, e.g. 
the aperture, can be inferred also in areas where direct measures are not feasible.
Concerning the remote sensing techniques, although TLS is to be considered more accurate, 
CRP provided adequate data regarding the rock mass. The results are in agreement with 
previous works by other Authors [Ravanel and Curtaz, 2013; Assali et al., 2014].
Regarding the feasibility of the surveys, the flexibility and the handiness of the CRP with 
respect to a TLS survey is to be highlighted: even if the equipment used for the control 
points survey is the same in both cases, transporting the TLS system on an impervious 
terrain can be more difficult with respect to a digital camera.
The two methods should be used at different scales, allowing fractures with different 
persistence to be recognized. Based on the results, Figure 13 shows an indication of the scale 
at which the use of the different techniques is considered to be convenient; both technical and 
economic issues are qualitatively considered. The conventional survey techniques are more 
applicable at the outcrop scale. As indicated also by Sturzenegger and Stead [2009a], dealing 
with smaller areas, more measures can be provided from the conventional methods, whereas 
data acquired along virtual scanlines are limited by the resolution of the point cloud.
In order to be effective, remote sensing techniques have to cover a larger portion of the 
cliff. CRP is indicated for large outcrops or at the cliff scale, due to the flexibility of the 
acquisition and to the obtained precision, almost comparable with the TLS one in the 
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field of the geological discontinuities characterization. When dealing with a large cliff or 
with an entire rock slab, the TLS technique is to be preferred, allowing a large number of 
measurements in a relative smaller amount of time to be collected, maintaining a sufficient 
precision also from long distances (about some hundreds of metres). The coupling with 
Unmanned Aerial Vehicle (UAV) could eventually extend the use of CRP, thus covering 
a wider range of scales. If the scale analysis decrease, typical geomorphological point of 
view could be covered by using other geomatics techniques such as ALS and/or Aerial 
Photogrammetry [Lucchesi et al., 2013; Bacenetti et al., 2015].

Figure 13 - Use of the three techniques at different scales.

These general indications can help in the choice of the convenient method, but each different 
case has to be carefully evaluated, considering all the variables which can influence the 
final decision. Among them, the topography and the accessibility of the area, the purpose 
of the survey and the characteristics required for the final products should be taken 
into account for the survey planning. Finally, a further advantage of the remote sensing 
techniques consisted in the possibility to observe and analyse the point clouds whenever 
measurements or comparisons with other datasets were needed. Previous acquisitions can 
in fact be compared with new scans, making the monitoring of the cliff possible, along with 
the estimation of the volume of newly-formed landslides.
The use of stereographic techniques is only the first step in the characterization of the cliff. 
In fact, the dataset acquired using conventional and remote sensing surveys provides a good 
description of the joint properties, which can be used to carry out more complex analyses.
The structural data from the TLS point cloud have been used to define different structural 
domains within the plateau and for kinematic analysis in the area of the 2006 landslide.
The definition of the main lineaments is also useful to improve the hydrogeological model of 
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the plateau. In fact, fault areas usually have a different hydraulic conductivity with respect to 
the surrounding rock mass and depending from the presence and type of infilling they could 
behave as permeable or impermeable barriers. The information about the discontinuities 
aperture, gained from the traditional survey and extended to the whole rock mass thanks to 
the TLS dataset, can be used to estimate an initial value for the equivalent permeability. In 
fact, these data were used, together with the geometry of the slab and the mean discontinuities 
orientation, as input for a 3D hydrogeological model [Spreafico et al., 2015a].
In order to build up a more complex slope stability model, the strength properties of 
the discontinuities are required. These can be estimated using the joints roughness and 
compression strength. The first can be estimated both in the field and extracting discontinuities 
profiles from remote sensing point clouds, although it can be difficult to estimate the small-
scale roughness [Wolter et al., 2013]. The JCS can be easily obtained during traditional 
survey for each discontinuity, and then the averaged value can be associated to the specific 
joint set. Furthermore, the 3D point clouds derived from the TLS survey were used to 
build a 3D model of the slab. In fact, Francioni et al. [2014] highlight the advantages 
of using geometrical models obtained from terrestrial remote sensing instead of the ones 
based on topographic maps, in the framework of slope stability modelling. This applies 
particularly in case of vertical and overhanging cliffs, where the factor of safety computed 
on the geometry extracted from topographic maps can be overestimated up to the 10%.

Conclusions
With the aim to preserve the notable natural and cultural heritage of San Leo village, 
understanding slope processes and their evolution is of fundamental importance. One of the 
main predisposing factors of slope instability phenomena affecting the rock slab is certainly 
its geological and structural setting, which is characterized by several discontinuities, namely 
bedding planes, joints and faults. Usually, geomechanical surveys are performed along 
scanlines or through observation windows, directly on the outcrops. In extreme geological 
contexts (i.e., large and unstable rocky cliffs), only a limited number of measurements can 
be collected with these conventional methods. In fact, the surveys are often concentrated in 
small areas, which may be not representative of the entire rock mass. Moreover, certain sets 
may change their orientation along the slope surface. For these reasons, the integration of 
conventional and innovative surveying techniques can be really useful to obtain a complete 
picture. In San Leo rocky plateau, dense Digital Surface Models (DSMs) obtained from 
CRP and TLS surveys, complemented with geomechanical surveys, were used to understand 
which sets are determinant for the description of the structural features at the slope scale 
and for the assessment of slope instability mechanisms in critical areas. The creation of a 
3D model was also fundamental for the implementation of the geological model to be used 
in numerical modelling for hydrogeological and slope stability analyses.
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