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Tracking algorithms are an indispensable prerequisite for many higher-level computer vision tasks, rang-
ing from surveillance to animation to automotive applications. A complete tracker is a complex system
with many modules that need to cooperate. It is important to exploit all the sources of information, such
as the appearance, the physical constraints and, though less commonly used, social factors like the walk-
ing patterns of people that belong to the same group. Given this complexity, a tracker often resorts to ad
hoc solutions and scene specific customizations to improve the performance. We propose here a multi-
target tracking model that succeeds in uniformly including the mentioned sources of information and is
amenable to further extensions. We build our model within the Conditional Random Field framework. As
the model cannot be globally optimized, we adopt an approximate inference strategy. Therefore we use a
recently published sampling-based inference method that we customize to our needs and show the effec-
tiveness of the choice in the experimental results.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction � a motion model, to exploit the temporal correlation among suc-
Tracking algorithms are an indispensable prerequisite for many
higher-level computer vision tasks, including surveillance, anima-
tion and automotive applications. Advances in observation models,
such as object detectors or classification-based appearance models,
have enabled tracking in previously infeasible scenarios. Still,
tracking remains a challenging problem, especially in crowded
environments. Indeed, the performance of a tracker is greatly af-
fected by the target density in the scene. We can call a scene sparse,
when the low target density causes very few occlusions lasting a
short period of time. Targets in a sparse scene move freely toward
their destination and few intra-target interactions can be observed.
On the other end of the spectrum, we have a crowded scene, where
no subject is fully visible and each target motion is constrained by
the motion of other targets. Our work focuses on the gray area be-
tween these two extremes. Our goal is to tackle those scenarios
where there is more than a single dominant scene motion pattern
and the targets interact with one another while moving towards
their destinations. We call this scene a busy scene.

A multi-target tracker is a complex system. Among the many
modules that usually collaborate in a successful tracker, we have:

� an observation model, to search the images for likely target
positions based on what we know about the target appearance,
ll rights reserved.
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cessive target positions,
� a way to associate the available observations to the multiple

targets.

Furthermore, a fully autonomous tracker should be able to ini-
tialize and terminate tracks for targets entering and leaving the
scene, respectively. Given the need to employ such heterogeneous
components, a tracker often resorts to ad hoc solutions and scene
specific customizations to improve the performance. In contrast,
we propose here a single model that contains most of the tracker
components just introduced. We aim to define simple functions,
each of which models a particular aspect of the tracker. One such
function, for instance, models the appearance similarity of a target
with a certain portion of the image. Another function models the
temporal correlation of the tracks. More interestingly, we define
functions to model the interactions among targets, based on posi-
tion and velocity configurations. The challenge that we face is how
to combine these many functions. To do this in a principled way,
we use the graphical model formalism as our language. One of
the contributions of this work is the construction of an easily con-
figurable, extensible and modular tracking model. At design time,
the model has been built mostly disregarding inference feasibility,
as the focus has been kept on making it accurate and rich with fea-
tures. However, a functional tracker needs to provide results in a
reasonable time. In a second contribution, starting from a general
inference technique, we propose a customization that exploits
the application structure to achieve better performance.

As a final contribution, we show the effectiveness of the pro-
posed method challenging sequences with both human and non-
human targets.
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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The paper is structured as follows. After describing the related
work in Section 2, we show how to model a tracker in a probabilis-
tic framework in Section 3. While describing the modeling phase,
we pay little attention to the computational constraints and focus
only on modeling accurately the main aspects of a tracker. In Sec-
tion 4 however, when describing the inference phase, we relax
some model constraint in order to achieve feasibility. We do this
in a principled way, trying to keep as much as possible of the ori-
ginal model. Finally, we show the experimental results in Section 5
and conclude in Section 6.
2. Related work

Tracking is one of the core problems in the computer vision
community (see [61] for a survey on object tracking). Fostered by
recent progress in object detection, there is an impressive body
of work in people tracking-by-detection [8,14,34,39,58,62,4]. All
propose different ways of handling the data association problem
[12], but do not take advantage of any social factors beyond spatial
exclusion principles. In their ‘‘space–time event-cone tracking’’
[32], the authors explicitly model physical exclusion between sub-
jects in world coordinates, however, this is restricted to the selec-
tion of the best trajectory hypotheses only—the important step of
creating these hypotheses is done independently and does not ca-
ter for interactions. On the contrary, in Khan et al. [27], the authors
account for interactions within the motion model. The work pro-
poses a joint Particle Filter, where the avoidance behavior is mod-
eled with a Markov Random Field that penalizes overlapping
targets configurations, i.e. a reactive repulsion based on distance
only. Our motivation is similar, but our model is different in that
we use not only avoidance interactions, but also grouping ones.
The grouping variables are made explicit in order to enforce other
constraints on them, similar to [7]. Furthermore, in this work,
rather than using a Markov Chain Monte Carlo sampling strategy,
we resort to a more efficient sequential sampling scheme. Another
difference is that we show the effectiveness of our approach also
on the challenging and especially important task of tracking multi-
ple people.

Target interactions are not always necessary. If a single target is
to be tracked in the scene, it is indeed meaningless to take into ac-
count social interactions and tracker performance is often ad-
dressed by employing multiple heterogeneous components. In
this context, [49] alleviate the drift problem of appearance based
trackers by combining template matching, online random forests
and optical flow in a cascade. Another way of combining trackers
has been proposed in [28]. In this work the uncertainty of the
tracker is accounted for with a sampling method that samples both
the trackers and the states of the targets.

When the task is to track multiple targets, some researchers use
more complex motion models. A first solution is that of using scene
specific information. The work of [1] in crowded scenarios is an
interesting example of how scene constraints can help a tracking
application. While this is directed at scenarios with a single dom-
inant motion pattern, the work of [46] propose an elegant solution
to exploit the multiple patterns of motion in the scene. In both
these works the inferred motion patterns are tied to a specific
scene. More recently, [46] propose using a video database of crowd
behaviors to learn people motion priors.

Other researchers have focused on modeling the interactions
independently of the particular scene. We have already seen an
example in the work of [27], where the core interaction is the dis-
tance based repulsion between targets. This is already an effective
principle, the characteristics of which have been studied in the so-
cial sciences [23,16] and employed in simulation applications
Please cite this article in press as: S. Pellegrini, L. Van Gool, Tracking with a mix
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[24,50], path-planning [55], for unusual event detection [37] and
tracking [35].

The physical exclusion principle is not the only studied aspect
of human motion behavior. Another important aspect is that of
avoidance anticipation, that is people anticipate obstacles and start
the avoidance maneuver earlier than what is predicted by distance
based repulsion models [43]. These findings have found applica-
tions in several disciplines, among which we mention computer
graphics [43,40], robotics [57,22] and computer vision, where they
have also been employed for tracking [2,41,51].

More relevant for this paper is the modeling of the group inter-
actions among pedestrians [36]. Recently, some works have shown
the benefits of exploiting grouping interactions for tracking
[17,42,11,20,30]. In particular the work in [11], published contem-
poraneously with our previous work [42], is closely related to our
approach. Among the differences that separate the two works, we
propose a model that propagates the grouping interactions and
uses a different inference strategy. Albeit with a different motiva-
tion, the work of [21] exploits the correlation among features to
predict the position of possibly invisible targets. A Generalized
Hough Transform is used to let these correlated features vote for
the target of interest. Similarly, [17] exploits the correlation among
targets by having one target using the motion parameters of an-
other target with probability proportional to the correlation be-
tween the two. Some other authors propose to combine data
association and grouping. Data association is usually carried out
at the level of the single target. In [20] the authors instead describe
an extension of the Joint Probabilistic Data Association [15] based
on group of individuals. Group merging and splitting are also han-
dled by the method. Linear dynamics are still assumed and false
measurements and missed detections are not taken into account.
With the same motivation, [30] extend the Multiple Hypothesis
Tracker algorithm [45] by hypothesizing both over data association
and interaction events, like group splitting or merging. Both works
carry out clustering of the observations at each time step. Yamag-
uchi et al. [59] build a prediction model that explicitly exploits
grouping and destination estimates. They show how the destina-
tion prediction accuracy does not improve significantly when more
frames from the past are available, while an improvement is ob-
served in the group prediction accuracy.

Recently several authors tackled the multi-target tracking using
a graph formulation of the problem, by representing single or se-
quence of detections as graph nodes and modeling interactions
through, possibly weighted, edges. In this context [9] build a graph
with tracklets as nodes and edges connecting two tracklets that
have at least one detection in common. The set of nodes that
(approximately) solve the maximum weighted independent set
problem on this graph is then used to carry out multi-target track-
ing. Interactions such as grouping or avoidance are not explicitly
modeled, but tracklets that rapidly change the velocity correlation
over time are penalized by connecting them with a weighted edge.
[60] also cast the multi-target tracking problem in a graphical
model framework. Differently from out approach, their nodes rep-
resent pairs of tracklets built on the output of a detector. The
learned pairwise terms among the nodes encode both motion
and occlusion dependencies. Finally, the problem is solved using
simulated annealing, starting from an initial solution obtained by
applying the Hungarian algorithm on a unary-only instantiation
of the graph. Single tracklets are modeled instead by nodes in
[52], while the edges associate pairs of tracklets. In this paper,
the prediction in motion and feature space of one tracklet is used
to compute a similarity measure with other tracklets. This similar-
ity is then used as a weight for the graph edges and the optimal
solution is computed using the Hungarian algorithm. Incorrect
associations are compensated for by using a graph evolution strat-
egy that adapts the weights of the graph based on long-term con-
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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sistency of the connected tracklet features. Other authors
[62,31,44] use a minimum cost-flow algorithm. Leal-Taixé et al.
[31] take into account both avoidance, similarly to the Social Force
model, and some form of grouping behavior. These approaches, dif-
ferently from what we propose in this work, solve for the Maxi-
mum A Posteriori (MAP) estimate of their equivalent
probabilistic formulation of the problem.

Tracking is often used as a preprocessing step to carry out scene
analysis. The knowledge of people tracks is an effective input for
understanding people interaction and analyzing group composi-
tion. [19] use a bottom up clustering algorithm to discover the
groups in the crowd while in [47] the group detection is carried
out jointly with group activities discovery. In [13] the groups are
detected using the head orientation in a voting scheme. A probabi-
listic group relationship is instead used in [10] to recognize group
behaviors. In this paper we show how we can extract and use sim-
ilar information while tracking, and not after.

As already mentioned, this paper builds on our previous work
[42], however it strongly differentiates from it in several aspects:

� The model comprises of continuous state variables for the tar-
gets, repeated at each time step, rather than only discrete ones
representing candidate trajectories provided by an external
tracker module. In this work the tracking is therefore done
inside the proposed framework.
� We propose a fully autonomous tracker, capable of initialization

and destruction of targets, in contrast with a ground truth based
initialization and a lack of termination mechanism of our previ-
ous approach.
� As a consequence of the presence of continuous variables, we

need to employ a different inference method.
� We still perform, albeit differently, inference within a time win-

dow, but we propose a way to concatenate the results in a fully
functional tracker and we show human intervention free results
on minutes of video.

Pellegrini et al. [42] is mostly a data-association method, that
does not allow tracking a whole sequence unless other compo-
nents of the tracker are provided, such as a scheme to concatenate
the results of the window inference. Inspired by that work, this
work proposes a complete tracker that can be used on arbitrarily
long sequences and an extensible framework for exploiting inter-
actions and potentially other priors in a uniform way.
Fig. 1. The model sub-structures. Upper left: the chain portion of the graph that
represents a target i. The wo factors implement the observation model, while the wt

ones implement the motion model. Lower left: the portion of the graph the deals
with modeling the interactions between two targets i and j. Note that all the
interactions factors wl are connected with the unique time independent variable gij.
Right: the portion of the graph that handles the consistency among the group
assignments with the transitivity factor wc together with the prior wp on the group
assignment.
3. Model

In this paper we use graphical models, and in particular factor
graphs [6], to write as many tracker components as possible,
including the observation model, the motion model, the interaction
model and the termination procedure. We use a log-linear Condi-
tional Random Field [29]

pðajD; hÞ ¼ 1
ZðhÞ e

�
X

k

f kðakÞ�hk

; ð1Þ

where a is the vector that concatenates all the model variables,
D = [D0, . . . ,DT] is the vector of the evidence, h is the vector of model
parameters, Z(h) is the partition function and fk are the feature func-
tions on a subset ak of variables, with the corresponding subset of
parameters hk.

Casting the problem in a well known and studied framework
makes it easy to exploit the techniques and state of the art meth-
ods that have been developed for that framework. Furthermore,
although sometimes underestimated, re-usability, extensibility
and modularity are positively affected by this choice.
Please cite this article in press as: S. Pellegrini, L. Van Gool, Tracking with a mix
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The effort in writing the tracker as a graphical model consists of
defining the variables of interest a (the nodes of the graph) and
specifying feature functions fk (the links of the graph) to model
the properties of individual, and group of, variables.

3.1. Model variables

The core variable of interest is the position at timestep t for a
target i = 1, . . . ,N. In this paper a target is represented by the 2D
projection on the plane of a reference point pt : pt

x pt
y

h i
. We do

not use a scale parameter to model the appearance, but this exten-
sion is possible and straightforward. In order to better exploit tem-
poral consistency, it is very useful to also include in the state an
estimate of the target velocity vt : v t

x v t
y

h i
.

We want to account for false positive initialization and in gen-
eral of tracker mistakes in a coherent way. Once again, we would
like to keep this reasoning within the graphical model framework.
In order to do so, we define a binary variable ut for each target. This
variable takes the value 1 when the estimate, for any reason, is be-
lieved to be unreliable. All the subject specific variables can be con-
catenated in the mixed continuous-discrete state vector

st : ½pt vt ut �: ð2Þ

Note that the positions and velocities, albeit continuous, are as-
sumed to be bounded by a limited region of the world and by a
maximum reasonable speed, respectively. st

i is represented as a
node in the graphical model, as can be seen in Fig. 1.

The other variable that we are interested in estimating is the
grouping variable. The group membership among two targets i
and j can be represented with a binary variable gij, that takes value
1 if the two subjects are in the same group and 0 otherwise. In this
paper, we say that two people belong to the same group if they
walk or stand together.

We can finally concatenate all the state and group variables to
write a ¼ s0

i ; . . . ; sT
i ; . . . ;gij

� �
, with i, j = 1, . . . ,N.

3.2. Motion model

For each target, a pair of temporally consecutive state variables
are strongly correlated. This correlation is usually exploited in a
tracker by means of a motion model. The most common choice
of a motion model in this regard is represented by a constant veloc-
ity model with some added noise, often normally distributed. Some
authors have shown that using a more complex motion model can
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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Table 1
Detailed description of the energy functions used to model the various building blocks of a tracker. First part.

Motion functions

f m
p st

i ; s
tþ1
i

� �
¼

ptþ1
i � pt

i þ Dvt
i

� ��� ��2
if ut

i ¼ utþ1
i ¼ 0

j if utþ1
i ¼ 1

1 else

8><
>:

These motion functions assign a cost to the deviation from the constant velocity model
ptþ1

i
vtþ1

i

" #
¼ pt

i þ Dvt
i

vt
i

	 

;

while an infinite cost is assigned for the transition from (ut
i ¼ 0 to utþ1

i ¼ 1). The transition to the unreliable
state has a fixed cost

f m
v st

i ; s
tþ1
i

� �
¼

vtþ1
i � vt

i

�� ��2
if ut

i ¼ utþ1
i ¼ 0

j if utþ1
i ¼ 1

1 else

8><
>:

Observation functions

f o
a st

i

� �
¼ app pt

i

� �
if ut

i ¼ 0
0 else

�
An appearance based online classifier app(�). Lower energy are assigned to locations that are likely to contain
the object

f o
d st

i

� �
¼ det pt

i

� �
if ut

i ¼ 0
0 else

�
The detector function det(�) assign low energy to input which correspond to positions in the image with high
detector score

f o
u st

i

� �
¼ ut

i
The cost of being in the unreliable state

Group functions

f cðgij; gjk ; gkiÞ ¼
1 if gij þ gjk þ gki ¼ 2
0 else

�
This returns a cost for those configurations of grouping that violate the transitivity property

fp(gij) = gij A fixed prior on the grouping variable gij
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lead to better performance in certain circumstances [2,41]. For
example, a more complex motion model can include the avoidance
behavior and thus represent a more informative prior during occlu-
sions. In this work we separate the motion model from the interac-
tion model. For the motion model, we use a constant velocity
model in the form of pairwise energy functions f mðst ; stþ1Þ ! R,
that assign low energy to pairs of arguments that deviate little
from a constant velocity assumption (see Table 1 for more details).
We also need to deal with the case of unreliable estimates. If at
time t a target i is believed unreliable ut

i ¼ 1
� �

, we forbid a possible
recovery by assigning an infinite cost to the transition
ut

i ¼ 1! utþ1
i ¼ 0. This is done in order to avoid modeling the tar-

get motion when a track is lost, which is particularly complex,
since we make no assumptions about the circumstances that
caused the tracking loss. We prefer to re-initialize the track for
the target as a means to recover from failure.

The graphical model factor that represents the motion model is
defined as

wm st
i ; s

tþ1
i

� �
¼ e�fm �hm ð3Þ

with

fm ¼
f m
p st

i ; s
tþ1
i

� �
f m
v st

i ; s
tþ1
i

� �
" #

hm ¼
hm

p

hm
v

" #
;

where f m
p and f m

p are defined in Table 1. The factor wm is shown in
Fig. 1.

3.3. Observation model

A crucial part of every tracker is the observation model. This
component scores state hypotheses by evaluating feature corre-
spondences between the target model and the data. As the obser-
vation model operates independently for each subject and each
timestep, we represent it with unary energy functions of the form
f oðstÞ ! R. In particular, we use a target-class specific detector
trained offline [18] and then wrapped in a trained logistic function.
The detector function, f o

d , assigns low energy when the detector
output is high. Also, we model the appearance by encapsulating
an on-line classifier [48] in another feature function, f o

a . Finally,
with the function f o

u , we model within the observation model the
cost of being in the unreliable state (see Table 1).

The graphical model factor that represents the observation
model is defined as
Please cite this article in press as: S. Pellegrini, L. Van Gool, Tracking with a mix
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2012.09.005
wo st
i jD

� �
¼ e�fo �ho ð4Þ

with

fo ¼
f o
a st

i

� �
f o
d st

i

� �
f o
u st

i

� �
2
64

3
75 ho ¼

ho
a

ho
d

ho
u

2
64

3
75;

where the fo functions are defined in Table 1.

3.4. Interaction model

The model described so far is a simple chain graph (Fig. 1, upper
left), where each target is modeled independently from all the oth-
ers. As we are interested in multi-target tracking, it is reasonable to
consider what kind of interactions we might exploit. One first kind
of interaction is the physical one that forbids two targets to occupy
the same position at the same time. But there is more to the simple
exclusion, as we already mentioned in Section 1. In particular, it is
reasonable to expect that the interaction is different when the two
subjects belong to the same group than when they do not know
each other [36]. We define a set of energy functions
f l st

i ; s
t
j ; gij

� �
! R that assign a low value to more likely configura-

tions of state and grouping variables. As mentioned we are inter-
ested in modeling the physical avoidance or repulsion f l

r

� �
, but

also the attraction when two subjects belong to the same group
f l
a

� �
and the fact that two people in the same group have similar

velocity f l
s

� �
. See again Table 2 for the specific choices of the feature

functions.
Note that the interaction functions all return a fixed cost when

one of the interacting arguments is in the unreliable state. The rea-
son for this choice is that the interaction, while propagating useful
information from one variable to the neighboring ones, can lead to
wrong estimates when erroneous information is propagated dur-
ing inference. Say, for instance, that there is a target that is esti-
mated to occupy a certain position pt

i . According to the
interaction model that we are describing, we want to forbid any
other target to get too close to the same region of space in the same
time. Now, if the estimate pt

i is unreliable and there is actually no
real target in that location, this limitation is a mistake. We want
therefore to turn off this interaction whenever we infer that an esti-
mate is unreliable. Assigning a fixed cost j in the interaction func-
tions whenever one of the two arguments is in the unreliable state
allows to achieve the desired result.
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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Table 2
Detailed description of the energy functions used to model the various building blocks of a tracker. Second part.

Interaction functions

f l
r st

i ; s
t
j ; gij

� �
¼ max 0;1�

pt
i�pt

j

��� ���
klr

0
@

1
A if ut

i ¼ ut
j ¼ 0

j else

8>><
>>:

This models a repulsion effect when the targets distance is less than klr . It does not
depend on whether the two targets are in the same group or not (gij is not used)

f l
a st

i ; s
t
j ; gij

� �
¼ max 0;

pt
i�pt

j

��� ���
kla

� 1

0
@

1
Agij if ut

i ¼ ut
j ¼ 0

j else

8>><
>>:

This models the attraction between two targets of the same group. It is zero if the
targets distance is less than kla . If targets i and j are not in the same group, the
function has no effect

f l
s st

i ; s
t
j ; gij

� �
¼ vt

i � vt
j

��� ���gij if ut
i ¼ ut

j ¼ 0
j else

(
A pair of targets in the same group have similar velocity. A linear cost is assigned to
the norm of the velocity difference

f l
b st

i ; s
t
j ; gij

� �
¼ gij if ut

i ¼ ut
j ¼ 0

j else

�
This function acts as a bias term. It returns one if the two targets are not in the unreliable state and if they
are in the same group
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The graphical model factor (see Fig. 1) that represents the inter-
action term is defined as

wl st
i ; s

t
j ; gij

� �
¼ e�f l �hl ð5Þ

with

f l ¼

f l
r st

i ; s
t
j ; gij

� �
f l
a st

i ; s
t
j ; gij

� �
f l
s st

i ; s
t
j ; gij

� �
f l
b st

i ; s
t
j ; gij

� �

2
666666664

3
777777775

hl ¼

hl
r

hl
a

hl
s

hl
b

2
66664

3
77775:

We choose not to integrate out the grouping variable gij in order
to be able to explicitly model some relational properties on it, sim-
ilarly to other works [7,53]. In our definition, grouping is an equiv-
alence relation, i.e. it fulfills reflexivity, symmetry, and transitivity.
While reflexivity and symmetry are enforced by the graph con-
struction, the transitivity is not. We therefore define a function fc(-
gij, gjk, gki) ? {0,1} that assigns zero energy to triplet of arguments
that respect the transitivity property. In other words, when i and j
are assigned to the same group (so that gij takes the value 1) and j
and k belong to the same group (gjk takes values 1), then k and i
must also belong to the same group (therefore gik should be 1).

The graphical model factor that encodes this constraint is de-
fined as

wcðgij; gjk; gkiÞ ¼ e�f chc
: ð6Þ

Finally, we also define a function fp(gij) ? {0,1} that acts as a prior
on the grouping variable. The graphical model factor for the group
prior is defined as

wpðgijÞ ¼ e�f php
: ð7Þ
3.5. Connectivity

So far, we deliberately decided not to specify which pairs of
subjects nodes are connected to each other (and to the correspond-
ing grouping variable). We could indeed use link wl to connect all
the pair of subjects that co-exist in the same time step (as a conse-
Please cite this article in press as: S. Pellegrini, L. Van Gool, Tracking with a mix
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quence, we could connect all the possible triplets of nodes gij).
Doing so would mean that the interactions occur regardless of
the distance and the reciprocal visibility of a pair of targets.
Furthermore, the increase in connectivity, would increase the
inference computational requirements. We instead assume that a
target i interacts only with the neighboring targets j. Let us define
the set DtðPtÞ as the set of pairs of targets i, j that are connected
after a Delaunay triangulation on the target positions
Pt :¼ pt

1; . . . ;pt
N

� �
. We can now define the setN t of neighboring tar-

gets at time t as

fi; jg 2 N t if fi; jg 2 Dt ^ d pt
i ;p

t
j

� �
6 kcon; ð8Þ

where d(�, �) is the Euclidean distance function and kcon is a threshold
parameter. We also choose to apply the transitivity constraint lo-
cally. In particular we add a transitivity function for a triplet of sub-
jects reciprocally connected by the Delaunay triangulation. While
this solution still enforces the property locally, it does not model
global transitivity, as Fig. 2 shows. We could prevent this violation
by increasing the number of wc factors to connect more and more
grouping nodes. However, we believe that the local transitivity is
a sufficient constraint and further complexity would offer little
benefit.
4. Inference

In Section 3 we focused on building a model that could properly
represent the main component of a multi-target tracker. In this
section we deal with how to estimate the model variables. We
did not concern ourselves with the computational feasibility issues
so far. It turns out that the model that we described is inherently
complex. One first issue is the connectivity of the graph. In the gen-
eral case, the graph contains loops. Also, no assumption was made
on any particular structure for the feature functions. Another, more
important obstacle for exact inference lays in the fact that some of
the variables of interest are, at least partially, continuous, albeit
bounded. This is the case for the position p and the velocity v vari-
ables. Discretizing this variables jointly would require choosing a
proper resolution parameter and, above all, would probably have
unfeasible memory requirements. Finally, there is a problem due
to the size of the problem itself. Multiple targets can be present
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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Fig. 2. The grouping nodes with bold borders are assigned a value 1, meaning they
assign the two neighboring target nodes, e.g. s1 and s4, to the same group. The
others are assigned a value of zero. Dotted lines connect grouping nodes to
transitivity factors wc. Note that g1,2 is assigned a zero value, implying that the
subjects 1 and 2 do not belong to the same group. However, we could as well infer
that subjects 1 and 4 belong to the same group (g1,4 = 1), that subjects 4 and 3
belong to the same group (g3,4 = 1) and that subjects 3 and 2 belong to the same
group (g2,3 = 1). Therefore, assuming a transitivity property for group membership,
we would conclude that also subjects 1 and 2 belong to the same group. However
this is not true in our model. Global transitivity is not enforced, only local
transitivity (by means of the wc factors) is. This example was built with the
purpose of showing this aspect of the model, but such situations are in fact
extremely rare.
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in the scene for a long time. For each target we have a node at each
timestep. We tackle all these problems in this section.

4.1. Belief propagation with continuous variables

A common strategy to adopt when dealing with loopy graph, is
Loopy Belief Propagation (LBP) [38]. Although in the general case it
gives no optimality guarantees, this method and its variants have
led to good results in the literature. In our case, as already men-
tioned, we have the additional problem that some the variables
are continuous. Let us consider, as an example, the messages m ex-
changed between a state node of a target i and one of the neighbor-
ing interactions link wl at a certain time. The message passing
adopted in belief propagation strategies could be generalized to
the presence of continuous variables as follows

mi!wl ðsiÞ ¼
Y

w2neðiÞ=wl

mw!iðsiÞ; ð9Þ
mwl!iðsiÞ ¼
X

gij2f0;1g

Z
wlðsi; sj; gijÞmj!wl ðsjÞmgij!wl ðgijÞdsj; ð10Þ

where ne(i) is the set of neighboring factors of the state node of tar-
get i. The integral in Eq. (10) is intractable in the general case. One
solution is to resort to sampling in alternation with belief propaga-
tion [26,54]. We use the Particle Belief Propagation (PBP) [26] for
our purposes. The idea behind this method is to approximately
solve the integral in Eq. (10) with importance sampling. Given an
importance function q(si) we can derive the sampled approximation
to Eq. (10)

mwl!iðsiÞ �
X

gij2f0;1g

X
sj2Sj

wlðsi; sj; gijÞ
mj!wl ðsjÞ

qðsjÞ
mgij!wl ðgijÞ; ð11Þ

where Sj is the set of samples on the state of target j drawn from
q(sj). Note that the elements of the summation are now divided
by the importance weight q(sj). Also, note that the message can
be evaluated on any value in the continuous range of the variable si.

We have therefore a way to compute the messages m, but we
did not specify the importance distribution q. We discuss this in
the next subsection.
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4.2. Sampling strategies

In [26], the authors show that the best choice of importance dis-
tribution q(si) is the marginal distribution b(si) for the variable si.
This distribution is not available however, and the best approxima-
tion is only available at the end of the inference process. An
increasingly more accurate approximation ~bðsiÞ to this marginal
distribution is however available at each iteration of the belief
propagation, simply obtained by multiplying the incoming mes-
sages at each node

~bðsiÞ ¼
Y

w2neðiÞ
mw!iðsiÞ: ð12Þ

As shown in [26] this is a effective choice. Note that this product
is a continuous function.

Sampling from the product of incoming messages, in the contin-
uous case, is not a trivial task. A possible solution is to use a Mar-
kov Chain Monte Carlo (MCMC) sampling method, such as
Metropolis–Hastings.

While perfectly valid, this strategy requires using MCMC to
sample from each target node at each iteration of the algorithm.
This is significantly demanding in terms of computation. We are
not forced in principle to use the product of messages as the sam-
pling distribution. The MCMC sampling works in the general
framework of PBP, but it does not exploit all the structure of the
specific problem, in our case, the tracker application. It was already
mentioned that there is a strong correlation among two consecu-
tive state nodes for each target. We exploit this temporal correla-
tion to propagate the samples from one to the next target nodes.
We therefore devise an importance sampling scheme, similar to
Briers Arnaud et al. [3], but within the PBP framework.

The nodes that we need to sample are the target nodes. The
grouping node indeed represents a binary variable that needs no
sampling. The idea here is to sample from the target nodes sequen-
tially. Let us assume a directed graphical model like the one in
Fig. 3 for each target. This model does not need to be identical to
the one in Fig. 1, top-left. Let us define the distribution from which
we would like to sample as

q�ðstjD0;...;tÞ; ð13Þ

where D0,. . .,t is the vector of the available evidence up to the current
timestep t. Assuming the model of Fig. 3, we can rewrite the distri-
bution as follows:

q�ðstjD0;...;tÞ ¼
Z

q�ðst ; st�1jD0;...;tÞdst�1; ð14Þ

¼ q�ðDt jstÞ
q�ðDtÞ

Z
q�ðstjst�1Þq�ðst�1jD0;...;t�1Þdst�1: ð15Þ

If, for the moment, we assume that samples St�1
j are available from

the distribution q⁄(st�1jD0,. . .,t�1), then we can write

q�ðstjD0;...;tÞ � q�ðDt jstÞ
q�ðDtÞ

X
st�12Sj

q�ðst jst�1Þ: ð16Þ

Eq. (16) has the form of a mixture model. Note that the denomina-
tor q⁄(Dt) is not dependent on st and therefore it can be treated as a
constant. Sampling from Eq. (16) therefore reduces to a weighted
sampling of the propagation density q⁄(stjst�1). We see how to this
below. Now, to finish showing that we can sequentially sample
from this distribution, we need to show that we can sample from
q⁄(s0jD0). We can assume that the first node of the chain for each
target, is a discrete node, therefore we can always sample from it.
In Section 4.4 we see that the target initialization provides us with
a state from which we can easily sample.
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Fig. 3. The directed graph model for sequential sampling. Rather than sampling
from the individual belief estimates as in the PBP framework, we propose to use
sequential sampling to exploit the sequential structure of the problem. The chain in
the figure is used for this purpose. Here q� st

i jst�1
i

� �
is the time propagation density

and is defined in Eq. (17), while q⁄(Dtjst) is the observation density and is defined in
Eq. (18).
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Finally, we need to define the propagation density q⁄(stjst�1)
and the observation density q⁄(Dtjst). We keep in mind that our
goal is to have the importance function as similar as possible to
the marginal for st [26]. For the propagation function, we use a
function similar to the motion function described in Table 1. These
energy functions implement a motion model from which we can-
not directly sample, because of the presence of the unreliable state.
We use instead the following propagation function:
q� st
i jst�1

i

� �
¼ adðst

i � ŝt�1Þ þ ð1� aÞ
N

pt
i

vt
i

	 

; lt

i ;R

� 
d ut

i � ut�1
i

� �
2
64

3
75 ð17Þ

with

ŝt�1 ¼
pt�1

i

vt�1
i

1

2
64

3
75 lt

i ¼
pt�1

i þ Dvt�1
i

vt�1
i

;

" #

R ¼ 1
2

hm
p

� ��2
0 0 0

0 hm
p

� ��2
0 0

0 0 hm
v

� ��2 0

0 0 0 hm
v

� ��2

2
66666664

3
77777775
;

where d(�) has value zero everywhere except when its argument is
0, a is a parameter that regulates the random switch from the reli-
able to the unreliable state and the variance parameters R are the
same parameters that are used to multiply the motion functions
in the motion factor wm. Notice that in the propagation function
of Eq. (17), the ui can only change to 1 and never to 0, in accordance
with the motion model energy functions. We can sample from Eq.
(17) by randomly choosing one of the two terms: we choose the
first term with probability a and the second term with probability
(1 � a). If the first term is chosen, there is only one choice for the
sample of the state st, i.e. ŝt�1. If the second term is chosen, position
and velocity are sampled from a multivariate normal density func-
tion, while the ut

i keeps the old value ut
i .

The observation function q⁄(Dtjst) acts as a weight for the sam-
ples from Eq. (16). As we already described for the MH sampling
strategy, at each iteration of the belief propagation algorithm, we
have a set of messages being sent to all the nodes. It seems there-
fore reasonable to use the messages coming from the neighboring
factors of node st

i , with the exclusion of the time factors wm (that
are already accounted for in the propagation function), to imple-
ment the observation function

q�ðDt jstÞ ¼
Y

w2neðiÞ=wm

mw!iðsiÞ: ð18Þ
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Here, slightly abusing the notation, we included the messages in the
available evidence. In this way the weights convey the information
coming not only from the images, but also from the interacting
targets.

4.3. Splitting the inference

So far we have seen how to adapt LBP to a graph with continu-
ous variables. There are two further considerations. The first is that
performing inference for all the graph at the same time might be
prohibitive, especially in terms of memory requirements. The
tracker might be used for long sequences, depending on the task,
and the amount of data (samples and images) necessary for the
inference might be too big to fit in memory. The other consider-
ation is that, sometimes, tracking applications require an estimate
as soon as new data becomes available. Therefore waiting for the
end of the sequence to perform inference would not be appropriate
in these situations.

The solution we employ is to perform the inference in temporal
windows. The idea is to split the graph into partially overlapping
subgraphs, and perform inference on each of these. Fig. 4 shows
an illustrative example. For the sake of clarity we show only the
portion of the graph relative to a single target (i) for the first three
time steps. The graph is split in such a way that the all the target
chains end at a certain time (time 1 in the figure) and restart with
the same node in the next subgraph. Note that the grouping nodes,
like gij, are repeated in all the subgraphs. The splitting shown in
Fig. 4 detaches the first graph slice from the whole graph. The pro-
cedure can be repeated (on the rightmost subgraph in figure) to ob-
tain the other time slices.

The inference is carried out for each graph slice in chronological
order. To exploit the information coming from previous slices of
the graph, the messages to overlapping nodes (gij and s1

i in the fig-
ure) coming from factors w that are not repeated in the successive
slice are multiplied and collected in special connection factors ~w.
This is not the same as performing the inference with the whole
graph at the same time. The main difference is that the information
can propagate only from one graph slice to the following ones, but
not backwards. Also, the overlapping target nodes are sampled
only in the first graph slice in which they appear. At the end of
the inference for that slice, the samples and the sampling weights
are stored. When the overlapping nodes are used again in the fol-
lowing graph slice, they are not resampled, but the stored values
are re-used.

The sequential sampling scheme introduced in Section 4.2 is
also adapted to cope with the graph splitting. Since the samples
and the sampling weights of the overlapping target nodes (s1

i in fig-
ure) are stored for the PBP on the next graph slice, they can also
readily be used for sequential sampling.

We employed this approximation also to be able to provide an
estimate at the end of each graph slice. Sometimes, for example for
visualization or for evaluation purposes, a hard decision for each
variable is necessary. Rather than a max-marginal estimate for
each node, we use dynamic programming for each target chain
within the graph slice to obtain smoother results. The dynamic
programming uses Eq. (18) to compute the unary costs for each
chain node, thus accounting for observation model and interac-
tions. The transition costs from one node to the next are evaluated
using the wm factor of the model. In particular, if the estimate re-
turns the unreliable state for a target, that target is not propagated
to the next graph slice.

4.4. External modules

In this subsection we discuss the tracker components that we
did not manage to include in the graphical model framework.
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Fig. 4. Graph slicing. The undirected graphical model on the left shows a section of the graph built for an entire sequence (see Section 3). Both because of the limited
computational resources and to allow the method to return results as new data becomes available, we extract and compute the result for one slice at a time (center). This slice
contains all the subject nodes for a certain time window and all the grouping nodes. In this figure, the slice contains only two consecutive time-steps, but this need not be the
case in general. As the rest of the graph (right) is not used for the current computation, it does not even need to be known. This is the reason why we can apply the method
sequentially as new data becomes available. Once the inference stage is complete, we repeat the same slicing operation on the remaining graph. The slices are not treated
completely independently however. The result of the inference on previous slices is propagated to the following ones, as illustrated by the A, B, C (for the grouping variables)
and D, E, F (for the subject variables) messages that are sent from one slice to the next. Note, however, that the information does not travel backwards.
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One external component is initialization, that is, the component
that decides whether one or more targets have to be initialized for
tracking. We have already seen that the inference is not carried out
in one single step for all the graph, but rather it is performed in a
temporal window. When a new inference window is initialized,
new targets might have entered the scene. We use an external
module that, given the detector output and the target estimates
until the current time step, infers whether there are new targets
to be initialized. This is done by looking at the local maxima of
the detector image, and while visiting them in order of decreasing
detector score, accepting only those that do not overlap with more
than a certain threshold to those that have already been initialized.
This process is performed only at the beginning of each inference
window. Since from the single detector image we have no estimate
of the velocity of the newly initialized target, we initialize the first
state samples for each target with the position given by the detec-
tor and the velocity sampled uniformly in all directions and within
a reasonable speed. The first node can be considered therefore a
discrete node, with all the discrete choices equally likely and there-
fore easy to sample from, as required in Section 4.2. Finally, to be
robust with respect to poor initialization, the target for the first
inference window is not linked by interaction factors wl to the
other targets. In other words, for the duration of the first inference
window, it is tracked independently.

The other component that we could not cast into the framework
is the one responsible for updating the appearance model. Once a
target is initialized, the appearance model is built by using as a po-
sitive example the initialized position, and as negative examples
positions taken at random in the vicinity of the positive example.
The appearance model needs to be updated however, because of
the well known appearance change that targets undergo. These up-
dates are carried out using the same strategy employed for build-
ing the appearance model, but as positive examples we use
samples with high detector score, similarly to [8].

4.5. Implementation remarks

Finally, in this section we account for some technical non-trivial
caveats that are necessary to properly implement the tracker.

With regard to propagation to the unreliable state (Eq. (17)),
when a certain number of samples are propagated to the unreliable
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state, the effective number of samples that represent the position
and velocity part of the state decreases. Therefore the accuracy of
the representation decreases and it becomes more likely for the
samples to be propagated to the unreliable state. This process
can favor the premature termination of a target. In order to avoid
this, while resampling in Eq. (17), we try to keep the number of
samples that are in the reliable state equal to their initial number,
by increasing the number of output samples as new unreliable
samples are drawn. However, we do not sample more than twice
the initial number of samples.

The sampling procedure described in the previous section, both
in the MCMC form and in the sequential sampling one, are parallel-
izable. In the former case, each node can be sampled indepen-
dently, while in the latter this is true for each target chain. In the
same way, the caching of the energy function values, as described
above, can be carried out in parallel. With the widespread growth
of parallel computing, and seen the resource requirement of the
tracker presented in this work, this becomes necessary, rather than
an option.
5. Experiments

In the following we show the experiments we carried out in or-
der to evaluate the tracker. For the evaluation, we need data that
can challenge all the major aspects of a multi-target tracker. In par-
ticular, the tracker should work on a scene with several naive tar-
gets. Instructing targets to walk in various configurations might fail
in reproducing those interaction patterns that we want to model.
Furthermore, since we need many targets to be visible in the scene
at the same time, we chose sequences with cameras set high en-
ough to capture a big portion of the scene.
5.1. Datasets and setup

5.1.1. Students
This is an outdoor sequence provided by a third party [33] that

we manually annotated to collect ground truth. The sequence is
particularly challenging due to the high number of subjects in
the scene, the multiple patterns of motion, the compression arti-
facts and the strong shadows. Although the background is static,
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Fig. 5. A result frame from the Students sequence. The white line connecting the
bounding boxes shows the group relationship estimate. The thicker the line, the
stronger is the estimate that the two connected subjects belong to the same group.
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we do not use this information and rely on a person detector [18].
Given the position of the camera, the detector was trained on the
same scene from a small set of frames (50). We used another small
subset of the frames (300) to choose the best parameters h, j and k.
To choose the parameters we used a simple gradient descent with
fixed step size, one coordinate at the time, optimizing for accuracy.
After removing all the frames used for training, we were left with
4400 frames at 25 fps (i.e., about 3 min of video) that we used for
testing. Fig. 5 shows a screenshot of the tracker results. The darker
area in the image has not been used for tracking. This was done
both to avoid border effects and to avoid dark shadows and stairs
(for the top and left part of the images).
5.1.2. BIWI-Walking
These sequences have been made available by Pellegrini et al.

[41]. They have been captured with almost top-view cameras
and show people walking in a busy street (Fig. 6) and at the en-
trance of a public building (Fig. 7). We kept the parameters used
for the Students sequence. The detector has been re-trained for
the busy street sequence on a portion of the data while for the
Fig. 6. Two subjects belonging to the same group. Two setups are compared: the one wit
not belong to the same group (see text for more details). Note that subject 1 is properly
subject 1 to estimate the velocity of subject 2 when the observation model is weak due
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building entrance, because of low resolution and compression arti-
facts, a simple background subtraction has been employed.
5.1.3. Mycoplasma
We also used a video sequence from Ref. [56], showing moving

bacteria. As a detector we used a logistic function (trained on a sin-
gle frame) on the intensity on the image. The bacteria intensity is
substantially different from the background and provides a simple
but effective detector. Like before, we cut out the borders of the
image to overcome border effects. No ground truth was available
for this sequence. For the parameter settings, we used the same
parameters from the Students sequence, with the only exception
of the velocity parameter hm

v that was reduced to account for more
irregular target motion.

For the following experiments, we set the size of the inference
window to 5, as a compromise between the computational
requirements, the need of producing results as soon as new data
becomes available and the desire of exploiting the temporal corre-
lation. We use a fixed aspect ratio and scale within each sequence
for all the targets, as these quantities do not vary much in the
images. Finally, we use 100 samples per target and we set the
interaction threshold kcon from Eq. (8) to 2 m.
5.2. Grouping influence

To highlight the importance of the grouping component of the
tracking, we show the output of the system when tracking groups
with two different setups. In the first we manually set gij = 1 for all
the pair of subjects i and j within the same group. In the second, we
instead manually set all the groups relations to 0, that is gij = 0 for
all i and j in the scene.

A first example is shown in Fig. 6. The sequence is extracted
from the BIWI-Walking dataset. Note that subject 1 is tracked
properly in both setups, while 2 is not. The observation model is
indeed weaker because of the partial occlusion of the tree
branches. In the setup with the group correctly initialized the fail-
ure is avoided because the velocity of subject 2 is affected by the
velocity of subject 1, that, as stated, is well tracked and pushes 2
forward.

Another example is shown in Fig. 7. This sequence is extracted
from the same dataset as the previous one and shows the entrance
of a public building. The two tracker settings are the ones used in
the previous experiment, with the difference that now several
h the group correctly initialized (top row) and the one in which the two subjects do
tracked in both setups. The grouping component of the tracking uses the velocity of

to the partial occlusion of the tree branches.
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Fig. 7. Several groups interacting while walking in opposite directions. Subjects within the same group are assigned similar colors and ID number. In particular, we have the
following groups: {1, 2, 3, 4, 5}, {7, 8}, {9}, {10, 11}, {12, 13, 14}, {15, 16} and {17, 18}. Two tracker settings are compared (see text and Fig. 6 for more details). Note that subject
9, in the second image, is incorrectly estimated going through the left-most group in the setup without groups. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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groups are extracted. The figure shows the comparison of the two
tracker setups. While in this sequence, because of the poor quality
of the background subtraction, the trajectory precision is much
lower, the difference in accuracy still favors the setup with the
groups correctly initialized. Note how the group prior favors the
cohesion of the trajectories.

5.3. Group formation and splitting

Although our modeling of groups is only static and no merging
or splitting are explicitly defined, we observe similar dynamics
emerging from the inference strategy that we use. In particular,
by doing inference on a time window basis, we actually update
the estimate of the group relation as new evidence becomes avail-
able. Fig. 8 shows the progressive estimate of the grouping relation
among few subjects. Note that eventually the local transitivity
property holds for all the triplets of subjects in the figure. The
group relationship is a result by itself that can be used, for exam-
ple, for scene understanding [10].

Group splitting is also not directly modeled in our framework.
However group sometimes split and the model should not halluci-
nate members walking together. If the observation model is reli-
able enough, this does not happen. Fig. 10 shows a case in the
Students sequence. This is also an example of recovery from wrong
Fig. 8. Group formation. The thickness of the white line is proportional to the estimated p
from left to right, 4000, 4100, 4300, 4320 and 4350.
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initialization. One major reason for false positives in the tracker is
given by wrong initialization, as the detector fires often on shad-
ows and backpacks (see Fig. 9). The tracker is anyhow capable of
alleviating this problem by not trusting completely the initializer.
The inference is indeed able to assign the unreliable state to those
tracks that violate the interaction model and/or do not have much
support from the observation model.
5.4. Avoidance

While the appearance model provides already a means for dis-
ambiguation among targets, when the targets look similar and the
resolution is relatively low, the appearance model is not enough to
prevent the stronger observation explaining multiple tracks. In
Fig. 11 we compare the result of the tracker when using the inter-
action terms as previously described and when not using them.

In Fig. 12 we show frames from the result of the bacteria track-
ing experiment. In the right part of the figure we follow a single
bacterium from the initialization to when it leaves of the scene.
Each frame reports an interaction with other bacteria. Even if they
come very close to each other, the id of the targets are preserved.
Note that there is no group formation in the bacteria experiment.
This happens because these kind of bacteria rarely move together.
robability of the two subjects being in the same group. The frames being shown are,
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Fig. 9. Tracker errors. Some of the tracker errors are caused by a wrong initialization. In the left figure, the shadow is detected instead of the person. Furthermore, the shadow
moves indeed like a human, and this makes it harder for the inference to infer that there is a failure. The right figure shows another mistake. This time is the bag that is being
recognized as a person and is also being assigned the same group as the other two subjects.

Fig. 10. Tracker failure detection. Sometimes, the initialization or the tracker itself lead to a wrong estimate. The leftmost figure shows such a case, where for the two subjects
with ID 28 and 35, there is another pair of wrong estimates, namely 50 and 46. The tracks of interest are represented with a shaded bounding box. The tracker finds out that
the estimates are wrong in the following frames. This happens because the wrong tracks violate the avoidance behaviors, since they overlap with other tracks and lack of a
strong observation support. We show frames, from left to right 1175, 1200 and 1250.

Fig. 11. Top: results when using no interaction terms. When the appearance difference is not strong enough, as it happens for the two similarly looking subjects, the tracks
overlap as the one with the stronger observation support (ID 26, in this figure) attracts the other (23). Bottom: this problem is solved using an interaction term, in this case
specifically the avoidance term.
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Fig. 12. The figure on the left shows a screenshot of the tracker applied to the Mycoplasma dataset. The red bounding box identifies the bacterium with ID 78 at the moment
of initialization. The bacterium is followed in the right side in the smaller images. Note that the bacterium approaches other almost identical bacteria. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Recall/(1-precision) curve for the detector. The red cross shows the result of
the tracker output when treated as a detector. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Table 3
CLEARMOT [5] evaluation, showing accuracy (MOTA), precision (MOTP), false
negative rate (FN), false positive rate (FP) and the mismatches rate (MM). We
compare the results of the full tracker presented in this chapter (‘‘Full’’), with an
instantiation that does not use grouping (‘‘No Group’’) and with one that does not
make use of interactions at all (‘‘No Int.’’).

Method MOTA (%) MOTP (%) FN (%) FP (%) MM (%)

Full 67.3 75 21.7 9.4 1.6
No Group 65.3 74 26.2 6.9 1.7
No Int. 52.5 70 20.2 25.2 2.1
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Fig. 14. Recall/(1-precision) curve for the group classification. To produce this
result, the tracker has been run on 40 consecutive sub-sequences of the Student
sequence, each lasting 2 s. The targets were initialized using the ground truth.

1 As in [42], a trajectory is correctly predicted when the tracked position at the end
of the 2 s is within a threshold of 0.5 m from the ground truth.
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5.5. Quantitative results

The output of the tracker strongly relies on the quality of the
detector. In Fig. 13 we plot the precision and accuracy for the
detector alone for the Students sequence. We also evaluate the
tracker as a detector by using the best estimate (see Section 4.3)
of tracked targets at each frame. The results show that our system
is capable of keeping track of the targets also when these are not
clearly visible to the detector.

We finally evaluate the performance of the tracker on the Stu-
dents sequence, using the CLEARMOT metric [5]. We compare
our method with a baseline instantiation of the tracker that does
not use the interaction model The tracker relies therefore on the
detector and on the online classifier to disambiguate multiple
tracks. We also use an instantiation of the tracker that assigns all
the subjects to separate groups, so that group interactions are
not used. The result are shown in Table 3. As discussed already
in the previous subsection, interactions, especially the avoidance
behavior, are indeed necessary to avoid multiple tracks being ex-
plained by the same observation. Grouping offers a marginal
improvement, due mostly to a reduction in false negatives, while
it produces more false positives.

In our previous work [42], we present a data association
method that we apply on short (2 s) sub-sequences of the Students
Please cite this article in press as: S. Pellegrini, L. Van Gool, Tracking with a mix
derstand. (2013), http://dx.doi.org/10.1016/j.cviu.2012.09.005
dataset. Although the tracker we presented is capable of automatic
initialization and can cope with longer sequence, we use the same
initialization from ground truth and the same experiment length in
order to compare the two performances. Using the same test set
(2000 frames, from frame 1000 to frame 3000) we initialize the
tracker at each of the 40 sub-sequences using the ground truth
annotation. As the sequences are short there is no need of using
the unreliable state in the state variables for the subject. Using
our approach we achieve �79% correctly predicted trajectories1
ed continuous-discrete Conditional Random Field, Comput. Vis. Image Un-
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when interactions are not used and �90% with interactions. This of-
fers a considerable improvement over the �70% result reported in
[42].

As for the grouping results, we plot the precision and recall in
Fig. 14. We achieve an Equal Error Rate of �62%, compared to
the �46% precision and �82% recall reported in [42]. For the same
sequence, the authors of [31] report 80.5% precision and 77% recall.
When comparing the results we should note that in our case,
grouping variables are only present where a link of the Delaunay
triangulation is present. Therefore, we cannot achieve 100% recall
no matter what threshold we use. Furthermore, in our case group-
ing and tracking are carried out jointly.
6. Conclusions

In this work we presented a principled model for a tracker that
unifies an observation model, motion model and interaction model
within the same framework. We cope with initialization errors and
with tracker failures in the same way by means of an additional
state variable. The target tracks and the group memberships are
estimated jointly, so that each of them can propagate information
to the other during the inference. The interactions themselves,
namely the grouping relationship, are also propagated by means
of an additional layer of connections that models local transitivity.

The work can be seen as a generalization of Particle Filters, in
that it uses a sequential sampling scheme. However it is different
from a Particle Filter solution in many aspects, including the use
of Particle Belief Propagation and the interaction factors.

One of our goals was to propose a model that is modular, suit-
able to extensions and modifications. It should be easy, as a result,
to add other functions to represent more properties. In this work
we used a relatively small number of functions, and training the
parameters has been carried out with a simple search on a valida-
tion set. While adding many other functions is possible, with the
increasing number of parameters, a different, more efficient learn-
ing strategy must be planned. Since a log-linear model has been
used, learning strategies like Contrastive Divergence [25] might
be exploited.

Another advantage of modeling the whole tracker as a graphical
model, is that it can readily deal with externally provided informa-
tion, such as user annotation. This allows to easily extend the
tracker to an interactive one. The user annotation forces the node
variables to a particular state and the rest of the inference process
stays the same. We developed such an interactive interface and we
are currently using it to assist the tracker.

The tracker presented in this work is not capable of real-time
performance. The computational time depends on the number of
samples used, but also on the number and density of targets in
the scene. As an example, for the Students sequence, with about
30 people per frame in the scene, the full tracker requires about
3 s per frame. Code optimization and more parallel computation
would alleviate this limitation.
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