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Abstract. The Weather Research and Forecasting mesoscale model (WRF) was used to simulate hourly 10 m
wind speed and direction over the city of Taranto, Apulia region (south-eastern Italy). This area is characterized
by a large industrial complex including the largest European steel plant and is subject to a Regional Air Quality
Recovery Plan. This plan constrains industries in the area to reduce by 10 % the mean daily emissions by diffuse
and point sources during specific meteorological conditions named wind days. According to the Recovery Plan,
the Regional Environmental Agency ARPA-PUGLIA is responsible for forecasting these specific meteorological
conditions with 72 h in advance and possibly issue the early warning.

In particular, an accurate wind simulation is required. Unfortunately, numerical weather prediction models
suffer from errors, especially for what concerns near-surface fields. These errors depend primarily on uncertain-
ties in the initial and boundary conditions provided by global models and secondly on the model formulation, in
particular the physical parametrizations used to represent processes such as turbulence, radiation exchange, cu-
mulus and microphysics. In our work, we tried to compensate for the latter limitation by using different Planetary
Boundary Layer (PBL) parameterization schemes. Five combinations of PBL and Surface Layer (SL) schemes
were considered.

Simulations are implemented in a real-time configuration since our intention is to analyze the same configura-
tion implemented by ARPA-PUGLIA for operational runs; the validation is focused over a time range extending
from 49 to 72 h with hourly time resolution. The assessment of the performance was computed by comparing the
WRF model output with ground data measured at a weather monitoring station in Taranto, near the steel plant.
After the analysis of the simulations performed with different PBL schemes, both simple (e.g. average) and more
complex post-processing methods (e.g. weighted average, linear and nonlinear regression, and artificial neural
network) are adopted to improve the performances with respect to the output of each single setup. The neural
network approach comes out as the most promising method.
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1 Introduction

Due to the numerous and high-impact industrial activities,
Taranto (south-eastern Italy) is included in the so-called ar-
eas at “high risk of environmental crisis”. In fact, it hosts a
heavy industrial district, unfavourably positioned very close
to residential areas. Among these industrial plants, particu-
lar attention is addressed to the steelworks: the ILVA plant
is extended over a surface of 15 million square meters, in-
cluding 200 km of railway tracks, 50 km of roads, 190 km
of conveyor belts, 5 blast furnaces and 5 converters. Stor-
age and handling of primary materials in the stockyards and
transportation of materials by heavy duty trucks are the ma-
jor sources of particulate. The most critical neighbourhood,
called Tamburi, is located at less than 1 km from the stock-
yard, downwind of the plant with respect to the prevailing
north-westerly wind.

In the last few years, particles under 10 µm (PM10) and
benzo(a)pyrene (B(a)P) concentrations measured in Tamburi
exceeded the limit permitted by law several times (Trizio et
al., 2016). A study of these critical pollution events showed
a close correlation with wind conditions, in particular the ex-
ceedances occur when the wind favours the pollutant trans-
port from the industrial site to the adjacent urban area
(Amodio et al., 2013). Based on the statistical analysis of me-
teorological measurements taken in a monitoring site near the
coastline during several years, a criterion for the daily iden-
tification of these events named “wind days” was defined:
these critical days are characterized by at least 3 consecutive
hours of wind coming from N–NW and speed higher than
7 m s−1. This criterion is part of a Regional Air Quality Re-
covery Plan, implemented to improve the air quality in the
Tamburi district. This plan determines that, in case of predic-
tion of wind days, the alert should be sent two days in ad-
vance so that industrial plants must reduce the mean daily
emissions by diffuse and point sources by 10 %. Accord-
ing to this plan, the Regional Environmental Agency ARPA-
PUGLIA runs the WRF model to forecast wind speed and
direction every day up to hour 72, considering the forecast
range from 49 to 72 h for issuing alerts.

For the above reasons, to predict well in advance the oc-
currence of “wind days”, it is necessary to accurately sim-
ulate wind speed and direction. In this effort, the Weather
Research and Forecasting model (WRF) was used to sim-
ulate hourly 10 m wind speed and direction over the city
of Taranto (Fedele et al., 2014, 2015). WRF is a consoli-
date mesoscale numerical weather prediction system, which
represents the state-of-the-art in meteorological limited area
modelling. This model has been successfully used in the past
to simulate the evolution of boundary layer features over
Apulia region (e.g., De Tomasi et al., 2011; Comin et al.,
2015). Unfortunately, meteorological model outputs, partic-
ularly near-surface fields (e.g., precipitation, wind, . . .), may
be affected by significant errors. These errors depend primar-
ily on the uncertainties of the initial and boundary condi-

tions provided by global models and secondly on the physical
parametrizations used to represent processes such as turbu-
lence, radiation exchange, cumulus and microphysics. Thus,
an optimized method or postprocessing procedure to reduce
the simulation errors is very important in order to improve
the model results (Tateo et al., 2015). Many papers demon-
strate that an ensemble of model runs, generated for example
by using different PBL parameterization schemes, may im-
prove the predictive skill compared to a single deterministic
run (Evans et al., 2012).

In the present work, we considered a total of five combina-
tions of PBL and Surface Layer (SL) schemes, i.e. the Yon-
sei University with topographic correction, Mellor-Yamada-
Janjic and Mellor-Yamada-Nakanishi-and-Niino level 2.5
schemes for PBL parametrization; for the latter, three com-
patible SL schemes are implemented to analyse the specific
effect of SL schemes. Simulations are considered in real-time
implementation: the validation is performed for a forecast
range from 49 to 72 h with hourly time resolution. We com-
pared the results from each single model setup with different
linear and nonlinear post-processing approaches as described
in Sect. 2. Section 3 deals with the results of wind speed and
direction analysis. In Sect. 4, the discussion and interpreta-
tion of the results are shown.

2 Material and method

Hourly 10 m wind speed and direction in Taranto are ob-
tained by running the WRF model using five different com-
binations of PBL (and associated SL) schemes as reported in
Table 1. In subsequent sections, we will refer to the “i” run
to indicate the “i”th combination of PBL and SL schemes as
reported in Table 1.

In each run, all other parameterization schemes were kept
unchanged. We considered two nesting domains with 16 and
4 km grid spacing respectively and 40 eta levels. The model
configuration can be summarized as follows: the “Thompson
scheme” microphysics, for longwave and shortwave radia-
tion the “rrtm scheme” and “Dudhia scheme” respectively,
the effect of resolved and unresolved orography on surface
wind as in Jiménez and Dudhia (2012), the Kain–Fritsch cu-
mulus parameterization and the Noah land-surface model.

The analysis was performed over a period of eight months,
from 1 August 2015 to 31 March 2016. Simulations are im-
plemented in a real-time configuration since our intention is
to analyze the results for the operational runs implemented
at ARPA-PUGLIA; for validation purposes, the range from
49 to 72 h with hourly resolution is considered. The Global
Forecast System (GFS) analyses/forecasts were used as ini-
tial/boundary conditions.

To compare the WRF outputs with the weather monitor-
ing station measurements, we used the nearest neighbor ap-
proach to the model fields interpolated by Grid Analysis and
Display System (GrADS).
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Table 1. Combination of Boundary Layer and Surface Layer Schemas considered in the present work.

Model Boundary Layer Schemes Surface Layer Schemes

1 Yonsei University with topographic correction Revised MM5 Monin-Obukhov
(YSU) (Jimenez, renamed in v3.6)

2 Mellor-Yamada-Janjic (Eta) TKE Monin-Obukhov (Janjic Eta)

3 Mellor-Yamada Nakanishi and Niino level 2.5 Revised MM5 Monin-Obukhov
(MYNN 2.5 level TKE) (Jimenez, renamed in v3.6)

4 Mellor-Yamada Nakanishi and Niino level 2.5 Monin-Obukhov (Janjic Eta)
(MYNN 2.5 level TKE)

5 Mellor-Yamada Nakanishi and Niino level 2.5 Mellor-Yamada Nakanishi and Niino (MYNN)
(MYNN 2.5 level TKE)

2.1 Wind speed

The wind speed prediction errors ES (bias) were obtained
as difference between the WRF model outputs WSpred and
the measured data at the weather monitoring station WSobs
according to the Eq. (1):

ES=WSpred−WSobs (1)

The WS correction performances were estimated by consid-
ering the mean hourly error over the full dataset. After ob-
taining five different wind speed predictions by running each
model configuration in Table 1, six different post-processing
techniques were considered to obtain a more accurate wind
speed prediction (WSbest): simple average, weighted average
(we estimated the weight by considering the prediction er-
rors in a window of 30 days), linear regression, Kalman Fil-
ter method combined with an artificial neural network in the
stacked generalization procedure, two artificial neural net-
works combined in the stacked generalization procedure, and
an individual artificial neural network. In following subsec-
tions, a brief explanation is given for the last three, more
complex, methods.

2.1.1 Kalman Filter method combined with artificial
neural network in the stacked generalization
procedure

The Kalman Filter (KF) method is a recursive algorithm
commonly used to estimate an unknown variable at time “t”,
using a series of observations of that variable, measured in a
previous period. This method is based on the Bayesian infer-
ence and allows considering statistical noise and other inac-
curacies (Evensen, 2003).

In our analysis, we used the Kalman Filter to evaluate, for
each model and for each daily hour, the error at time “t”, by
measuring the errors in the previous week. We suppose the
error remains constant in this time window, except for the
statistical noise α as shown in Eq. (2):

ESi (t,h)= ESi (t − 1,h)+α(h) (2)

In this way, the prediction of each model is improved. To
combine the five corrected predictions, we used a simple ar-
tificial neural network (ANN) in the stacked generalization
method (Wolpert, 1992).

The best architecture in terms of minimum Root Mean
Square Error (RMSE) is found to be a feed-forward multi-
layer perceptron, one hidden layer with three neurons, and
seven input neurons, five for the corrected predictions and
two for the hourly cyclical component, H1 and H2, repre-
sented in Eqs. (3) and (4) as:

H1 = sin
(
h ·π

24

)
(3)

H2 = cos
(
h ·π

24

)
(4)

The best size in terms of Root Mean Square Error of the train-
ing period is found to be 20 days. Summarizing, we need a
period of 27 days to estimate WSbest, the first seven of which
are used to initialize the KF correction.

2.1.2 Two artificial neural networks combined in the
stacked generalization procedure

This procedure is similar to the procedure described in the
Sect. 2.1.1. The KF algorithm is replaced with an additional
ANN. In order to correct each model configuration, a ded-
icated ANN is necessary. The best architecture in terms of
RMSE is found to be a feed-forward multilayer perceptron,
one hidden layer with two neurons, and three input neurons,
one for the predicted wind speed provided by each single
model and two for the hourly cyclical component. To train
this ANN, the best size period in terms of RMSE is found to
be 10 days.

Also in this procedure, to combine the five corrected val-
ues, we used an additional ANN in the Stacked Generaliza-
tion method, similar to that described in Sect. 2.1.1. For the
additional ANN, the best size of the training period in terms
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Figure 1. Comparison of hourly mean values of wind speed using the five selected model configurations and their post-processed value with
respect to the observed data.

of RMSE is found to be 20 days. Summarizing, we need a
period of 30 days to estimate WSbest, the first ten of which
are used to train the five ANNs needed to correct, separately,
each single model.

2.1.3 Individual artificial neural network

The ANN is a nonlinear regression approach (Gardner and
Dorling, 1998). To evaluate the best architecture, i.e. to es-
timate the best size of the training period and the best input
features, various tests are implemented. The best configura-
tion in terms of RMSE is found to be a feed-forward mul-
tilayer perceptron architecture, one hidden layer with three
neurons, and seven input neurons, five for the corrected pre-
dictions and two for the hourly cyclical component, H1 and
H2, as represented in Eqs. (3) and (4). The best size of the
training period in terms of RMSE is found to be 30 days. In
this approach, the task of the individual ANN is to correct
each model and combine them simultaneously.

2.2 Wind direction

Throughout this study, the wind direction prediction error ED
was obtained by comparing the WRF outputs WDpred with
the measured data WDobs according to Eq. (5):

ED= (5)

 WDpred−WDobs if
∣∣WDpred−WDobs

∣∣≤ 180◦

−
∣∣360−

∣∣WDpred−WDobs
∣∣∣∣ if

(
WDpred−WDobs

)
> 180◦

+
∣∣360−

∣∣WDpred−WDobs
∣∣∣∣ if

(
WDpred−WDobs

)
<−180◦

Figure 2. Taylor Diagram to compare the five models and their
combinations with respect to the observed data in terms of Centered
Root Mean Square Error, Correlation Coefficient, and Standard De-
viation.

The performances are given in terms of Direction Accuracy
(DACC) expressed by Eq. (6):

DACC(Angle_ref)=
number of cases with error lower than Angle_ref

number of total cases
· 100 (6)

that represents the percentage of errors (in absolute value)
lower than a reference value (Angle_ref).

First, a partial average WDpar is estimated considering
only the model outputs within a standard deviation from the
total average. Next, the WDpar estimate is corrected by a lin-
ear regression trained in time: thus, the error EDbest is ob-
tained as:

EDbest = A1 ·WDpar+A2, (7)
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Figure 3. Conditional Quantile Plot to compare the five model configurations and their post-processed combinations with respect to the
observed data in terms of distribution.

Figure 4. Direction Accuracy plot versus Angle_ref (see text for definition) for each model and correction. Only values smaller than 45◦ are
shown because no improvement is found for larger values.

www.adv-sci-res.net/14/95/2017/ Adv. Sci. Res., 14, 95–102, 2017
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Figure 5. Bar Diagram of data subdivided by quadrant. For each
quadrant, the frequencies are reported below and above the thresh-
old of 1 m s−1.

where the coefficients A1 and A2 are estimated by train-
ing over the selected time window. Consequently, the correct
WDbest is estimated by Eq. (8)

WDbest =WDpar+EDbest. (8)

The analysis was carried out separately for each quadrant
(N–E, S–E, S–W, N–W) because WD errors are found to
be quadrant-dependent. Although each model presents a WD
error distribution centered at zero when the full domain [0–
360◦] is considered, when each quadrant is considered sepa-
rately the WD error distributions are found to be not centered
at zero.

3 Results

3.1 Wind speed results

The analysis shows that all considered model configurations
present a positive mean bias. In fact, Fig. 1 shows that all
model runs (colour continuous lines) simulate a wind speed
that is on average larger than the observed values (yellow
continuous lines). For this reason, the simple average (blue
small circles) and the weighted average (green small circles)
cannot improve the performances. Therefore, as described in
Sect. 2, we implemented four post-processing methods based
on the training with past data. The Artificial Neural Network
(blue stars) is found to be the best procedure to combine the
five wind speed predictions, reproducing the mean hourly
wind speed very well. Similarly, the Taylor diagram in Fig. 2
shows that ANN is better also in terms of centered RMSE and
correlation. Conditional Quintile Plots are reported in Fig. 3.
The conditional quantile plot splits the predicted values into
evenly spaced bins and calculates the median, the 25/75th
percentiles, and the 10/90th percentiles; also, for each bin
the corresponding values of the observations are identified

Figure 6. Scatter Diagram between wind speeds and wind direction
errors. (WS values smaller than 1 m s−1 are shown in blue, the other
ones in red)

(Wilks, 2005). Additionally, in each subplot, the observed
WS distribution (histogram with blue-contoured columns),
and the predicted WS distribution (grey histogram) are re-
ported. A good performance is obtained when the median
(red line) coincides with the bisector (blue straight line) and
when the spread in the percentile is as small as possible.

Some remarks can be deduced from Fig. 3:

– On average, the five original WRF model configurations
show values higher than observed, i.e. the medians are
under the bisectors;

– Although model 5 shows a WS distribution very similar
to the observed distribution, it shows a great error in
terms of median due to data mismatching;

– The ANN shows a better mean WS correction: effec-
tively, its median overlaps the bisector well at least for
WS smaller than 5 m s−1; the worse performance for
higher values is due to their limited presence in the
training dataset, as shown in the histograms of Fig. 3:
a limited presence implies a worse training of ANN for
these high values.

3.2 Wind direction results

The analysis shows that all models have wide WD error dis-
tributions. In contrast with the WS analysis, the WD analysis
does not include the parameter “daily hour” because the WD
error is found to be independent of it. The application of the
procedure described in Sect. 2.2 shows an improvement in
terms of DACC for reference values smaller than 45◦, while
no improvement is found for larger discrepancies, which are
anyway less present in the dataset (Fig. 4).
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Figure 7. (a) Direction Accuracy plot versus all possible Angle_ref for each model and correction using the full dataset related to N–W
quadrant. (b) Direction Accuracy plot versus all possible Angle_ref for each model and correction using only data with wind speed greater
than 1 m s−1 related to N–W quadrant.

The quadrant analysis shows that the improvement is
greater for the Nord-West quadrant (not shown) and we focus
on this subset of directions in the following. This improve-
ment is due to the higher frequency of occurrence of wind
direction from this quadrant (better trained network), and for
its higher intensity (Fig. 5). In fact, higher wind speeds imply
smaller WD error: Fig. 6 shows that WS values smaller than
1 m s−1 are associated with WD errors uniformly distributed
between 0 and 180◦, while for higher WS the points cluster
in the area of smaller WD errors (the Kolmogorov–Smirnov
test indicates a dependence on WS with a p-value < 0.05).
Since the interest of present work is on wind day, we chose
to exclude from the following analysis all cases characterized
by observed WS smaller than 1 m s−1. Figure 7 shows that
using, this additional constraint, the correction in the N–W
quadrant is further improved, even for higher values of WD,
which generally suffered from a limited benefit in the use of
the ANN. However, the improvement for the other quadrants
is less effective, due to the lower frequency of cases with WS
greater than 1 m s−1 (Fig. 6).

4 Conclusions

With the purpose of studying and improving 10 m wind
speed and direction simulations over Taranto, a city in south-
eastern Italy including the largest European steel plant, the
WRF model was employed with a total of five different com-
binations of PBL and SL schemes. Simulations are consid-
ered in real-time implementation, and are evaluated over a
forecast range extending from 49 to 72 h with hourly time
resolution over a period of eight months. The analysis shows
that all considered model configurations present a positive
mean bias for the wind speed. Instead, for the wind direction,
the analysis shows that all considered model configurations
present a wide error distribution centered at zero.

To improve the wind speed predictions, six different meth-
ods are considered. The analysis shows that the simple aver-
age and weighted average are not able to improve the per-
formances. Among the other four methods based on training
with past data, the ANN is found able to better eliminate the
mean bias, to better reduce the centered RMSE, and shows
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a better overlap between the median values and the observa-
tions.

To improve the wind direction predictions, since neural
networks were not effective in improving the results, a dedi-
cated procedure was implemented, based on the partial av-
erage and on the linear regression. The proposed method
is found to improve the wind direction prediction error of
each model in terms of direction accuracy. A better improve-
ment is found when the analysis is carried out separately for
each quadrant, and by excluding the data with WS less than
1 m s−1. In particular, a better result is found for the N–W
quadrant due to his higher frequency of cases from this di-
rection.
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