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Abstract 

The object of this paper is the definition of a purely kinematic rotational approach for the elastoplastic modelling of soils. Once the 
shape of the yield and plastic potential surfaces is assigned, their rotational kinematics in the stress space is ruled by a second order 
tensor directed along their surface axes. The proposed approach differs from others proposed in literature since it does not introduce 
any distortion of the surface and is suitable for the description of inherent or induced anisotropy as well as the behaviour of soils 
subjected to cyclic loading. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing and scientific committees of CNRIG2016. 
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1. Introduction 

The description of soil behaviour requires the formulation of constitutive models based on both isotropic and 
kinematic hardening. In particular, kinematic hardening of yield and plastic potential surfaces is linked to inherent as 
well as induced anisotropy. The rotational kinematic nature of the behaviour of clays and sands is supported by many 
experimental investigations carried out in geotechnical literature [1-6]. 

The approaches proposed in literature to take into account anisotropic hardening consist in introducing an 
anisotropic second order tensor, which modifies the orientation of yield surfaces and plastic potentials by ruling a new 
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direction of their axes. In particular, some models describe the rotational hardening by defining a unit tensor directed 
along the axis of the yield surface [7-11] while others are based on the definition of a purely deviatoric tensor [12-18]. 
Both the aforementioned approaches allow introducing anisotropic hardening of yield and plastic potentials surfaces 
by redefining the invariants in such a way that the isotropic condition is a particular case of the general anisotropic 
case. 

In this work, an alternative approach based on a rigid rotation is shown: it consists in introducing in the stress space 
a local reference system for yield and plastic potential surfaces. In this way, the gradients of the surfaces are computed 
in the local reference system and then transformed into the global representation. 

2. The proposed approach  

In this section, a new approach to kinematic rotational hardening in the stress space will be described. In order to 
define a rotated surface, two reference systems, one (rotated) local reference system (LRS) and one (fixed) global 
reference system (GRS), are used. The definition of the LRS must satisfy the following requirements: (i) the basis 
associated with the LRS is orthonormal and (ii) the local hydrostatic axis is parallel to tensor α . Once the bases 
associated with the two reference systems are determined, it is possible to establish the relationship between the tensor 
components associated with them through the computation of a suitable rotation matrix using the standard linear 
algebra methods. In the following, the procedure employed to evaluate the basis of the aforementioned LRS is shown. 
For the sake of clarity, two mathematical operators can be defined in order to simplify the mathematical formulation. 
For a second order tensor A  and a unit second order tensor B , the following definition are useful: 
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Thus, N  is the projection of A  along the direction parallel to B  and T̂  is the normalised projection of A  along 
the direction orthogonal to B . For the sake of simplicity, the mathematical formulation for computing the basis 
associated with the LRS is illustrated for the three-dimensional case in the space x , y , z . The extension to the 
general six-dimensional case can be carried out using the same methodology reported in the following. This procedure 
is more easily handled if a conveniently defined auxiliary basis of tensors iw  is introduced. Such a basis is obtained 
from the basis of the GRS by adopting the Gram-Schmidt procedure (e.g. [19]): 
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From the geometrical point of view, tensors 2w and 3w  identify a plane orthogonal to tensor α , that is the local 
deviatoric plane. 

The tensors of the new basis ib  are determined by imposing that 1w  is directed along the trisector of the LRS and 
that the basis 1b , 2b , 3b  is orthonormal: 
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Tensors ib  can be expressed as a linear combination of the auxiliary basis tensors: 

332211 wwwb iiii b+b+b=   (6) 

where ib1 , ib2 and ib3 are the components of tensors ib  with respect to iw . From condition (3) it follows that: 
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Using equations (4), (5) and (7), the following equation is obtained 
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which represents a circumference of radius 3/2  in the plane ib2 , ib3 . In order to derive ib2 and ib3 , it is convenient 
to express (8) in a parametric form: 
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Using the orthogonality condition (5), after some algebra, the following conditions are obtained: 
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where 2ω  is the angle between 2w  and the projection of 2b  on the local deviatoric plane. From the constitutive 
point of view 2ω  is a hardening variable because it characterizes the rotation of the LRS about the local hydrostatic 
axis. In this work, a purely geometric constraint is imposed to define the value of 2ω . For the sake of brevity, the 
expression of angle 2ω  is put in the form: 

32322 D,DQC,CQ=ω   (11) 

where the function YX,Q  assumes the values illustrated in Table 1 and 
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being δ the tensor parallel to the global hydrostatic axis, while 1v , 2v  and 3v  are the tensors of the auxiliary basis 

for 3/δα . 

3. Application 

In this section the proposed approach is employed to extend an existing multi-surface constitutive model by [11] 
to surfaces with non-circular deviatoric trace. The expressions of the yield and plastic potential surfaces are redefined 
as 

02222 pmq=f   (13) 

022222 kpmaqg   (14) 

where p  and q  are the mean effective pressure and the deviatoric invariant, in the local representation, respectively, 
m represents the size of the yield surface, a  is a material parameter controlling the size of the plastic potential, k  is 
a dummy variable evaluated by imposing that the stress point lies on the plastic potential surface, and,  is the 
Lode’s dependence proposed by [21] being  the Lode’s angle in the local representation. 

Table 1. Values of function Q(X,Y). 

X  Y  Q(X,Y)  

0X  0Y  )arccos( X  

0X  0Y  )arccos( X  
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0X  0Y  )arccos(2 X  

 
For the sake of simplicity, in this work the well-known deviatoric section of [20] is adopted for both yield surfaces 

and plastic potentials. When using cones with circular sections the response obtained by using the proposed model is 
the same as that obtained by using the original model by [11]. The influence of the yield surface deviatoric shape is 
shown in Figure 1, which is related to the results obtained by imposing a repeated hexagonal stress path (10 cycles). 
Figure 1a shows the initial configuration of the yield surfaces, while Figures 1b-e show their evolution during the first 
cycle of the hexagonal path. Finally, Figure 1f compares the plastic strain paths in the deviatoric representation 
obtained from the simulation related to circular and non-circular deviatoric shapes. 
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Fig. 1. (a) initial configuration of the yield surfaces; (b) configuration after the first stage; (c) configuration after the third stage; (d) configuration 
after the fifth stage (e) configuration at the end of hexagonal stress path; (f) comparison between the strain paths obtained using the circular and 
the non-circular deviatoric shapes. 

4. Conclusions 

In this paper, a purely kinematic approach for rotational hardening elastoplasticity has been proposed, which 
guarantees a rigid rotation of the yield and plastic potential surfaces in the stress space. This approach is based on the 
definition of a local basis, which links the components of the stress tensor in the global reference system to the 
corresponding components in a local reference system where yield surfaces and plastic potentials are formulated. The 
relationship between the two reference systems is determined by using the Gram-Schmidt procedure. The proposed 
approach was implemented in a numerical code and, for comparison purposes, the constitutive model by [11] was 
extended to non-circular deviatoric shapes. The results of the simulations show that notwithstanding the different 
predicted strain path using different deviatoric traces of the surfaces (circular and Matsuoka-Nakai like) the condition 
of plastic adaption is preserved. 
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