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Abstract  We analyse and demonstrate how umbral methods can be applied for the study of the problems, involving 

combinatorial calculus and harmonic numbers. We demonstrate their efficiency and we find the general procedure to frame 

new and existent identities within a unified framework, amenable of further generalizations.  
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1. Introduction 

In this article we employ methods of umbral nature to 

provide a common framework for known and new identities 

regarding combinatorial calculus and harmonic numbers.  

Just to give a glimpse into the technique, adopted in this 

article, we remind the identity [1] 
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which, after defining the umbral variable â  (see[2]), 

where 1 — the vacuum state of the space, on which the 

operator â acts, and 1̂ — the unit operator: 
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can be cast in the following form:  

1
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Equation (1) can be written in the form (3) just as the 

consequence of the binomial theorem and of definition (2) 

and it is a useful tool to generate new identities, listed be-

low:  

a) The duplication ―theorem‖:  
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The proof of this last identity is easily achieved by fol-

lowing the steps outlined below. We can obtain the obvious 

consequence of the equation (3): 
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thus getting equation (4) from the identity 
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b) The ―addition‖ theorem:  
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c) The multiplication theorem:  
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The proof of b) and c) theorems is achieved by the same 

procedure leading to the proof of a) and is omitted here for 

the sake of conciseness
1
  

Now let us introduce the operator of the umbral deriva-

tive, defined by the following rule:  
1ˆ ˆ ˆn n

aa na                  (9) 

which, along with the multiplication condition: 
1ˆ ˆ ˆn na a a                 (10) 

yields the following result for the commutator bracket 

between the two operators:  

ˆˆ ˆ ˆˆ ˆ ˆ, 1a a aa a a      
 

,         (11) 

Equation (11) ensures that, we can benefit from the prop-

erties of the Weyl-Heisenberg algebra, characterising our 

problem. Within this framework the following simple ex-

ample is provided by the definition of the associated Her-

mite polynomials: two variables Hermite polynomials are 

defined below with the variable x replacing the operator â  

as follows
2
:  
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It is easy to show that the following recurrences are satis-

fied: 

1
ˆ ˆ ˆ( ( , ))1 ( , )1a n nH a y nH a y          (13) 

and  
2ˆˆ ˆ( ( , ))1 ( , )1y n a nH a y H a y          (14) 

which are direct generalisations of the relevant to the or-

dinary Hermite polynomials relations. The umbral heat 

equation (14) can be exploited to define the polynomials 

(12) in terms of the following operational equation:  

 2ˆˆ( , )1 exp 1n

n aH a y y a          (15) 

In these introductory remarks we have presented few 

elements of the formalism, which we employ in the follow-

ing chapters to further develop the method of umbral op-

erators and obtain new identities in combinatorial calculus, 

involving the Euler Beta and Riemann Zeta functions.  

2. Umbral Methods and the Euler Beta 

Function 

Let us take note that the parameter n in the equation (1) 

can be treated as a variable and, therefore, p times repeated 

derivatives with respect to n can be taken on both sides:  
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Now, using the following series expansion [4]:  
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assumed to be valid also for the umbral operator â , we 

end up with the following identity:  
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where  ,S k m  — the Stirling numbers of the first kind 

[4]. The validity of (18) has been checked aposteriori by a 

numerical procedure. Explicit study of the Stirling numbers 

relations with combinatorial identities can be found in[5].  

Note, that identity (18) involves infinite sums and they 

can be avoided, if we rewrite (18) with the help of the iden-

tity  
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where ( , )B x y  — the Euler Beta function, which writes 

in terms of the Euler Gamma function as follows[6]:  
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We proceed on the assumption that the above definition 

(20) is valid also for the umbral variable â  to write (19) in 

the following form:  
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where we denoted the power of the umbral variable â  

via the beta function as follows:  

ˆ 1 ( 1, 1)sa B s             (22) 

Therefore, we can reformulate all the theorems a) – c) in 

a fairly direct way in terms of Beta function. For example, 

the duplication identity can be written as follows:  
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Taking repeated derivatives of both sides of (19) with 

respect to λ in the point λ = 0 yields the r power of the 

left-hand side of equation (18), written in terms of the Beta 

function instead of the Stirling numbers:  
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where  

( )

0(1, 1) ( 1, 1) |r rB s B s       .    (25) 

This last result (24) represents essentially the equation 

(18), written without any explicit use of infinite sums. As to 

the explicit evaluation of the derivatives of the Beta func-

tion, we note that they possess the integral representation, 

provided by[6],[7]:  
1
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0
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and, therefore, we find the following expression for the 

derivative of the Beta function:  
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In the next chapter we will apply the above obtained re-

sults to the theory of the harmonic numbers.  

3. Umbral Methods and Harmonic 

Numbers 

The harmonic numbers[8] are usually denoted by Hn; to 

avoid confusions with Hermite polynomials we use here hn 

notation:  
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Umbral methods technique simplifies the derivation of 

the properties of the harmonic numbers and the study of the 

associated generating functions.  

We can express the harmonic numbers (28) in terms of 

the umbral variable (2) as follows:  
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and derive the following relation between the harmonic 

numbers and the umbral variable:  
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which eventually yields:  

1

2
0 1

1
( 1)

n n
s r

n n
r r

n n
h h

s r s r

 

 

  
     

  
       (31) 

Further extensions can be easily obtained without con-

ceptual difficulties, except for some cumbersome algebraic 
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steps, for example:  
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Analogous relations can be obtained for the generalized 

harmonic numbers, defined as follows:  
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The use of the above described procedure and of the 

identities derived in the previous chapter 2 yields the gener-

alization of the formula (32):  
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Further comments on umbral methods and harmonic 

numbers are given in the following concluding chapter. 

4. Generalisations and Discussion 

To complete the study of the harmonic numbers and um-

bral methods, consider the following sum:  
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Employing the results of the previous chapter 3 we recast 

A(n) in the following operator form:  

 ( ) (1 ) 1nA n h              (36) 

where operator [h] acts on the harmonic number hn as a 

kind of a raising operator:  
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Recalling the generating function
3
, associated with the 

harmonic numbers[9]:  
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we write:  
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which, together with the obvious relation

  

 
lead to the following identity:  
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The generalization of the identity (40) lets us formulate 

the following theorems:  

d) The duplication theorem:  
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e) The multiplication theorem:  
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We can also define the higher order moment:  
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and associated with them function A(n, y):   
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Then from the definition of the higher moment we ob-

tain:  
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where 2( , )S m k — the Stirling numbers of the second 

kind. The ( , )A n y  can be obtained via the same procedure, 

which yielded (40), namely:  
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Eventually we obtain the high order moments  

(1)

1

( 1)
( ) 2

2

mn
n m

m

n n m
A n

mm





  
   

 
      (47) 

and  
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Higher than 2d order moments can be derived using the 

Stirling numbers and other new identities can be generated 

with the help of the Matematica software. 

In conclusion we would like to underline that the umbral 

methods we have exploited in this paper are strongly remi-

niscent of other methods adopted in literature to define e. g. 

the Bernoulli[4] or the Laguerre[10] polynomials.  

Consider the following polynomial family:  
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which reduces to the Bessel polynomials, introduced by 

Krall and Frinck in[11] for m = n. These polynomials can be 

defined in umbral terms as follows:  
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and they can be exploited to establish, for example, du-

plication or addition theorems or for other purposes. With 

the help of the identity 

ˆ ˆ1 (1 1) 1n n

m mb b               (51) 

we can derive the following expansion of 
nx in terms of 

the polynomials    (50):  
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The umbral procedure applications, demonstrated in this 

work in respect of the harmonic numbers, can be useful also 

for the study of the relationship between different from each 

other families of polynomials. In forthcoming publications 

we will discuss it. In the context of the link between Ber-

noulli and Faulhaber polynomials[12],[13] and we will 

apply the umbral procedure to solve some non-linear partial 
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differential equations.  
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Also note that with the help of the identity 
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2
Multiplication condition (10) does not define any new 

polynomial family 
3
Eq. (38) is referred in literature as the Gosper Formula and 

it was derived in[9], whereas its generalisations were de-

rived in [7], using umbral methods.

 


