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ABSTRACT Extraction of roads from high resolution aerial images with a high degree of accuracy is
a prerequisite in various applications. In aerial images, road pixels and background pixels are generally
in the ratio of 1-to-tens, which implies a class imbalance problem. Existing semantic segmentation
architectures generally do well in road-dominated cases but fail in background-dominated scenarios.
This paper proposes a dense refinement residual network (DRR Net) for semantic segmentation of aerial
imagery data. The proposed semantic segmentation architecture is composed of multiple Dense Refinement
Residual (DRR) modules for extraction of diversified roads alleviating the class imbalance problem. Each
module of the proposed architecture utilizes dense convolutions at various scales only in the encoder for
feature learning. Residual connections in each module of the proposed architecture provide the guided
learning path by propagating the combined features to subsequent DRR modules. Segmentation maps
undergo various levels of refinement based on number of DRR modules utilized in the architecture. To
emphasize more on small object instances, the proposed architecture has been trained with a composite loss
function. Qualitative and quantitative results are reported by utilizing the Massachusetts roads dataset. The
experimental results report that the proposed architecture provides better results as compared to other recent
architectures.

INDEX TERMS Dense Convolutions, Dense Blocks, DRR Net, IOU, Loss Function, Residual Connec-
tions.

I. INTRODUCTION
The topographical map of any geographical location can

be built by capturing high-resolution aerial images using
Aircraft, Helicopters, Unmanned aerial vehicle (UAVs) , etc.
Information about presence and location of topographical
features such as roads, dams, buildings, bare land, etc., is
essential for applications like urban planning, disaster assess-
ment, traffic management, and map updating. This informa-
tion is usually collected by extracting the objects of interest
(topographical features) from aerial images. Among all ob-
jects, road information is primary in many applications. Thus,
segmentation of roads serves as a basis to update maps for
global positioning system (GPS) -based navigation devices
and also for the majority of the above-mentioned applica-
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tions. In high-resolution aerial images, roads do not possess
a continuous regular shape and they frequently appear very
narrow as they take small number of pixels across. In order
to get higher levels of accuracy, all kinds of diversified roads
have to be extracted while preserving connectivity in dense
and scattered environments. Hence, reliable road extraction
from aerial imagery data is a challenging problem in the field
of computer vision.

Amo et al. extracted road pixels by initially using a region
growing technique and then refining the results are by ap-
plying region competition techniques. The major limitation
of the introduced method was, the requirement of user seed
selection for region growing technique [1]. Hu et al. pre-
sented an automated method based on Bayes decision rule
to distinguish road pixels and to track road networks. The
main drawback of this work is over-segmentation of roads
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in the process of classification of road pixels [2]. Sahar et
al. proposed a technique to achieve correct segmentation
of road regions using extended Kalman filter and Particle
filter. It is mentioned that the proposed technique has to be
fine-tuned before it can segment roads in complex situations
[3]. Jiangye et al. attempted to circumvent the need for
post-processing by extracting the roads in three stages using
the so-called locally excitatory globally inhibitory oscillator
networks ( LEGION ) . The major pitfall of this approach is
the determination of optimal parameters in road segmentation
and grouping stage for various types of images [4]. Das
et al. calculated the spectral contrast and linear trajectory
features by training support vector machines. From these
calculated features, road regions were segmented without the
need for parameter tuning. This process could extract roads
of greater width. However, narrow roads covered by shadows
were extracted improperly [5]. Cem Unsalan et al. attempted
to extract roads in all kinds of environments using graph-
based approaches in a probabilistic way. The disadvantage
of this method is that it extracted roads only from images of
predefined spatial resolution [6].

In [1] - [6] roads were extracted in more than two stages by
calculating road features in an unsupervised way. Due to the
computation of features from the smaller context of training
data and also due to dependency on previous stage outputs,
the final predictions would not lead to satisfactory results.
However, techniques based on deep Convolutional Neural
Networks (CNNs) extract the objects in a supervised way
by considering the larger context of input data. The major
benefit of deep CNNs is their ability to calculate features
by learning from the high volume of input data. The Deep-
CNN-based approaches extract the objects through semantic
segmentation with the aim of perceiving what is in the image
and where it is located.

Badrinarayan et al. introduced an encoder-decoder based
architecture for semantic segmentation. The max-pooled en-
coder feature maps are transferred to the decoder through
pooling indices. However, by considering only maximum
values of encoder feature maps, there might be a possibility
of losing fine details associated with small objects. This may
result in inefficient segmentation of small objects especially
in the case of high-resolution images [7]. Ronneberger et
al. introduced skip connections as an alternative to pooling
indices for transferring the learned features to the corre-
sponding resolution level of the decoder. This results into
a higher number of feature maps; hence, the complexity of
the decoder increases [8]. The architectures in [7] - [8] share
a common point of using convolutional filters for feature
learning and pooling layers to exploit semantics. The use
of pooling layers reduces the spatial resolution of feature
maps. Preserving spatial resolution is important for retaining
fine details of objects. Fisher Yu et al. introduced another
type of convolution called as dilated/atrous convolutions
in order to preserve the spatial resolution while avoiding
pooling [9]. Chen et al. introduced a semantic segmentation
architecture by utilising a distinct dilation filters in spatial

pyramid pooling (SPP) [10] for aggregation of multi-scale
context. The resulting architecture produced a segmentation
map with one-eighth input resolution [11]. Chen et al. placed
an additional decoder to maintain the spatial resolution of
above mentioned architecture [12]. Yang et al. introduced
a semantic segmentation architecture by providing parallel
and cascade connections among various dilation filters [13].
However, it is observed that the obtained receptive field due
to the usage of dilation filters in [9] - [13] is not sufficient to
preserve the spatial connectivity of roads during extraction.

Huang et al. introduced the idea of dense convolutions that
iteratively reuse the learned features at later resolutions [14].
Jegou et al. extended the concept of dense convolutions to se-
mantic segmentation by utilising them in the paths of encoder
and decoder. However, due to the usage of dense convolutions
together with skip connections in the up-sampling path, the
model demands more memory during training [15]. Pohlen et
al. and Samy et al. exploited the benefits of operating at full
resolution by processing up-sampling and down-sampling
streams concurrently. This increases both localization and
classification accuracy. However, the introduced techniques
are computationally intensive as they operate at full res-
olution [16] [17]. Zhang et al. proposed a model named
as ResUNet utilising residual connections in U-Net. The
resulting model failed however to segment small roads in
parking lots [18]. Filin et al. attempted to refine the pre-
dictions of ResUNet model by further processing the road
pixels in order to fill the gaps in between them [19]. Tao
Sun et al. introduced a model for generation of road maps
by stacking two U-Nets. The introduced model needs further
post-processing operations to extract road centre lines and
to connect disjoint roads [20]. Kim et al. placed SPP at
the end of the encoder of U-Net to aggregate multi-scale
contextual information. The major limitation is the increased
depth of feature maps due to the usage of greater number of
filters.This lead to increased computational complexity [21].
Aich et al. introduced a technique called Depth to Space
(D2S) to reduce the computational complexity by excluding
the decoder. This is however not well suited for segmentation
of small objects as there is no learning path for up-sampling
[22].

In this work we propose an efficient architecture that
is inspired by the effectiveness of dense convolutions for
feature learning [14], [15] and residuals to achieve progress
in learning ability of network [23], [24] at full resolution.
The main contributions of the paper are as follows:
(i) A novel semantic segmentation architecture is proposed
based on dense convolutions and residual connections.The
proposed architecture operates at full resolution and is com-
posed of multiple DRR modules.
(ii) Each module of the proposed architecture learns features
at different resolutions to extract affluent semantics and also
endeavours to obtain predictions.
(iii) The modules are constrained to refine the predictions by
stacking them.
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The organization of this research paper is as follows: The
detailed explanation of proposed architecture along with its
internal modules is given in Section II. The description of the
dataset used for training of all models, including the partic-
ulars of hyperparameters utilized is presented under Section
III. An elaborate discussion about simulation results of all
architectures are described in Section IV. Finally Section V
concludes this work.

II. PROPOSED ARCHITECTURE
The proposed dense refinement residual network for semantic
segmentation of aerial images is presented in Fig. 1. The
DRR Net is primarily composed of dense refinement resid-
ual (DRR) module(s), and the structure of DRR module(s) is
presented in Fig. 2. In the proposed DRR architecture, each
DRR module inherently contains down-sampling (encoder)
and up-sampling (decoder) paths. In the encoder of the DRR
module, features are extracted at different resolutions by
utilizing dense convolutions. Similarly, in the decoder trans-
posed convolutions are used at multiple scales to learn the
up-sampling of feature maps together with learned features
of the encoder. Residual connections are employed in each
DRR module to provide a supervisory signal to successive
DRR modules. This supervisory signal is formed by adding
initial features on which each DRR module operates and its
corresponding learned features. The successive DRR mod-
ules of the proposed architecture attempt to improve the pre-
dictions of antecedent(s) by operating on their features. The
architecture effectively reuses the features through dense,
residual connections and also by stacking of individual DRR
modules. This leads to an increase in longevity of feature
propagation. The resolution at which each DRR module of
proposed architecture operates is given by H ∗W ∗ F 1. The
final stage utilises 1*1 convolutions as softmax in order to
produce individual class probabilities. The detailed function-
ality of DRR module utilised in the proposed architecture is
described in the following section.

A. DENSE REFINEMENT RESIDUAL (DRR) MODULE
The dense refinement residual module of the proposed ar-
chitecture extracts and up-samples the fine-grained features
from the input data. The initial convolution unit (ICU) of first
DRR module attempts to learn the initial features from input
by applying a sequence of normal convolutions. In the later
DRR modules, ICU learns the intermediate feature maps
from its preceding DRR module. The structural diagram of
dense blocks (DBs) employed in DRR module(s) is rep-
resented in Fig. 3. This structural module of DBs function
on the features of ICU. In each layer of DB, batch nor-
malization (BN) [25], rectified linear unit (ReLU) and con-
volution (CONV) operations are performed by taking all the
possible direct connections from its preceding layers. The
number of such layers (L) used is 4 with each layer having

1 H, W are height and width of the input image respectively and F
represents the number of filters used in initial convolution unit of DRR
module

FIGURE 1: The proposed architecture for semantic segmen-
tation of aerial imagery data
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a growth rate (The number of convolutional filters used k)
of 16. Moderate values are chosen for k and L to ensure a
sufficient amount of information is added to the next layer
in each DB and also to the successive DBs. Further, these
values also help to maintain a constant depth dimension
across all DRR module(s). The learned features of DBs are
then passed to successive DBs after pooling. After each level
of learning at dense blocks, the feature maps are concatenated
with preceding learned features and are also spatially reduced
by a factor of two. DB1 predominantly focuses on initial
features, and its output is linked with them. The resulting
feature maps are max pooled before feeding them to the
successive dense blocks. DB2 attempts to learn a different
set of feature maps based on DB1 output and initial features.
Features extracted out of DB3 are based on the cumulative
knowledge of the outputs of DB2, DB1 and initial features.
Finally, DB4 extracts high-level features by making use of
the collective knowledge accumulated by DRR module up
to that point. Feature maps at this level are down-sampled
by a factor of eight. From Fig. 2 it can be seen that the
up-sampling process begins at the higher level features of
DB4. The up-sampling of feature maps for remaining reso-
lutions is achieved by considering feature maps of preceding
dense blocks and learned features of corresponding dense
blocks. Residual connections in DRR modules provide a
deep supervision to subsequent modules by transferring the
combined initial and learned features. Thus, the strength of
feature propagation increases due to the effective utilization
of feature maps in the encoder and decoder of DRR module.

To summarize, the highlights of the proposed architecture
are given as follows:
(1) Each DRR module of the proposed architecture learns
diverse features at various scales with the help of dense
blocks.
(2) In DRR module, dense blocks at consecutive pool path
learn new features based on collective knowledge accumu-
lated by the network.
(3) In an up-sampling path of DRR module, transposed
convolutions are used instead of dense blocks which results
in a great reduction in the number of parameters without
comprising the prediction accuracy.
(4) Predictions are refined by stacking multi-scale context
successively at full resolution.
(5) The proposed DRR Net provides a guided learning path
to successive DRR modules with establishment of residual
connections in each module.
(6) The depth of feature maps remain constant, though multi-
ple DRR modules are appended sequentially. Thus avoiding
feature map explosion.
(7) The proposed architecture provides competitive results
with a tenfold reduction in the number of parameters as com-
pared to other existing semantic segmentation architectures.
(8) The proposed architecture provides increased flexibility
to append or efface number of DRR modules based on
computational budget and accuracy.

B. REFINEMENT STAGE
Let N denote the number of DRR modules and Xi denote the
initial features extracted from initial convolution unit (ICU).
Let Xij represent the features of dense blocks at different
resolutions at ith DRR module and jth pool respectively.
Similarly, Yi represent the predictions or segmentation maps
of ith DRR module, where i ∈ [1, N ] and j ∈ [0, 3]
Let X

′

ij denote the up sampled features learned at different
resolutions, where i ∈ [1, N ] and j ∈ [1, 3]
Thus, X11, X12, X13 are the features learned at Pool 1, Pool
2 and Pool 3 respectively in first DRR module.
X

′

11, X
′

12, X
′

13 are the features up sampled at Pool 1, Pool 2
and Pool 3 respectively in first DRR module.
Learned features from DB 1, DB 2, DB 3 and DB 4 can be
given as

X10 = H{Xi}
X11 = H{X10, Xi}
X12 = H{X11, X10, Xi}
X13 = H{X12, X11, X10, Xi}

 (1)

Here, H represent batch normalization, ReLU and convolu-
tion operations performed in the layers of dense blocks at
different scales.
Further, up-sampled feature maps at Pool 3, Pool 2, and Pool
1 respectively are given as

X
′

13 = F{X13}
X

′

12 = F{X
′

13, X12}
X

′

11 = F{X
′

12, X11}

 (2)

Here, F represents transposed convolution operation for up-
sampling of feature maps.
The output from first DRR module is given as

Y1 = F
′
{X

′

11, X10}+Xi (3)

Here F
′

define the non-linearity applied due to 1*1 con-
volutional filters. In the same way if multiple DRR mod-
ules (consider number of modules (N) as 4) are connected
consecutively its corresponding outputs are given as

Y2 = F
′
{X

′

21, X20}+ Y1

Y3 = F
′
{X

′

31, X30}+ Y2

Y4 = F
′
{X

′

41, X40}+ Y3

 (4)

Finally, substituting Y3, Y2, Y1 values recursively, Y4 can be
written as

Y4 = F
′
{X

′

41, X40}+ F
′
{X

′

31, X30}+
F

′
{X

′

21, X20}+ F
′
{X

′

11, X10}+Xi

}
(5)

From equation (5), the successive DRR module operates on
output of previous DRR module(s) and also on initial features
at which it operated. It can be concluded that the learned
features are effectively reused in the path of encoder, decoder,
and also at various modules.
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Without Residual
If multiple DRR modules (N = 4) are connected consecutively
without residual connections, the corresponding outputs are
given as.

Y1 = F
′
{X

′

11, X10}
Y2 = F

′
{X

′

21, X20}
Y3 = F

′
{X

′

31, X30}
Y4 = F

′
{X

′

41, X40}

 (6)

From equation (6), it can be observed that the successive
DRR module has no information on the initial features on
which the previous DRR module has been operated (i.e Yi+1

does not depend on Yi, 1 ≤ i ≤ N − 1 )

III. TRAINING AND IMPLEMENTATION
The proposed DRR architecture has been trained and evalu-
ated by utilizing the Massachusetts roads dataset published in
[26]. Each image is composed of 1500*1500 pixels covering
an area of 500 square km at a resolution of 1.2 m/pixel.

A. IMAGE DATASET
In this work, we consider aerial images that contain less than
50 per cent of white noise. Each resulting image is divided
into thirty-six patches of size 256*256 pixels by padding
with zeros instead of taking random crops. Thus, we gen-
erated 49,680 training, 1008 validation and 3528 test images
including masks. The dataset was enlarged by applying hori-
zontal, vertical flips and also brightness variations of different
degrees at the time of training. The proposed DRR Net and
state-of-the-art architectures were trained using TensorFlow
[27] as a deep learning framework with an NVIDIA Tesla
k80 GPU with 11GB on-board memory. The initial learning
rate was set to 0.0002 and decayed exponentially by a factor
of 0.994. The weights of convolution filters were initialized
with Xavier initialization [28]. The optimal weights of filters
are calculated during backpropagation by using the Adam
optimizer [29]. The optimizer has an exponential decay rate
value of 0.99 for first-order momentum (β1) and 0.999 for
second-order momentum (β2) respectively. All models are
trained for 24,8400 number of iterations with a batch size
of 2. The inference of all trained models is performed using
an Intel central processing unit (CPU) 2.

B. COMPOSITE LOSS FUNCTION
A binary cross entropy loss function (BCE) calculates the loss
based on prediction probabilities of each pixel. The BCE
loss value is high for false predictions and low for true
predictions. Since the data set is highly skewed (it contains
∼ 96% background pixels and∼ 4 % road pixels) the model
bias towards background pixels frequently results into higher
loss values. Hence, during the training phase, the semantic
segmentation architectures take a long time to learn and
also to converge. The jaccard index or Intersection over

2 Intel Xeon Processor E5-2650 v4@2.20 GHz

Union (IOU) for semantic segmentation is evaluated by con-
sidering the overlap of pixels between the predicted image
and its mask. This reduces the bias towards the most frequent
classes and it is also a useful metric for evaluating the
performance of semantic segmentation. The Lovasz softmax
loss (LZS) is proposed in [30] as a mean to optimize the mean
Intersection over Union by considering a collection of pixel
predictions. The combination of binary cross entropy and
Lovasz softmax loss is utilized in experiments to improve the
pixel-wise classification accuracy of intended objects.

Lcomposite = LBCE + LLZS (7)

where LBCE is binary cross entropy loss and LLZS is Lo-
vasz softmax loss. Following the definition of cross entropy
mathematical expression for LBCE is written as

LBCE =
−1
N

N∑
i=1

[Yi·log(p(Ỹi))+(1−Yi)·log(1−p(Ỹi))] (8)

Here, Yi represents the actual class label values, p(Ỹi) de-
notes the predicted class probabilities after applying the
softmax layer, and N denotes the total number of training
samples in the dataset. Following [30], the LLZS is given by

LLZS =
1

|C|
∑
c∈C

4JcE(c) (9)

Here 4Jc is the loss surrogate to the Jaccard index of class
c, E(c) is the vector of errors [0, 1]p and |C|represents the
number of classes.
The proposed model has been trained separately with binary
cross entropy loss function, Lovasz softmax loss function and
also with composite loss function to observe its combination
effect. When trained with BCE only, the proposed model
took a long time before showing an improvement. When
trained with Lovasz softmax loss function, the proposed
model showed better performance at earlier iterations but
did not maintain the same at later iterations. However, the
model trained with combination of loss functions maintained
its progress over the iterations. The IOU values of DRR Net
when trained with individual loss functions and composite
loss function is reported in Fig. 4. It can be observed that
the proposed architecture trained with composite loss func-
tion (BCE + LZS) yields better IOU values as compared
to other two loss functions. This is due to an uplift in the
margin for correct predictions while minimizing the errors
that penalize IOU most of the times.

IV. SIMULATION RESULTS AND DISCUSSION
The proposed model and some of the semantic segmentation
architectures are trained with the same hyper parameters and
the loss function is considered as the composite loss function.
The number of training iterations is the same for all models.
The proposed DRR Net does not depend on any pre-trained
weight set and it is instead trained end-to-end. To perform
comparative analysis, quality metrics such as IOU, Road
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TABLE 1: Comparison of quality metrics of semantic segmentation of aerial images

Model PreTrained Mean IOU Road Accuracy Precision Recall # Parameters (in million)

PSPNet [10]
√

0.820 0.7483 0.9827 0.9795 55.90

DeepLabV3Plus [12]
√

0.819 0.7276 0.9839 0.9800 47.95

BiseNet [31]
√

0.797 0.7073 0.9815 0.9765 47.41

Dense ASPP [13]
√

0.799 0.7384 0.9820 0.9771 43.39

GCN [32]
√

0.821 0.7376 0.9844 0.9801 42.99

FC-DenseNet [15] × 0.829 0.7434 0.9846 0.9812 9.26

DeepResUNet [18] × 0.8304 0.7520 0.9841 0.9812 7.85

UNet+PPL [21] × 0.829 0.7434 0.9846 0.9812 56.49

SegNet [7] × 0.822 0.7320 0.9841 0.9812 34.96

DRR Net(Non-Residual (N=4) ) × 0.816 0.7287 0.9848 0.9808 2.63

DRR Net (N=4) × 0.833 0.7794 0.9805 0.9792 2.63

TABLE 2: Comparison of FLOPS, Training and average Test run time of all models

Model Training time per image(sec) Total Training time(Hours) Average Test run time(sec) FLOPS(in billion)

PSPNet [10] 0.32 48 0.41 62.5

DeepLabV3Plus [12] 0.26 37 0.31 32.8

BiseNet [31] 0.34 46.35 0.32 20.4

Dense ASPP [13] 0.19 28 0.15 22.1

GCN [32] 0.375 52 0.395 20.9

FC-DenseNet [15] 0.51 70.63 4.17 52.3

DeepResUNet [18] 0.39 57.81 0.094 77.6

UNet+PPL [21] 0.65 89.5 1.30 144.1

SegNet [7] 0.54 75.4 0.916 90.0

DRR Net(Non-Residual (N=4) ) 0.63 86.8 4.66 80.1

DRR Net (N=4) 0.63 86.8 4.66 80.1

accuracy, Precision and Recall values are evaluated at the end
of every group of 12,420 iterations and also at the end of the
training phase. All training images of the dataset can be fed to
the model in 12,420 number of iterations. The quality metrics
are obtained by considering test images as input. Few of
the considered test images are shown in Fig. 8a, 9a, 10a and
11a. Road accuracy and mean IOU values are considered to
measure the variability of these performance metrics. Figs. 5
and 6 represent the boxplots of road accuracy and mean IOU
values of semantic segmentation architectures.

From Fig. 5 one can observe that the proposed DRR Net

produces a wide range of road accuracy values. Additionally,
it can be observed that the proposed model provides a 11.19%
improvement over its initial value to reach a maximum value.
This is comparable with other models and implies that the
proposed model has good learning ability when compared
with other architectures. Another measure to quantify a se-
mantic segmentation technique is IOU or Jaccard index. IOU
estimates the percentage of pixel overlap between semantic
map and its corresponding ground truth. Fig. 6 reports that
the proposed DRR model and the model given in [32] exhibit
the same higher level of IOU variability. The proposed model
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FIGURE 4: Box plot of Intersection Over Union of
proposed model for different loss functions

FIGURE 5: Box plot of Road accuracy of models

reaches a maximum IOU value from an initial overlap of
76.57 per.comcent between predicted and ground truth im-
age. In addition to this one can observe that the models Deep
LabV3+ [12], FC-DenseNet [15] and BiseNet [31] possess
a narrow range of IOU values. Further, box lengths of the
remaining models is observed to be smaller. Table 1 lists the
parameters of models and their corresponding performance
metrics. The performance metric are evaluated by inferring
the models at the end of the training. From Table 1, con-
sidering the number of trainable parameters the descending
order of models is given by UNet+PPL 3 [21], PSPNet [10],
DeepLabV3+ [12], BiseNet [31], DenseASPP [13], GCN
[32], SegNet [7], FC-DenseNet [15], Deep ResUNet [18]
and DRR Net. The order implies that UNet+PPL [21] model
requires maximum number of trainable parameters while the
proposed model has least number of trainable parameters.
Thus, the road accuracy of DRR Net is significantly superior
to other models which also showed discrimination in the
corresponding Precision and Recall values. The parameters
of models together with proposed DRR Net are represented
in Bar graph which is shown in Fig. 7 and it reveals that the

3Modified version of original architecture

FIGURE 6: Box plot of Intersection Over Union of
different models

FIGURE 7: Bar graph for comparison of parameters of
different models

proposed DRR Net have far fewer parameters (2.63 million)
compared to other models.

A. COMPUTATIONAL COMPLEXITY ANALYSIS
In this section, an elaborate discussion of computational com-
plexity of all architectures including the proposed architec-
ture is presented. In Table 2, the total training time (per-image
and also for all images of the dataset), the average test run
time and the number Floating point operations (FLOPS) of
all models are presented. The total training time is defined as
the time taken to train individual architectures. The average
test run time is defined as the average time required to infer
the trained model over the total number of test images. It
can be observed that, pretrained network architecture based
models such as Dense ASSP [13], Deeplabv3+ [12], PSPNet
[10], BiseNet [31] and GCN [32], require comparatively
less training time than other models. The proposed DRR
model and the model presented in [15] are built with dense
convolutions. Because of the concatenation of features from
the specified number of convolutional layers, these mod-
els need longer training time as contrary to other models.
In the DeepResUNet model proposed in [18], the training
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 8: Predicted images of semantic segmentation models of Fig. 8(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 9: Predicted images of semantic segmentation models of Fig. 9(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 10: Predicted images of semantic segmentation models of Fig. 10(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 11: Predicted images of semantic segmentation models of Fig. 11(a)
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(a) Input Test Aerial Image (b) GroundTruth

(c) DRRNet(W/o Residual) (d) DRRNet(Proposed)

FIGURE 12: Predicted images of DRR Net with and without residual connection

time is considerably reduced due to presence of residual
connections. Due to the concatenation of feature maps after
pooling with different scales, the UNet+PPL [21] model
demands increased training time as contrary to other models.
The total time allocated to train all models is 678 hours.
Referring to Table 2, from the average test run time of all
models, FC-DenseNet [15], DRR Net requires a longer time
to load the learned weights during a forward pass from dense
convolutions of the trained model. Due to dense connectivity,
the features and gradients have to flow through multiple paths
during forward and backward propagations. This leads to an
increase in training and testing times of DRR Net though

the number of parameters is less. The increasing order of
computational complexity of models (in terms of FLOPs)
is BiseNet [31], GCN [32], DenseASSP [13], DeepLabV3+
[12], FC-DenseNet [15], PSPNet [10], DeepResUNet [18],
DRR Net (proposed) , SegNet [7] and U-NetPPL [21]. The
proposed DRR Net ranks third in increasing computational
complexity order.

For the test images in Fig. 8a, 9a, 10a and 11a, the seg-
mentation maps produced by proposed and the state-of-the-
art architectures along with ground truth images are pre-
sented in Fig. [8b - 8l], [9b - 9l], [10b - 10l] and [11b -
11l] respectively. To highlight the performance of the DRR
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(a) Input Test Aerial Image (b) GroundTruth

(c) DRRNet(w/o Residual) (d) DRRNet(Proposed)

FIGURE 13: Predicted images of DRR Net with and without residual connection

Net, its predicted images are compared with state-of-the-
art-models by highlighting some parts of the image with
red colour boxes. Fig. [8b - 8l] represents the segmentation
output of all models for the test input aerial image of Fig. 8a.
From these predicted images, it can be seen that the DRR
Net extracts round-shaped roads and also the intersections
of roads without any gap. The predicted images of the test
input images Fig 9a, 10a and 11a are shown in Fig. [9b -
9l], [10b - 10l] and [11b - 11l]. These images reveal that
the proposed DRR Net differentiates the parallel, smaller
and diverse-shaped road regions clearly from other regions.
The segmentation maps for another set of input test aerial

images are presented in Section VI. To show the importance
of residual connections in the proposed DRR Net the model
has been trained by removing the residual connection. Due
to the removal of residual connections, there is no sharing of
initial features of each module to successive DRR modules
of the proposed architecture. This leads to a reduction in
the learning ability of network. The prediction results of the
proposed architecture with and without residual connections
are presented in Fig. 12 and 13 along with input and ground
truth images. From these predicted images it can be seen that
the DRR Net clearly distinguished the road pixels better than
the DRR Net without residual connections. The quality
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metrics of the proposed Net with and without residual are
quantified in Table 1. These values reveal that the residual
connections play a vital role in producing better IOU, road
accuracy, precision and recall values. The computational
complexity of the two models remains the same in terms of
training time, test time and FLOPS, which are presented in
Table 2. After observing all predicted images of DRR Net,
it is clear that the model precisely differentiated pixels of
smaller, curved and parallel roads from background pixels.
In addition to this the proposed architecture provided good
separation of roads when background pixels are the majority
in number.

V. CONCLUSION
In this paper, a semantic segmentation architecture named
DRR Net is proposed to segment roads in high-resolution
aerial imagery data. The proposed DRR model was able
to precisely segment roads and achieve prominent results
on Massachusetts roads dataset as compared with state-of-
the-art semantic segmentation architectures. The qualitative
and quantitative results showed that the DRR Net could
segment all kinds of roads including variable-extent roads
and also non-labelled roads. A comparison of the proposed
architecture has been done with the diversified semantic
segmentation architectures based on normal convolutions,

atrous convolutions, global convolutions and dense convolu-
tions. Among all other models, the proposed model showed
remarkable performance in all aspects including background-
dominant scenarios.
The distinctive performance of the proposed architecture can
be attributed to the iterative reuse of collective knowledge ac-
quired at various scales through dense, residual connections
and the connectivity of DRR modules. It can be noted that
the iterative reuse leads to an increase in receptive field for
pixels of less frequent classes (road pixels). The proposed
architecture achieved a ∼2.74% increase in road accuracy
with a contemporary tenfold reduction in the number of pa-
rameters. Moreover, the proposed architecture offered good
discrimination of roads in all scenarios. Additionally, the
proposed DRR Net architecture can also be used to segment
other kinds of objects like buildings, dams, trees, etc.
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VI. APPENDIX

(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 14: Predicted images of semantic segmentation models of Fig. 14(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 15: Predicted images of semantic segmentation models of Fig. 15(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 16: Predicted images of semantic segmentation models of Fig. 16(a)
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(a) Input Test Aerial Image (b) Ground Truth (c) DRRNet(proposed)

(d) PSPNet (e) DeepLabV3Plus (f) DenseASPP

(g) GCN (h) DeepResUNet (i) FC-DenseNet

(j) BiseNet (k) UNet+PPL (l) SegNet

FIGURE 17: Predicted images of semantic segmentation models of Fig. 17(a)
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