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Themain purpose of this work is to investigate the usability of easily obtainable parameters instead of themodal traditional ones, in
the context of a flexibility-based damage detection procedure, under the assumption of unknown structural masses. To this aim, a
comparison is made between two different approaches: the first involves the calculation of the flexibility matrix by using traditional
modal parameters, such as natural frequencies and modal vectors, normalized to unitary values, while the second involves the use
of singular vectors, obtained through a simplematrix factorization.Themodal parameters and the singular vectors necessary for the
implementation of the damage detection procedure are evaluated through two different techniques: the Eigensystem Realization
Algorithm and a wavelet-based procedure, for which a variant is proposed by introducing the energy reassignment concept into
the original algorithm. Through the latter approach, in particular, it is possible to obtain a high number of singular vectors even
in the case of reduced availability of sensors. The study is performed under the assumption of nonstationary excitation, in order to
achieve general results, and the effectiveness of the procedures is evaluated through simulated tests regarding different structural
schemes.

1. Introduction

Seismic risk, meant as an estimate of the damage expected
in a given time interval, is determined by the combination
of three factors: seismic hazard, measured on the frequency
and the energy of earthquakes registered in a certain area,
vulnerability (i.e., the proneness of a building to manifest
damage in occurrence of a seismic event), and the exposure,
evaluated on the number of assets exposed to risk. In view of
the seismic risk reduction, it is possible to operate only on the
vulnerability factor, by adopting appropriate measures in the
design phase for the newly built structures or by monitoring
the existing ones in order to ensure the necessary safety
interventions.

In most of the practical cases, the safety of a civil building
is traditionally assessed on the basis of qualitative direct
observations, driven by experience, often accompanied by
invasive techniques [1]. Together with the need of detecting
more accurate data related to the structural operational
conditions and thanks to the recent improvements of sensing
technology, several techniques have been developed in the

Vibration-Based Structural Health Monitoring (SHM) sce-
nario, through the processing of data collected by suitable
sensors (generally accelerometers), arranged on the moni-
tored structure [2, 3].

One of the main purposes of SHM is the qualitative
identification of a possible damage on the operative structure
and its localization [1, 4, 5]. The damage generally entails
a reduction of structural performances, modeled as a stiff-
ness decrease. It is also assumed that the damage directly
affects natural frequencies and modal shapes but does not
involve any change in masses. Flexibility-based approaches
are among the most used methods for damage detection and
entail the computation of the flexibilitymatrix at two different
time instants, in order to evaluate the variation between
these matrices, which can be interpreted as a variation of
the structural characteristics. In order to build the flexibility
matrix, natural frequencies and modal shapes are needed
[6], which can be evaluated through dynamic identification
techniques.

In literature, two main methods for conducting modal
identification are widely described: Experimental Modal
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Figure 1: Synthetic scheme of a flexibility-based damage detection procedure.

Analysis (EMA), in which the identification procedure is
performed starting from input and output data [7], andOper-
ational Modal Analysis (OMA), in which only the output
data is used [8, 9]. The difficulty of implementing the EMA
for large-scale structures and its high economic burden have
shifted the interest of the most recent studies towards output-
only methods, in which the input is given by the natural
excitation (i.e., wind, traffic, and minor seismic phenomena)
[10]. Most of the algorithms used in OMA are based on the
assumption of modeling the input signal as white noise with
stationary characteristics. Owing to the partial enforceability
of the aforementioned assumptions (e.g., sudden changes
in wind direction and speed) [11], some recent researches
refer to techniques based on the assumption of nonstationary
inputs. In this context, new tools have been developed, such
as the Wigner-Ville distribution and the wavelet transform,
which allow the joint time-frequency domain representation
of the signal [11–18].

The most recently implemented procedures in these
research fields go towards the increase in performance,
preferring fast and computationally less expensive methods.
In the context of flexibility-based damage detection, the
main objective of this paper is to propose and evaluate
the effectiveness of an approach that uses a mixing matrix,
obtained through Singular Value Decomposition (SVD) [19],
compared to the traditional approach that involves themodal
matrix (Figure 1), under the assumption of unknownmasses.
It is known from the literature that a fast estimation of
modal vectors from the dynamic structural responses can be
obtained through Blind Source Separation (BSS) techniques
[9], which provide a mixing matrix with properties different

from those of the real modal matrix. In particular, the SVD is
one of the simplest techniques used for BSS, and its use would
allow simplifying the whole damage detection procedure.

Since the SVD would provide a number of singular
vectors (i.e., the columns of the mixing matrix) equal to
the number of recorded dynamic structural responses, a
Wavelet Scalogram and Singular ValueDecomposition-based
technique (WS-SVD) [20, 21] or a transformed version (WS-
TSVD) [11, 22–25] could be applied for signal sparsification
in case of reduced availability of sensors, in order to allow
the extraction of modal responses, which can be used for the
estimation of a larger set of singular vectors.These procedures
also allow the estimation of natural frequencies, even in the
case of nonstationary excitation. Since a correct estimate
of these parameters is of the utmost importance for the
flexibility-based damage detection, a variant of the original
WS-TSVD-based procedure is proposed, aimed at further
improving the obtained results. In particular, two steps are
introduced within the original workflow: the first entails an
energy reassignment process, widely applied in the field of
signal analysis [18, 26–29], and the second consists of an
energy-based filtering procedure.

The combination of the Reassigned WS-TSVD-based
method (RWS-TSVD) for signal sparsification and the SVD-
based approach for the computation of the flexibility matrix
would allow fast recognizing structural damage by approxi-
mate calculations, without a large number of sensors and the
knowledge of structural masses, only by using the accelera-
tion time histories recorded at different points of the analyzed
structure. In this way, contrary to other methods that provide
specific tests to mass-normalize the modal matrix [30, 31], it



Shock and Vibration 3

is possible to estimate the damage without interrupting the
ordinary use of the analyzed structure. After a first quick test,
the procedure could be reperformed by moving the sensors,
in order to investigate more accurately the damage entity and
location.

The paper is organized as follows: in Section 2 the SVD
and the analogies with modal superposition are recalled; in
Section 3 the wavelet-based sparsification and identification
procedure is briefly described, focusing on the highlights
of the proposed variant; in Section 4 the flexibility-based
damage detection is discussed, with particular attention to
the use of singular vectors as damage sensitive parameters
and to the approximations caused by the lack of mass matrix.
In Section 5 the described procedures are applied on dis-
crete and continuous systems, by simulated tests performed
through a finite element software.

In order to study the effectiveness of the examined proce-
dures, several comparisons are reported in Section 5. Firstly,
the estimated error on the natural frequencies obtained
through the RWS-TSVD-based method is evaluated. Sub-
sequently, a comparison is made between the frequencies
obtained by the RWS-TSVD-based procedure, the traditional
WS-TSVD-based algorithm, and the consolidated Eigensys-
tem Realization Algorithm (ERA) method [32]. After eval-
uating errors on natural frequencies, those on the flexibility
matrices are estimated. In particular, the matrix computed
through natural frequencies and modal vectors, obtained by
using the ERA, will be compared to the matrix computed
through singular vectors and natural frequencies, estimated
by the RWS-TSVD-based method. Finally, the errors on the
damage estimates are studied, comparing the results obtained
by using the two different flexibilitymatrices described above.

2. Singular Value Decomposition and
Modal Superposition

In this section, we briefly recall the basic theory of Singular
Value Decomposition and the analogies with the modal
superposition problem. From now on, with the notation A ∈
R𝑎×𝑏 we mean that A is a real matrix with 𝑎 rows and 𝑏
columns, while with the notation a ∈ R𝑎 we mean that a
is a real column vector with 𝑎 terms. Also, we call 𝑛 the
number of Degrees of Freedom (DOFs) of the structure and𝑚 the number of sensors arranged on it. For the discrete
systems, since every DOF is associated with an independent
movement and with recorded time histories we intend the
acceleration relative to an independent movement, it is
assumed that control points can be chosen within the set of
DOFs (and𝑚 ≤ 𝑛).

Considering H ∈ R𝑚×𝑘 the matrix whose rows represent
the acceleration time histories h𝑗 (each containing 𝑘 time
samples) collected at the 𝑗th control point of the structure,
every row can be expressed as a linear combination of all the𝑛 structural responses, represented as columns in the matrix
S = [s1,s2, . . . ,s𝑛] ∈ R𝑘×𝑛:

H = ΣΦST, (1)

where Φ = [𝜙1,𝜙2, . . . ,𝜙𝑛] ∈ R𝑛×𝑛 is the modal mass-
normalized matrix (i.e., the norm of each modal vector is
equal to 𝛼𝑖 = (𝜙T𝑖 M𝜙𝑖)−1/2, where M is the mass matrix of
the structure and 𝜙𝑖 = 𝜙𝑖/‖𝜙𝑖‖) and Σ ∈ R𝑚×𝑛 is a selection
matrix whose rows are each equal to zero vectors, except for
the 𝑖th element equal to 1, which corresponds to the position
of the 𝑗th control point. Considering the case in which the
number of sensors is equal to the number of DOFs (𝑚 ≡ 𝑛),
the matrix Σ becomes an identity matrix of order 𝑛, and the
problem can be described as

H = ΦST = 𝑛∑
𝑖=1

𝛼𝑖𝜙𝑖sT𝑖 . (2)

Since the aim of identification process is that of estimating
modal parameters by analyzing registered time histories,
neither S structural responses nor the modal matrix Φ are
known. The modal superposition problem described above
lies in the class of unmixing problems, on which a Blind
Source Separation (BSS) technique can be applied with the
aim of estimating the mixing matrix Φ. If the number of
mixed recordings 𝑚 is equal to the number of sources 𝑛
(columns of S), the problem is determined and can be solved
directly.Otherwise, if𝑚 < 𝑛, that is, themost common case in
the modal identification problems, Φ can be estimated after
sparsifying the registrations, that is, changing the domain
of the registered mixes in order to bring out a number of
independent parameters characterizing the sources, equal to
or greater than 𝑛.

Focusing on the determined problem (𝑚 ≡ 𝑛), the BSS
can be carried out by means of a SVD of the recordings
matrix. In particular, a real matrix H ∈ R𝑚×𝑘 can be
factorized as

H = ΨZΧT, (3)

where Ψ = [𝜓1,𝜓2, . . . ,𝜓𝑚] is a 𝑚 × 𝑚 matrix such that
ΨΨT = ΨTΨ = I, where I is the identity matrix, whose
columns 𝜓𝑗 (namely, the left singular vectors) are a set of
orthonormal eigenvectors ofHHT. Similarly,Χ = [𝜒1,𝜒2, . . . ,
𝜒𝑘] is a 𝑘 × 𝑘 matrix composed of the right singular vectors
𝜒𝑙 (with 𝑙 = 1, . . . , 𝑘), which are a set of orthonormal
eigenvectors of HTH, and Z is the 𝑚 × 𝑘 diagonal matrix
of singular values, which are the square roots of nonzero
eigenvalues of both HHT and HTH. The H matrix can thus
be expressed as a sum of contributions given by the outer
product of the 𝑗th left 𝜓𝑗 and right 𝜒𝑗 singular vectors, each
weighted by the 𝑗th nonzero element 𝑧𝑗 of the matrix Z:

H = 𝑚∑
𝑗=1

𝑧𝑗𝜓𝑗𝜒T𝑗 . (4)

Starting from the latter representation, since the modulus
of 𝑧𝑗 decreases when the 𝑗 index increases, it is simple to
note the analogies between themodalmatrix, whose columns
consist in ordered modal vectors, and the matrix Ψ, whose
columns represent the sets of coefficients that, multiplied
by the right singular vectors, better approximate the matrix
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Figure 2: Comparison between right singular vectors, extracted by
means of SVD, and modal responses of a 4-DOF share-type frame
in free vibration, with reference to the example at Section 5.1.3. For
an effective comparison, the vectors are both normalized to the
maximum value and only the first 100 terms are plotted.

H. In fact, a structural response signal can be effectively
approximated by taking into account a number of vibration
modes proportional to the desired precision level.

It is noted that the matrixΨ does not correspond exactly
to the modal matrix, and thus the right singular vectors are
different from the modal responses (Figure 2). In particular,
Ψ is composed of orthonormal vectors, that is, 𝜓T𝑗𝜓𝑗 = 1,
whileΦ is composed of vectors such that 𝜙

T
𝑖 M𝜙𝑖 = 1 [33].

3. Modal Identification

The main purpose of dynamic identification is to deter-
mine modal parameters, represented by natural frequencies,
damping ratios, andmodal shapes, from dynamic recordings.
In case the exciting input is nonstationary, assuming the
analyzed system as linear, the structural response will also
have time-varying characteristics [6]. For this reason, in order
to obtain significant results, it is essential to conduct analyses
in the time-frequency domain. Indeed, the vibration modes
are easier to detect when the input has frequency values
similar to the structural natural ones. If the input acceleration
is characterized by a narrowband of frequencies, which varies
over time, it is likely that not all modes can be identified
simultaneously, but only at certain time intervals.

In this section we briefly describe the RWS-TSVD-based
technique for signal sparsification and modal identification.
The procedure is composed of three steps: the sparsification
of the collected time histories (TH), the features detection,
and the modal identification (Figure 3).

3.1. Signal Sparsification and Features Detection. In the first
step the collected data is processed by continuous wavelet
transform, in order to compute a scalogram, whose content
can be interpreted as a signal energy density distribution
[13]. Specifically, the analysis is carried out by selecting the

Morlet wavelet asmother function,which best suits harmonic
signals, since the scale parameter is characterized by a unique
relationship with the signal frequency obtainable by Fourier
analysis [14].

In order to improve the scalograms readability and to
reduce the interference caused bymutual energy between dif-
ferent signal components, an energy reassignment operation
is performed.This technique involves assigning the calculated
energy levels to theweighted centroid of the analysis windows
rather than to their geometric center [18, 26–29]. In this way
the energy peaks are more homogeneous in the different
scales and have a lesser spread in the time-frequency plane.

Following the computation of scalograms, the areas of
interest to extract the modal parameters should be evaluated.
This phase consists of features detection, which can be done
by decomposition of the two-dimensional distribution into
vectors representing the energy density of the analyzed signal
[11]. For this purpose, recent studies that use the SVD [20, 21]
and theTSVD (whose bases are obtained by rotating the bases
of the traditional method) [11, 22–25] have been developed.

In the feature detection phase, the energy peaks asso-
ciated with vibration modes are selected. It often happens
that computational modes are also identified, which do not
refer to the dynamic behavior of the system. In order to
minimize user intervention in the identification procedure,
a filter has been introduced into the algorithm to eliminate
computational modes. In particular, the Root Mean Square
(RMS) energy has been computed for each wavelet coeffi-
cients vector, and a threshold has been set to eliminate those
with an energy value lower than the 10% of the highest RMS
value.

As the RWS-TSVD-based algorithm detects narrow areas
in terms of frequency, the corresponding wavelet coefficients
can be interpreted as single modal responses and then
processed as SDOF responses for the identification of modal
parameters.

3.2. Extraction of Modal Parameters. Following the selection
of the modes of interest, natural frequencies can be estimated
by Fast Fourier Transform (FFT) of the wavelet coefficients
extracted from each energy peak. It is noted that FFT does not
consider the time aspect of the analyzed recordings, but each
wavelet component is characterized by a narrow frequency
band,making it possible to estimate natural frequencies with-
out merging vibration modes. For the same reason, also the
damping ratio can be computed for each wavelet component
as for SDOF signals. Damping ratio can be considered as a
further damage detection parameter [34] but is of difficult
interpretation for the sake of damage magnitude evaluation.
Therefore, in the present paper, we only focus on natural
frequencies andmodal shapes to formulate considerations on
the damage level.

Regarding the modal shapes, in the case of large number
of sensors (nearly determined problem), we investigate if
the modal matrix can be assumed as the Ψ matrix com-
puted as explained in Section 2, considering the fact that
the error increases with the 𝑛/𝑚 ratio. Otherwise, in the
case of strongly underdetermined problem (𝑚 ≪ 𝑛), the
scalogram could result in a convenient sparse representation
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Figure 3: Workflow of the identification algorithm.

for each registered signal, since it highlights the energy peaks
associated with single vibration modes. The BSS problem
could thus be formulated by assuming thewavelet coefficients
corresponding to each identified peak as a single source
vector, multiplied by the 𝜙𝑗,𝑖 element of modal matrix, where𝑗 is the control point position index at which the registration
is recorded and 𝑖 is the mode index that represents the
peak identified in the 𝑗th scalogram. This procedure allows
extracting the 𝑖th vector 𝜓𝑖 ∈ R𝑚 (whose 𝑚 elements are
nearly proportional to the corresponding 𝑚 elements of the
modal vector 𝜙𝑖 ∈ R𝑛 associated with the frequency 𝜔𝑖) by
computing the SVD of the matrix whose columns consist
of wavelet coefficients, obtained at the same identified 𝑖th
natural frequency (energy peak), each corresponding to a
different control point of the structure.

Considering w𝑖,𝑗 ∈ R𝑘 the wavelet coefficients vector
computed at the circular frequency 𝜔𝑖 on the time history
registered at the 𝑗th control point, a SVD of the matrix
W(𝑖)
𝑚×𝑘

= [w𝑖,1,w𝑖,2, . . . ,w𝑖,𝑚]T can be performed as

W(𝑖) = Ψ(𝑖)Z(𝑖)Χ(𝑖)T, (5)

whereΨ(𝑖) is an𝑚×𝑚matrix, whose first column represents
the vector 𝜓𝑖. In order to obtain a complete (or a larger)
vector 𝜓𝑖, if the number of sensors is small compared to
the number of DOFs (𝑚 ≪ 𝑛), repeated tests can be
performed, after displacing the sensors and keeping at least
one in the same position, to allow the normalization of the
whole set of collected coefficients at the same value. Indeed,
taking two elements 𝜓𝑎,𝑖 and 𝜓𝑏,𝑖 of the vector 𝜓𝑖, they are
only representative of the ratio 𝜓𝑎,𝑖/𝜓𝑏,𝑖, because of their
normalization.

Several identification algorithms widely described in the
literature allow estimating directly the modal matrix instead
of a similar-meaning matrix, assuming that the matrix of
structural masses is known. One of them is the ERA [32],
originally implemented for impulse response signals, which
allow the immediate description of the Hankel matrix, start-
ing point of the algorithm.Thanks to the speed and accuracy
of thismethod, several variants have been introduced in order
to make it applicable to natural vibration signals. In this
context, the Natural Excitation Technique (NExT) [35] and
the RandomDecrement technique (RD) [36, 37] were used to
derive system impulse response functions from response time
histories to stochastic input. The first mentioned technique
uses signal correlation and is based on the assumption
that the input is characterized by a stationary zero-mean
white noise, withGaussian distribution; the second technique
instead refers to the average of different signal segments that
have the same initial conditions.

If the mass matrix is unknown, the modal matrix
obtained by ERA (or othermethods) is notmass-normalized,
and the 𝑖th modal mass-normalized vector 𝜙𝑖 is expressed as

𝜙𝑖 = 𝜑𝑖

√𝜑T𝑖 M𝜑𝑖
, (6)

where 𝜑𝑖 is the 𝑖th nonnormalized modal vector. In order to
obtain usable results for the sake of damage detection through
flexibility-basedmethods, the structural flexibility matrix has
to be computed. To this aim, without the knowledge of
masses, a pursuable criterion is that of normalizing every
modal estimated vector so that

𝜙𝑖 = 𝜑𝑖√𝜑T𝑖 I𝜑𝑖
, (7)
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Figure 4: Modeling limit cases for a plane frame.

where I is the identity matrix and Φ = [𝜙1,𝜙2, . . . ,𝜙𝑛]
is the unitary-mass-normalized modal matrix. Because of
its normalization, the flexibility matrix obtained from Φ is
proportional to the flexibility matrix of a structure with a
diagonal mass matrix such that M = 𝜇I, where 𝜇 is a
constant value, equal to the mass associated with each DOF
of the structure. It is easy to see that the more the masses are
effectively equally distributed along the structure, the more
precisely the described criterion is pursuable.

It is noted thatΦ andΨmatrices are obtained by different
procedures, and in particular, the matrix Ψ is generally
obtainable in an easier way, since it involves a simple matrix
factorization. However, considering the similarities between
relations (2) and (4) in addition to the analytical meaning of
the two matrices, as explained above, Ψ could be used in a
flexibility-based damage detection procedure instead ofΦ. In
the following sections, the case of damage estimation under
the assumption of unknown masses will be investigated,
evaluating the reliability of the results obtained by using the
matrixΨ instead ofΦ by means of simulated tests.

4. Damage Detection

For a precise and reliable estimate of the damage in complex
structures, a large number of sensors are generally required
[4, 5] and the model suitable for damage detection strictly
depends on the typology of the analyzed structure. Consider-
ing the example of reinforced concrete frames, damage may
occur at the columns, beams, or nodes, requiring appropriate
assessments for each element. However, usually even in the
design phase, it is possible to assume simplified hypotheses at
the basis of themodel used to perform structural calculations
[38]. Moment Resisting Frame (MRF) and other structural
typologies can be analyzed, depending on the case, by evalu-
ations made on two limit schemes or a mediated condition.

In particular, if it is possible to model the beams as
infinitely stiff, the frame behavior can be assumed as shear-
type (Figure 4(a)); that is, it is assumed that the nodes

can only translate, by inhibiting rotations. In this case, it is
possible to model the structure as a discrete system, where
the number of DOFs is equal to the number of allowed
translations. The mentioned system can also be modeled as
a continuous cantilever beam, deformable only for shear,
whose stiffness is obtained by the methods described in the
following sections.

If columns are made up of strong elements and the
connecting beams can be schematized as weakly bending
resistant elements, the structure can be modeled as a set of
cantilever beams connected by truss elements (Figure 4(b)).

From the knowledge of natural frequencies and modal
mass-normalizedmatrix, it is possible to obtain the flexibility
matrix of the structure [6, 33], expressed by the relation:

G = ΦΩ−2ΦT, (8)

where Φ ∈ R𝑛×𝑛 is the mass-normalized modal matrix and
Ω = diag{𝜔𝑖} is the natural circular frequencies matrix. If
the available data is incomplete, or for a number of known
vibrational modes of 𝑟 < 𝑛, we can estimate the approximate
flexibility matrix as

G ≅
𝑟∑
𝑖=1

1
𝜔2𝑖 𝜙𝑖𝜙

T
𝑖 , (9)

where 𝜙𝑖 is the 𝑖th mass-normalized modal vector [39].
By using the vectors 𝜓𝑖, computed by means of the SVD
(possibly through a set of repeated tests), we can compute an
approximate nonnormalized flexibility matrix as

Γ = 𝑟∑
𝑖=1

1
𝜔2𝑖 𝜓𝑖𝜓

T
𝑖 . (10)

4.1. Shear-Type Frame. Assuming that a unit load vector p =[1, 1, . . . , 1]T is applied to the analyzed structure, it is possible
to estimate the corresponding displacement vector as

u = Gp. (11)
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Given the vector (11) it is also possible to compute the
interstory drift (ID) 𝛿𝑗 for the 𝑗th story, by the difference
between two subsequent terms of the u vector. It is therefore
possible to evaluate the variation of the ID between an initial
and an eventually damaged condition, in order to determine
whether the system has undergone a decrease in stiffness
between the two different time instants. In particular, the ID
of the 𝑗th story caused by the story shear𝑉𝑗 can be expressed
as

𝛿𝑗 = 𝑉𝑗𝑓𝑗 = 𝑉𝑗 ℎ3𝑗12𝐸𝐽𝑠,𝑗 , (12)

where 𝑓𝑗 is the 𝑗th story flexibility, ℎ𝑗 represents the 𝑗th story
height, 𝐸 is the elastic modulus of the considered material
(supposed as constant for each story), and 𝐽𝑠,𝑗 is the 𝑗th story
stiffness (i.e., the sum of column stiffness of the 𝑗th story) in
the direction of load. In order to obtain the 𝑗th story stiffness
variation 𝜀𝑗 between the integer and the damaged condition,
the relation (12) can be reversed, obtaining

𝜀𝑗 = 𝐸𝐽𝑠,𝑗 − 𝐸𝐽𝑠,𝑗𝐸𝐽𝑠,𝑗 = 𝛿𝑗 − 𝛿𝑗𝛿𝑗 , (13)

where the terms ◼̃ characterize the damaged structure.
Finally, the results of (13) can be grouped into vectors 𝜀 and 𝛿,
the elements of which represent, respectively, the variations
in story stiffness and the ID of the whole structure. The 𝑗th
element of 𝜀 can also be expressed as

𝜀𝑗 = (g̃𝑗p − g̃𝑗+1p) − (g𝑗p − g𝑗+1p)
(g̃𝑗p − g̃𝑗−1p) , (14)

where g𝑗 is the 𝑗th line of the system’s flexibility matrix. With
reference to relation (9), flexibility matrix can be expressed as
a function of themodal vectors normalized to unitarymasses:

G ≅ 𝑟∑
𝑖=1

𝛼2𝑖𝜔2𝑖 𝜙𝑖𝜙
T
𝑖 , (15)

where 𝜙𝑖 is the 𝑖th unitary-mass-normalized modal vector
and 𝛼𝑖 is the normalization coefficient [30, 31], generally
different for each modal vector, obtained as

𝛼𝑖 = (𝜙T𝑖 M𝜙𝑖)−1/2 , (16)

where M is the mass matrix of the structure, supposed as
unknown. It is noted that, in traditional flexibility-based
damage detection techniques, the normalization coefficients
evaluation is necessary. For this reason, if the real distribution
of masses is unknown, the approximate assessment of the
structural masses involves the introduction of related estima-
tion errors.

Substituting (15) in (14) it is possible to express the
elements of the story stiffness variation vector as a function
of unitary-mass-normalized modal shapes and natural fre-
quencies of the system, obtained by the identification process
conducted at two different time instants. Assuming that

modal shapes vary in modest quantities between the integer
and the damaged conditions,𝛼𝑖 coefficients can be considered
as unchanged. Furthermore, if masses are nearly uniformly
distributed along the structure, the decrease in stiffness can be
evaluated depending on the first 𝑟 vibrationmodes identified,
through the relation:

𝜀𝑗
≅ ∑
𝑟
𝑖=1 [((𝜙𝑗,𝑖 − 𝜙𝑗+1,𝑖) /𝜔̃2𝑖 ) 𝜙̃T𝑖 p − ((𝜙𝑗,𝑖 − 𝜙𝑗+1,𝑖) /𝜔2𝑖 )𝜙T𝑖 p]

∑𝑟𝑖=1 [((𝜙𝑗,𝑖 − 𝜙𝑗+1,𝑖) /𝜔̃2𝑖 ) 𝜙̃T𝑖 p]
, (17)

where p represents a unitary vector and 𝜙𝑗,𝑖 the 𝑗th element
of 𝜙𝑖. Similarly, by using the singular vectors, we can evaluate
the decrease in stiffness as
𝜖𝑗
≅ ∑
𝑟
𝑖=1 [((𝜓̃𝑗,𝑖 − 𝜓̃𝑗+1,𝑖) /𝜔̃2𝑖 ) 𝜓̃T𝑖 p − ((𝜓𝑗,𝑖 − 𝜓𝑗+1,𝑖) /𝜔2𝑖 )𝜓T𝑖 p]

∑𝑟𝑖=1 [((𝜓̃𝑗,𝑖 − 𝜓̃𝑗+1,𝑖) /𝜔̃2𝑖 ) 𝜓̃T𝑖 p] . (18)

In the Applications section the reliability of relation (18) and
the differences between the results obtained by using (18)
instead of (17) are investigated.

4.2. Continuous Shear-Deflecting Cantilever Beam. In order
to generalize the obtained results, continuous schemes are
also studied. If the structure analyzed in the previous case is
regular in height, both in terms ofmass and stiffness, it can be
modeled as a continuous cantilever beam deflecting for shear,
where its mass is distributed and whose equivalent stiffness is
the mean value over all stories of the terms (𝐺𝐴)𝑒𝑞,𝑗 (i.e., the𝑗th segment stiffness), estimated by equating the drift of the
two systems shown in Figure 5:

(𝐺𝐴)𝑒𝑞,𝑗 = 12𝐸𝐽𝑠,𝑗ℎ2𝑗 , (19)

where ℎ𝑗 is the 𝑗th story height, 𝐸 is the elastic modulus of
the consideredmaterial (supposed as constant for each story),
and 𝐽𝑠,𝑗 is the 𝑗th story stiffness in the direction of load, as in
the previous case.

Applying a number 𝑚 of sensors at a variable spacing
on the analyzed structure, the procedure is similar to the
shear-type case, where the order of the system is represented
by 𝑚. Assuming the application of a unitary force vector
at the sensors location, the damage index can be estimated
as an ID variation, as explained above. It is noted that the
localization and quantification of decreasing stiffness depend
on the spacing: the greater the number of sensors is, the more
precisely the damage position will be located. In addition, the
decrease in stiffness, expressed as a percentage of variation,
is related to the part of the structure between two sensors:
for the same damage, the higher the spacing, the lower
the percentage of estimated damage, with the consequent
increase in calculation error.

4.3. Continuous BendingMoment-Deflecting Cantilever Beam.
In case the structure can be modeled as a continuous can-
tilever beam deflecting for bending moment (e.g., reinforced
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Figure 5: Model used for calculating the translational stiffness of the equivalent shear-deflecting cantilever beam. (a) A shear-type frame
story; (b) a continuous element of the same length, subjected to the same shear of the scheme on (a).

concretewalls), each control point can also rotate as a result of
load application (Figure 4(b)). By assuming that the sensors
are close enough, the structure can be modeled as a set
of beam segments with different stiffness values, delimited
by control points. In this case, it is possible to obtain the
flexibility matrix and the displacement vectors of the control
points subjected to unitary loads, similarly to the previous
cases. However, since nodes are also allowed to rotate, the 𝑢𝑗
displacement has to be cleaned of the term associated with
the rigid rotation 𝜃𝑗 of the structure above the 𝑗th node,
caused by the whole set of loads applied on the structure. It is
therefore necessary to perform a recursive procedure, initially
evaluating the rotation of the first control point from the base,
knowing the 𝑢1 displacement of the same point:

𝜃1 = 3𝑢1ℎ1 (
ℎ1𝑚 + 2∑𝑚𝑖=1 (ℎ𝑖 − ℎ1)2ℎ1𝑚 + 3∑𝑚𝑖=1 (ℎ𝑖 − ℎ1)) , (20)

where 𝑚 is the number of sensors applied to the structure
and ℎ𝑗 is the distance of the 𝑗th sensor from the base of
the structure. Considering for simplicity that the sensors are
placed at constant spacing 𝑠, the relation (20) becomes

𝜃1 = 6𝑚𝑢1𝑠 (1 + 3𝑚) . (21)

The upper part of the structure will therefore be subject to
a rigid rotation of 𝜃1, in addition to the elastic deformation
caused by the loads above the first control point. The net ID
of the second segment is thus evaluated as

𝛿2 = 𝑢2 − 𝑢1 − 𝜃1𝑠. (22)

This value must be used to obtain the total rotation of the
second node, as

𝜃2 = 𝜃1 + 6 (𝑚 − 1) 𝛿2𝑠 [1 + 3 (𝑚 − 1)] . (23)

It will thus be possible to evaluate the next ID from which
the rotation of the same node can be obtained, until the 𝑚th
term.The estimate of damage is thus evaluated as an 𝜀 vector
whose elements have the form:

𝜀𝑗 = 𝛿𝑗 − 𝛿𝑗𝛿𝑗 . (24)

It is important to emphasize that relations (20)–(23) are valid
if the stiffness value is constant along the considered segment.
This hypothesis is usually not verified if the damage is
concentrated in a small section of the structure (e.g., cracking
or concentrated lesions, where the element curvature changes
abruptly). In this case, relation (24) would provide accurate
results only with respect to the first lesion from the base of
the structure, as the upper control points rotations would
be incorrectly evaluated. This drawback can be overcome
by decreasing the discretization interval, so that segments
between sensors are small enough to be considered with a
constant stiffness along their whole length.

In the case of reduced availability of sensors, however, it is
possible to decrease the discretization interval by performing
repeated tests with the same sensors in different positions,
maintaining one fixed at a time, in order to normalize modal
shapes at the same value (Figure 6). In this way, it is possible
to increase the number of control points and thus the rank of
the matrix Γ.

It is also noted that the method described in this para-
graph is more sensitive to the errors on natural frequencies
than the technique described for shear-type structures. This
phenomenon is due to the increased overall number of DOFs
and can be fixed by averaging the results obtained through the
modal identification processes, carried out on different tests
with displaced sensors.

In case of systems that can be modeled as several can-
tilever structures connected together by flexible beams, it is
possible to approximate them as truss elements. Under these
assumptions, we evaluate the overall stiffness of a flexural
deformable equivalent structure as

(𝐸𝐽)𝑒𝑞 =
𝑞∑
𝑖=1

𝐸𝐽𝑖, (25)

where 𝐸𝐽𝑖 is the stiffness of a single cantilever beam and 𝑞 is
the number of interconnected structures.

The described cases represent simple structures whose
behavior can be studied in two dimensions. If the exam-
ined structures have a more complex behavior (e.g., asym-
metrical structures or with eccentricity of the masses), a
higher number of sensors could be needed to record the
acceleration in multiple directions, in order to study the
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Figure 6: Reduction of the discretization interval through repeated tests.

three-dimensional behavior of the system. If, moreover, the
materials have a strongly nonlinear behavior (e.g., historical
masonry buildings), the problem becomes more complicated
and a precisemechanical characterizationmust be carried out
before choosing the model to be used for damage estimation
purposes [40–43].

5. Applications

In this section, the effectiveness of the use of singular vectors
for damage detection purposes is examined by means of
simulated tests on different structural typologies. A com-
parison between the modal parameters obtained by the
traditional ERA and those computed by using the wavelet-
based procedures is also shown, by using the same dynamic
recordings, with the aim of comparing two quantities affected
by error. In order to prove the reliability of the methods even
for real life cases, in which there is always an error due to the
instrumentation sensitivity, for each application a white noise
level is artificially introduced into the recordings, as specified
for each following case.

In the analyzed examples, the fluctuations of the modal
parameters due to environmental mutations, such as changes
in temperature or operative conditions, are neglected. How-
ever, since the analysis in the time-frequency domain allows
the estimation of instantaneous modal parameters over time,
under more complex environmental conditions, in order to
obtain the clean modal parameters necessary for the estima-
tion of damage, removal techniques could be used, as widely
described in literature [40–45]. Therefore, in the following
examples we use parameters cleaned up by environmental
effects, taking into account the instrumentation sensitivity
only.

5.1. Shear-Type Frame. The first case is a lumped-mass
reinforced concrete plane frame composed of four stories,
each consisting of five equal columns, in which the beams
are assumed as infinitely stiff, so that the structure can be
modeled as shear-type (Figure 7). The described structure is
fully characterized by four vibration modes.

S4

S3

S2

S1
m1

m2

m3

m4

̈s

Figure 7: Shear-type frame and sensors disposition.

Table 1: Geometric data of the analyzed shear-type frame.

Story Story mass[kN s2/m]
Story
height[m]

Column
section[m]

Sum of story
columns inertia[m4]

4 69.2 3.20 35 × 50 1.823 ⋅ 10−2
3 95.4 3.20 40 × 50 2.083 ⋅ 10−2
2 96.4 3.20 45 × 50 2.344 ⋅ 10−2
1 97.3 3.50 45 × 50 2.344 ⋅ 10−2

The mass matrix M and the stiffness matrix K are
evaluated on the basis of the geometric data (Table 1), taking
into account also the other structural and nonstructural
components in mass computation. The mass-normalized
modal matrix Φ and the natural circular frequency matrix
Ω are obtained by solving the eigenvalue problem for the
undamped system in free vibration.

M =
[[[[[
[

69.2 0 0 0
0 95.4 0 0
0 0 96.4 0
0 0 0 97.3

]]]]]
]

kN s2/m,
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K

=
[[[[[
[

133514 −133514 0 0
−133514 286102 −152588 0

0 −152588 324249 −171661
0 0 −171661 302856

]]]]]
]

kN/m,

Φ =
[[[[[
[

−0.0696 −0.0713 0.0616 −0.0270
−0.0621 −0.0116 −0.0600 0.0538
−0.0474 0.0524 −0.0234 −0.0695
−0.0288 0.0617 0.0592 0.0462

]]]]]
]
,

Ω =
[[[[[
[

14.4431 0 0 0
0 40.1943 0 0
0 0 61.7279 0
0 0 0 75.9607

]]]]]
]

rad/s.

(26)

Finally, the flexibility matrix G is obtained as inverse of the
stiffness matrix:

G =
[[[[[
[

0.2749 0.2000 0.1345 0.0762
0.2000 0.2000 0.1345 0.0762
0.1345 0.1345 0.1345 0.0762
0.0762 0.0762 0.0762 0.0762

]]]]]
]
⋅ 10−4m/kN. (27)

5.1.1. Modal Identification. In the first analysis, a stochastic
acceleration with nonstationary characteristics is applied at
the base of the structure, with reference to the accelerogram
shown in Figure 8(b).

By applying the RWS-TSVD-based identification pro-
cedure on the time history collected at the sensor S1, on
which an error of 5% (in terms of energy, with respect
to the recorded signal) has been introduced, the circular
frequencies 𝜔𝑖 are evaluated and reported in Table 2. Fur-
thermore, an SVD of the matrix composed of the whole
set of structural dynamic responses has been performed,
obtaining the left singular vectors (also shown in Table 2)
and the right singular vectors, reported in Figure 9 next
to their frequency domain representations. It is observed
that the frequency values estimated by the RWS-TSVD-based
procedure are approximately coincident with the maximum
frequency values of the Fourier spectra computed on the
right singular vectors, confirming the fact that the estimated
parameters correspond to real vibration modes.

In Figure 10 the features detection procedure is shown in
detail: the traditional wavelet scalogram (Figure 10(a)) and
the reassigned version (Figure 10(b)) are reported, and since
the energy spread is lower in the second case, a more precise
features detection (Figure 10(c)) is allowed. It should be noted
that the structural masses have not been used during the
identification phase.

5.1.2. Error Evaluation and Comparison. A comparison
between the identified singular vectors 𝜓𝑖 and analytical
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Figure 8: Accelerograms representing a white noise with Gaussian
distribution (a), a nonstationary stochastic signal (b), and the
modeling of an elastic shock (c).

Table 2: Natural frequencies identified by the RWS-TSVD-based
algorithm and singular vectors computed for the undamaged frame.

Mode 𝑖 𝜔̂𝑖 [rad/s] 𝜓̂4,𝑖 𝜓̂3,𝑖 𝜓̂2,𝑖 𝜓̂1,𝑖
1 14.4463 0.6424 0.5723 0.4360 0.2641
2 39.9893 −0.6004 −0.0774 0.5261 0.5972
3 64.4856 0.4519 −0.6243 −0.2442 0.5886
4 77.0482 −0.2049 0.5454 −0.6722 0.4569

Table 3: Percentage errors on estimated values (normalized to
unitary masses). Mean errors are computed on the absolute values
of above terms.

Mode 𝑖 Err(𝜔̂𝑖) [%] Err(𝜓̂𝑗,𝑖, 𝜙𝑗,𝑖) [%]
1 +0.22 +0.15 +0.01 −0.18 −0.48
2 −0.51 −9.70 −28.44 +7.76 +3.78
3 +4.47 −22.95 +9.19 +9.42 +4.32
4 +1.43 −22.27 +3.96 −0.90 +1.46
Mean 1.66 13.77 10.40 4.57 2.51

unitary-mass-normalized modal shapes is reported in Fig-
ure 11. With the terms ◼̂ we indicate the quantities estimated
by the identification algorithm, thus having an error, as
reported in Table 3.

The identification algorithm is general and would allow
the correct identification of the examined structure, even in
case of flexible beams. In particular, assuming beams of 30 ×50 cm and removing the hypothesis of infinite stiffness, the
average error over all modes in natural frequency evaluation
is of 1.87%.

In this section we also compare the error level of the
frequencies obtained through the wavelet-based methods
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Figure 9: First four right singular vectors and their frequency contents.

and the ERA. For this purpose, three different tests are per-
formed, each by using one of the acceleration time histories
of Figure 8 as input, for which the natural frequencies of the
structure represented in Figure 7 are evaluated. In particular,
the time history of Figure 8(a) is a zero-mean white noise
with Gaussian distribution, representing stationary ambient
vibration applied to the base of the analyzed structure. The
accelerogram of Figure 8(b) is a nonstationary stochastic
signal which represents a more general ambient excitation,
also applied to the base of the structure; meanwhile the
input of Figure 8(c) represents an elastic shock applicable to
any level of the structure (in this case at the second floor,
simulating a forced impulsive vibration test).

The structural responses (collected with a frequency
sampling of 100Hz) have then been processed by using the

wavelet-based procedures and the ERA, separately. In partic-
ular, the results of wavelet-based algorithms are compared
to those obtained by means of NExT-ERA, applied to the
responses obtained by the input acceleration (a), RD-ERA,
applied to the responses obtained by the input acceleration
(b), and ERA, applied to the responses obtained by the
input acceleration (c) of Figure 8. Lastly, a comparison has
been made between the WS-TSVD-based technique, with
reference to the traditional scalogram, and the RWS-TSVD-
based procedure, with reference to the reassigned one. The
first two time histories have a duration of 30 s, while the third
has a duration of 10 s.

Observing the results in Table 4, the ERA provides a
complete dynamic description for the analyzed system only
in the case (c), since the recordings (a) and (b) are too
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Figure 10: Morlet scalogram (a), Morlet reassigned scalogram (b), and detected features (c).
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Figure 11: Comparison between identified left singular vectors and analytical modal shapes. In this representation the values are simply
connected by continuous or dashed lines (resp., for identified and analytical values) in order to improve the graph readability.

short to allow an efficient execution of RD technique and
NExT, while the wavelet-based procedures work properly
even with short recordings. It is also noted that in general
the reassigned scalogram ismore accurate in determining the
natural frequencies, especially for the first modes. Moreover,
the third column associated with the RWS-TSVD-based

method shows an improvement with respect to the WS-
TSVD-based procedure, as regards the estimation of natural
frequencies.

Repeating the tests by using a stationary excitation (as
the one of Figure 8(a)), with a duration of 5 minutes, all
the modes are identified through the NExT-ERA technique
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Table 4:Modal parameters identified by ERA,WS-TSVD-based algorithm, and RWS-TSVD-based algorithm on the undamaged frame, with
reference to input accelerations of Figure 8.

Input Mode 𝑖 ERA WS-TSVD RWS-TSVD
𝜔̂𝑖 [rad/s] Err [%] 𝜔̂𝑖 [rad/s] Err [%] 𝜔̂𝑖 [rad/s] Err [%]

(a)

1 14.3482 −0.66 14.2788 −1.14 14.2788 −1.14
2 41.2713 +2.68 40.8269 +1.57 40.6176 +1.05
3 - - 62.3920 +1.08 62.3920 +1.08
4 - - 78.9325 +3.91 79.1417 +4.19

(b)

1 14.6804 +1.64 14.0746 −2.55 14.4463 +0.02
2 39.4661 −1.81 41.4552 +3.14 39.9893 −0.51
3 66.5500 +7.81 63.6487 +3.11 64.4856 +4.47
4 - - 74.5355 −1.87 77.0482 +1.43

(c)

1 14.4551 +0.08 14.4369 −0.04 14.4369 −0.04
2 40.3869 +0.48 40.1722 −0.05 40.1722 −0.05
3 64.5058 +4.50 - - 63.3973 +2.70
4 72.5101 −4.54 - - - -

and the obtained results are comparable to those obtained
through the RWS-TSVD-based procedure (the average error
over all modes is of 1.76%), while using a nonstationary input
with a duration of 5 minutes, all the modes are identified
through the RD-ERA technique, with an average error over
all modes equal to 3.74% and amaximum value of 8.48%.The
results obtained through the RWS-TSVD-based procedure,
on the other hand, are not dependent on the duration of
the recording, since the errors computed on longer tests are
similar to those shown in Table 4.

It is observed that in wavelet-based techniques the nature
of the excitation does not affect the estimation error onmodal
frequencies, but the number of estimated modes. In fact, as
we can see in Table 4, not all the modes have been identified
in the impulsive excitation test. This happens because the
frequency spectrum of the input of Figure 8(c) has low
values for the range between 7 and 15Hz and thus generates
structural responses in which the third and fourth vibration
modes have low energy level. By performing the wavelet
analysis on these responses, the energy peaks associated
with the last two modes are low and widespread in the
time-frequency plane. For this reason, by using the WS-
TSVD-based procedure, the peaks associated with the last
two modes are classified as noise and therefore discarded by
the algorithm. Instead, by applying the RWS-TSVD-based
method, the thirdmode is also identified, since the associated
energy peak is sharper in the time-frequency plane and
therefore is recognized as representative of a structural mode.
The fourth mode would only be identified by lowering the
threshold of the RMS-based filter, but in this case, other
noise-related modes would also be recognized as structural
modes.

In order to obtain good results in terms of frequencies by
using the described wavelet-based techniques, an excitation
characterized by a sufficiently wide spectrum of frequencies
(i.e., that includes the natural frequencies of the analyzed
structure) is therefore necessary, regardless of whether it has
stationary or nonstationary characteristics over time. As for

Table 5: Flexibility matrix obtained by using unitary-mass-
normalized identified modal vectors (from ERA-based procedure)
and relative errors.

Elements of the flexibility matrix

Ĝ [m/kN ⋅ 102]
0.2329 0.1696 0.1145 0.0650
0.1696 0.1703 0.1136 0.0646
0.1145 0.1136 0.1155 0.0644
0.0650 0.0646 0.0644 0.0663

Err(Ĝ/max Ĝ,G/maxG) [%]
0.00 0.08 0.54 0.66
0.08 0.50 −0.25 0.02
0.54 −0.25 1.39 −0.25
0.66 0.02 −0.25 2.61

the singular vectors instead, the best results are obtained for
impulsive excitation, that is, in the case of free vibration.

In order to set up the damage detection procedure, the
flexibility matrix G or Γ has to be computed. Assuming that
the mass matrix is unknown, one of the simplest criteria
to mass-normalize the modal matrix is that of assuming a
constant distribution of masses along the structure. In order
to reduce the error due to the nature of input time histories,
ten repeated tests are carried out. For each test, unitary-
mass-normalized vectors and left singular vectors are used to
compute, respectively, G̃ and Γ̃, whose mean values (of each
element, computed over the whole set of experiments) and
errors are reported in Tables 5 and 6. Errors are evaluated
between estimated matrices G̃, Γ̃ and the analytic matrix
G—reported at (27)—dividing each for its maximum value,
in order to assess the ratios between the elements of each
matrix.

It is observed fromTables 5 and 6 that the errors evaluated
for the Γ̂ matrix are on average greater than those estimated
on the Ĝ matrix. This happens because the masses of the
analyzed structure are rather uniformly distributed and the
unitary normalization of modal vectors produces an accurate
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Table 6: Flexibility matrix obtained by using identified left singular
vectors (from SVD-based procedure) and relative errors.

Elements of the flexibility matrix

Γ̂ [m/kN ⋅ 102]
0.2273 0.1688 0.1144 0.0643
0.1688 0.1726 0.1145 0.0642
0.1144 0.1145 0.1177 0.0660
0.0643 0.0642 0.0660 0.0674

Err(Γ̂/max Γ̂,G/maxG) [%]
0.00 2.09 2.94 2.11
2.09 4.37 3.00 1.93
2.94 3.00 5.90 4.70
2.11 1.93 4.70 6.92

estimate of themodalmatrix.These errorsmay have a limited
influence on the results of damage detection: this aspect is the
object of the following section.

5.1.3. Damage Detection. In order to assess the reliability of
using singular vectors instead of modal vectors for the pur-
poses of damage detection under the assumption of unknown
masses, four different examples of damaged structure are
analyzed. Consider the structure represented in Figure 7,
with damaged columns, according to the patterns described
in Table 7. For the sake of brevity, the modal parameters
estimated in a single identification procedure (by using the
RWS-TSVD-based approach for the estimation of natural
frequencies and SVD for the extraction of singular vectors)
are reported in Table 8 only for the damage pattern D1. It
should also be noted that the tests for the damaged condition
are carried out by using inputs uncorrelated to the ones used
for the undamaged condition. We indicate with ◼̃ the terms
related to the damaged structure, obtained by identification
tests.

From the identified parameters, it is possible to evaluate
the matrices G̃ and Γ̃ (assuming a homogeneous distribution
of masses along the structure) associated with the damaged
frame and, by using relations (17)-(18), the percentage losses
in the story stiffness. Ten repeated tests are performed, each
by using a 30-second segment of a 5-minute time history, in
order to avoid errors due to the nature of each input segment.
In Table 9, the mean values of stiffness decrease, computed
for each test by using the RWS-TSVD-based algorithm and
the singular vectors, are reported, in the case of complete and
partial identification, for which it is assumed that only the
first vibration mode is detected, while in Table 10 the results
obtained by using ERA are reported, as an example of modal
vectors-based procedures.

By selecting the negative terms only, as the positive ones
indicate an increase in stiffness and are due to estimation
errors, the SVD-based method is particularly effective in
both localization and damage quantification, with a max-
imum evaluation error of 0.79%, even in case of partial
identification. The errors obtained by the two approaches
for the damage detection are absolutely comparable, despite
the different errors on flexibility matrices computed in the
previous section (Tables 5 and 6).
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Figure 12: Comparison of average absolute errors on analytical
damage indices for the shear-type frame, computed by traditional
modal vectors-based procedure and SVD-based procedure with
reference to the mass patterns of Table 11 and damage pattern D3
of Table 7.

In order to prove, independently of the instrumentation
sensitivity, that the SVD-based method works efficiently for
the damage detection if masses are supposed as equally
distributed when the real distribution is different, Figure 12
shows the mean errors (over all DOFs, for each mass pattern
described in Table 11) of damage indices obtained by using
analytical parameters instead of the identified ones. The tests
are performed on the structure analyzed in the previous
example, with different mass patterns and a multiple damage
condition represented by the pattern D3 of Table 7.

Regarding the modal vectors-based procedure, the flex-
ibility matrices have been calculated by using the analytic
matrices Ω and Φ, normalized to unitary masses, while the
results concerning the SVD-based procedure are computed
by using the analytic matrix Ω and the left singular vectors,
obtained from the impulse response functions of the consid-
ered shear-type frame, without adding noise to the recordings
(Figure 3).

In Figure 13 the average percentage errors on the flexibil-
ity matrix for the damaged condition, computed through the
two analyzed approaches, are reported.The error is evaluated
as the average of the errors calculated on each element of the
matrix. It is noted that these values are independent from
those computed for the damage indices.

Themean error on damage indices (over all the tests, with
reference to Table 11) for the classical procedure is of 0.25%,
while for the SVD-based procedure it is of 0.19%. Since these
values are very close and low, it emerges that both relations
(17) and (18) work properly for the purposes of damage
detection, independently of the error of flexibility matrices.
Furthermore, the SVD-based approach does not require any
introduction of additional estimated quantities. Indeed, while
𝜙𝑖 vectors have to be mass-normalized, and in the absence of
the knowledge of structural masses, additional error could be
introduced by awrong assumption on themassmatrix, and𝜓𝑖
vectors are alreadymass-representative. In fact, it can be seen
that SVD-based procedure suffers from slightly lower errors
than the classical one, in most cases where the masses are
not uniformly distributed. It is also noted that 𝜓𝑖 vectors are
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Table 7: Damage patterns. The description is referred to as a single column per story.

Damage pattern Description of the damage in the columns 𝜀𝑗 [%]𝜀1 𝜀2 𝜀3 𝜀4
D1 15% at the 1st story 3 0 0 0
D2 15% at the 2nd story 0 3 0 0
D3 15% at the 1st and 10% at the 2nd story 3 2 0 0
D4 15% at the 1st, 15% at the 2nd, and 30% at the 3rd story 3 3 6 0

Table 8: Modal parameters identified for the damaged frame,
according to the pattern D1 of Table 7. Natural frequencies are
identified by the RWS-TSVD-based algorithm.

Mode 𝑖 𝜔̃𝑖 [rad/s] 𝜓̃4,𝑖 𝜓̃3,𝑖 𝜓̃2,𝑖 𝜓̃1,𝑖
1 14.4441 0.6474 0.5715 0.4328 0.2586
2 39.7741 0.5831 0.0267 −0.5515 −0.5959
3 60.3263 0.4683 −0.6795 −0.1313 0.5493
4 77.1488 0.1468 −0.4592 0.7009 −0.5257
Table 9: Damage indices estimated by SVD-based procedure in case
of complete (on the left) and partial identification (on the right, by
using only the first vector) on the shear-type frame.

Damage pattern Story
1 2 3 4

𝜖𝑗 [%]
D1 −2.59 +0.05 −0.09 −0.26
D2 −0.50 −3.61 −0.39 −0.25
D3 −3.38 −2.25 −0.46 −0.21
D4 −3.71 −3.54 −6.51 −0.42

𝜖(𝑝)𝑗 [%]
D1 −2.23 +0.73 +0.99 +1.01
D2 −0.65 −3.62 −0.03 −0.01
D3 −2.73 −1.57 +0.93 +0.85
D4 −2.33 −2.21 −5.65 +1.23

Table 10: Damage indices estimated by modal vectors-based proce-
dure in case of complete (on the left) and partial identification (on
the right, by using only the first vector) on the shear-type frame.

Damage pattern Story
1 2 3 4

𝜀𝑗 [%]
D1 −3.95 +0.08 +0.37 −0.30
D2 −1.09 −3.57 −0.36 −0.29
D3 −3.42 −2.65 +0.18 −1.02
D4 −3.84 −3.92 −7.51 −0.38

𝜀(𝑝)𝑗 [%]
D1 −1.62 +0.42 +1.04 +1.02
D2 −1.03 −2.69 −0.36 −0.12
D3 −2.64 −1.51 +0.94 +0.95
D4 −2.22 −2.29 −5.48 +1.35

considerably simpler to be computed than 𝜙𝑖 vectors, which
require the use of complex algorithms.

5.2. Continuous Structures. With the aim of proving the
generality of the outlined methods, the identification proce-
dure and the damage detection algorithm are also applied

Table 11: Mass patterns used for the comparison of the damage
errors reported in Figure 12.

Mass pattern Story
1 2 3 4

Mass pattern [kN s2/m]

A 100 100 100 100
B 50 100 50 100
C 50 50 100 100
D 50 50 100 150
E 50 150 150 100
F 100 50 100 150
G 50 50 50 150
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Figure 13: Comparison of average absolute errors on analytical
flexibilitymatrix of the damaged condition, computed by traditional
modal vectors-based procedure and SVD-based procedure with
reference to the mass patterns of Table 11 and damage pattern D3
of Table 7.

to continuous structures. The accelerogram of Figure 8(b) is
used for modal identification purposes while, for the damage
detection, a set of ten repeated tests with input stochastic
acceleration, not related to the time history (b), are used.

5.2.1. Shear-Deflecting Cantilever Beam. The first analyzed
continuous structure consists in a shear-deflecting cantilever
beam with homogeneously distributed mass (all the geomet-
ric parameters are reported in Table 12). Modal identification
is performed on the time history collected by the sensor S2
(positioned as in Figure 14, where 𝑠 is a constant spacing
between the sensors) and by exciting the structure with the
accelerogram of Figure 8(b) as a ground acceleration. Other
time histories are collected from sensors S1 to S8, in order to
carry out damage detection tests. Each recording is affected
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Figure 14: Sensors arrangement and first modal shape of the
continuous structure.

Table 12: Geometric parameters of the undamaged shear-deflecting
cantilever beam.

𝑚[kN s2/m2] 𝐺𝐴 [kN] 𝐻 [m]
Linearly distributed mass Shear stiffness Total height
26 200000 12

Table 13: Modal parameters estimated on the undamaged con-
tinuous shear-deflecting structure by using the RWS-TSVD-based
algorithm.

Mode 𝑖 𝜔𝑖 [rad/s] 𝜔̂𝑖 [rad/s] Err [%]
1 11.4806 11.4944 +0.12
2 34.4419 35.3581 +2.66
3 57.4033 59.2345 +3.19
4 80.3646 83.3783 +3.75

Table 14: Damage evaluation in case of 4 and 8 sensors on
the continuous shear-deflecting structure, by using SVD-based
algorithm.

Sensor 𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6 𝜖7 𝜖8
Case 1 - −7.43 - −1.26 - +0.86 - −1.85
Case 2 −14.81 −0.71 +1.16 +3.54 +2.29 −2.09 +1.55 +1.06

by an artificial added noise of 5%with respect to the collected
signals (in terms of energy).

The modal identification results for the undamaged
structure are reported in Table 13, with the comparison to
analytical values and the relative errors. Twodifferent tests are
conducted for the damage detection, by considering 4 and 8
equally spaced sensors along the structure (Figure 14).

Assuming damage at the base of the structure, which can
be modeled as a stiffness decrease of the first segment 0.5 s
long (Figure 14), equal to 20% of its total stiffness, the damage
detection procedure should evaluate a 11% decrease for the 8-
sensor analysis and a 6% decrease for the 4-sensor analysis.
The results of these tests are reported in Table 14.

Table 15: Geometric parameters of the undamaged bending
moment-deflecting cantilever beam.

𝑚[kN s2/m2] 𝐸𝐽 [kNm2] 𝐻 [m]
Linearly distributed mass Stiffness Total height
26 200000 12

Table 16: Modal parameters estimated on the undamaged continu-
ous bendingmoment-deflecting structure by using the RWS-TSVD-
based algorithm.

Mode 𝑖 𝜔𝑖 [rad/s] 𝜔̂𝑖 [rad/s] Err [%]
1 2.0197 1.9672 −2.60
2 13.5253 13.5064 −0.14
3 37.5704 38.0062 +1.16
4 73.6379 70.4494 −4.33
Table 17: Damage evaluation on the continuous bending moment-
deflecting structure, by using SVD-based algorithm.

Segment 𝑖 𝜖𝑗 [%] Err [%]
1 −1.34 −1.34
2 +5.56 +5.56
3 +4.18 +4.18
4 −17.88 −2.12

It should be noted that the second identification case
can be obtained by using a smaller number of sensors
and performing repeated tests, each by displacing all the
accelerometers except one, necessary for normalizing modal
vector elements to the same value. In this way, it is possible
to increase the discretization level of the analyzed structures
in order to better assess the localization of the damage.
The errors reported in Table 14 are higher with respect
to the errors estimated in the previous simple case (the
maximum error is of 3.81%). However, the procedure still
works for damage detection purposes and further tests may
be conducted if necessary.

5.2.2. Continuous Bending Moment-Deflecting Cantilever
Beam. Modal identification and damage detection proce-
dures are finally performed on a bending moment-deflecting
cantilever beam (whose parameters are reported in Table 15),
on which 4 equally spaced accelerometers are arranged,
starting at +3.00m from the base (as in Figure 14, on the
left). As in the previous paragraphs, collected signals are
affected by a 5% noise (in terms of energy, with respect to
the registered signals). The evaluated modal parameters are
reported in Table 16 together with the respective estimation
errors.

Assuming damage at the base of the structure (affecting
the segment between 0.0 and +3.0m), which can be modeled
as a 20% decrease in stiffness, the analysis results are reported
in Table 17.

In a further analysis, it is assumed that there are two
damaged segments, the first of which is between +2.0m and
+3.0m, with a 30% reduction in overall stiffness, and the
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Table 18: Damage estimation in case of 4 repeated tests using 4 sensors, I iteration.

Height [m] +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12
𝜀𝑗 [%] 0 0 −30 0 0 −15 0 0 0 0 0 0
𝜖𝑗 [%] +2.9 −3.1 −28.3 +2.3 +2.8 −14.5 −33.8 - - - - -

Table 19: II iteration local damage estimation.

Height [m] +5.0 +5.5 +6.0 +6.5 +7.0 +7.5
𝜀𝑗 [%] 0 0 −50 0 0 0
𝜖𝑗 [%] +1.9 −1.4 −48.9 +4.6 −1.4 −3.5

second one between the +5.5m and +6.0m, with a 50%
reduction in overall stiffness. Performing the analysis with
the sensor arrangement used in the previous case, only the
first damage from the base would be properly evaluated, as
the rotations computed for the upper control points would
be inaccurate. By performing a set of four repeated tests
on the damaged structure, each after displacing the sensors
(Figure 6), a flexibility matrix of order 12 is obtained. The
identified damage indices compared to the theoretical ones
are reported in Table 18. It is noted that up to the height of
+5.0m the identification is correct, while beyond the +6.0m
height invalid values are recorded (i.e., positive, across the
allowed error range).

By carrying out further tests and installing the sensors S3,
S2, and S1 at +5.5m, +6.5m, and +7.5m, a local analysis can
be performed to identify the damage with a sensitivity range
of 0.5m (Table 19).

As expected, the errors evaluated in the tests carried out
in this paragraph are on average higher than those of the
previous cases. However, the more the discretization interval
is reduced (by performing a large set of repeated tests),
the more the obtained results are accurate. In fact, after a
preliminary test to locate the damaged areas, it is possible
to perform subsequent local tests by providing all available
sensors in the concerned segment.

6. Conclusions

Two aspects have been addressed in this paper: the first,
which is the main purpose, is to study the effectiveness
of using singular vectors within a flexibility-based damage
detection procedure if the structuralmasses are unknown; the
second is to evaluate the improvements in modal parameters
estimation by using the energy reassignment into the frame-
work of a wavelet-based identification procedure. These top-
ics, in particular, have been addressed under nonstationary
excitation, for the case of reduced availability of sensors, for
which the wavelet-based procedure is also useful for signal
sparsification.

As concerns the use of singular vectors as damage
sensitive parameters, it has been shown that the results of
SVD-based damage estimation are comparable with those
obtained by modal matrices. In some cases, the SVD-based
damage detection has provided also better results, especially
for nonuniformly distributed masses, even if the flexibility
matrices computed on singular vectors are on average less

precise than those evaluated by modal matrices. It is further
observed that singular vectors are generally obtainable in
a simpler way with respect to modal vectors. Moreover, by
means of the described wavelet-based sparsification tech-
nique, they can also be calculated in the case of a limited
number of sensors.

Since the sparsification procedure allows a correct esti-
mation for natural frequencies (also necessary to build the
flexibility matrix) even under nonstationary excitation, the
aspect of dynamic identification has been deepened. In this
context a variation to a wavelet-based algorithm described in
the literature has been proposed by introducing the energy
reassignment. A comparison has been made between the
results obtained by means of the RWS-TSVD-based proce-
dure, the originalWS-TSVD-based algorithm, and other clas-
sical identification techniques capable of computing natural
frequencies and modal vectors (for which the ERA has been
chosen since it is still one of the most used algorithms in the
identification field).

These comparisons have shown that wavelet-based tech-
niques are reliable even in the case of short and nonstationary
recordings. However, in order to eliminate the errors in
natural frequencies due to the type of excitation and the
sensitivity of sensors, several repeated tests have been per-
formed, with the aim of obtaining averaged parameters that
are as sensitive as possible only to the changes in structural
characteristics. Moreover, in the case of reduced availability
of instrumentation, such repeated tests can be performed
by displacing the sensors, so as to obtain a more precise
discretization and a higher order of the flexibility matrix.

The described procedures are applicable to a wide range
of structural schemes, some of which have been studied in the
applications part: several tests have been conducted in case of
single andmultiple damage, obtaining reliable results on both
discrete and continuous structures.
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