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ABSTRACT Urban pollution is usually monitored via fixed stations that provide detailed and reliable
information, thanks to equipment quality and effective measuring protocols, but these sampled data are
gathered from very limited areas and through discontinuous monitoring campaigns. Currently, the spread
of mobile devices has fostered the development of new approaches, like Mobile Crowd Sensing (MCS),
increasing the chances of using smartphones as suitable sensors in the urban monitoring scenario, because
it potentially contributes massive ubiquitous data at relatively low cost. However, MCS is useless (or even
counter-productive), if contributed data are not trustworthy, due to wrong data-collection procedures by
non-expert practitioners. Contextualizing monitored data with those coming from phone-embedded sensors
and from time/space proximity can improve data trustworthiness. This work focuses on the development of
an algorithm that exploits context awareness to improve the reliability of MCS collected data. It has been
validated against some real use cases for noise pollution and promises to improve the trustworthiness of end
users generated data.

INDEX TERMS Classification, data quality, data trustworthiness level prediction, machine learning, mobile
crowd sensing, transductive learning algorithm, urban pollution monitoring.

I. INTRODUCTION
The pervasiveness of mobile technologies owned by the
crowd discloses the opportunity to exploit them for civic and
social purposes.Mobile Crowd Sensing (MCS) is a promising
approach to observe real-world phenomena at a very large
scale. The amounts of applications that have emerged in the
recent years well show the added value offered by the MCS
paradigm. From smart cities environmental assessment to
scientific education, mobile devices allow non-expert prac-
titioners as well as scientists to approach several scenarios
without the hindrances of traditional data collection pro-
cedures (e.g., lack of skilled personnel, high costs, etc.).

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongxiang Li.

Amongst current MCS-based initiatives, the APOLLON
Project is a research effort granted by Apulia Region (Italy)
aimed at developing a platform for urban environmental
(i.e. atmospheric, acoustic and UV) monitoring and analysis,
based on the integration of heterogeneous data from several
sources (e.g, citizens-owned personal devices, city-managed
monitoring stations, etc). The project aims at: 1) integrat-
ing low-cost sensors scattered across the territory to create
large observation areas; 2) engaging citizens in environmental
monitoring campaigns; 3) involving city managers in proper
management and exploitation of this data. Therefore, one
of the specific requirements of the Apollon platform is to
build a hybrid data layer able to integrate flows gathered
from IoT sensors, mobile devices, open data, historical data,
and social media feeds thanks to semantic technologies and
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geo-localized data analysis utilities, which enable near-/real-
time monitoring services for several city end-users. In this
paper we will focus on a significant issue of MCS-based
systems, which is the data quality trustworthiness.

The sensors embedded in smartphones contribute valu-
able quantitative observations about the urban environment
(e.g., noise, temperature, atmospheric pressure, humidity,
light, magnetism), which come along with the related spatial
and temporal data. The potential of MCS seems enormous,
but this is only one side of the coin. The major challenge
facing effective crowdsensing is related to the quality of col-
lected data, which depends on the accuracy of the contributing
sensors and the adequacy of the sensing context. In fact
a typical MCS system is hindered by several data quality
issues: improper device usage, partial knowledge of the usage
scenario, limited sensing capabilities of the device, time and
space sparsity of contributed data, uneven distribution of
sensors in a given geographical area, partial contributed data
and so on. These elements usually lead to unbiased readings
and outliers in the monitored scenario. Some of them can
be tackled by properly training users and by calibrating in
advance sensors, so that systematic errors in captured data
can be coped with. Data classification approaches allow to
not rely on user and sensor behaviour solely. For such rea-
sons, in order to perform data quality assessment, a machine
learning classification approach is proposed in this paper,
so that mobile crowdsensed data can be categorized in terms
of their data trustworthiness. In MCS-gathered datasets the
proposed approach leverages on the contemporary presence
of known readings (i.e., reliable sensor data for which every-
thing or quite everything is known, labelled data) and of
unknown (or partially unknown) readings (i.e., sensor data
whose reliability is not known a priori, unlabelled data). Spa-
tial and temporal auto-correlation of these two typologies of
sensor readings can help to assess the reliability of unlabelled
data that are spatially and temporally closed to labelled data.
To that purpose, a transductive machine learning algorithm
has been devised in order to train a classifier capable of
inferring on the unlabelled data categories starting from the
labelled ones. In order to estimate the achievable accuracy,
three variants of the algorithm have been built, by exploiting
three base learners to train the predictory (i.e., Decision Tree,
Random Forest and Logistic Regression).

The validation has been performed in the Apollon platform
just introduced above, with specific reference to noise levels
collected via smartphone-embedded microphones. The paper
is organized as follows: after the introductory Section I,
the MCS paradigm is examined in Section II, in terms of
analysis of its features, core elements of MCS systems and
context awareness in MCS scenarios. Section III is devoted
to present related works on MCS data quality and the moti-
vations of our research work. The proposed algorithm is
described in Section IV, where feature augmentation, predic-
tion confidence and the classification process are illustrated.
The application scenario, represented by project Apollon,
is dealt with in Section V by analysing project architecture,

as sensor readings typology, specificity and reference values
as well as the test case. Results are discussed in Section VI,
while conclusions are drawn in Section VII.

II. MCS PARADIGM APPLIED TO SMART CITIES
Mobile devices can be exploited to collect several kinds of
data from multiple scenarios so that both individual users
and groups of users can benefit from them. The advantages
are manifold, and they are especially noticeable in urban
contexts, thus contributing to the implementation of the Smart
City paradigm. Indeed, mobile devices allow defining and
provisioning innovative services to citizens and city man-
agers so that the smartness of their community can improve
considerably. By managing contextual information and by
offering suitable and effective ways for interacting with user’s
social and physical situations, mobiles can be exploited in
several different scenarios. Moreover, these devices represent
a promising solution when people have to be engaged in
collaborative or participatory activities, ranging from envi-
ronmental sensing experiences to people monitoring in emer-
gency conditions. Another common application scenario is
data harvesting and information collection: citizens’ mobile
devices can be used to gather data from urban environments
autonomously (i.e., without the direct intervention of the
user) in order to manage and forward to policy makers, thus
allowing city managers to be more aware of the potential
issues affecting their municipalities, without additional rel-
evant costs. Therefore if a large number of mobile devices
can be used to collect sensor data, traditional monitoring
campaign can be spared and addressed only where they
are actually needed, so that the expensive deployment and
maintenance of professional sensing equipment as well as
personnel costs can be carefully controlled.

The features briefly sketched so far represent some of the
core elements of the so-called Mobile Crowd Sensing (MCS)
paradigm [1], according to which the capillary worldwide dif-
fusion of smartphones and tablets can be leveraged by defin-
ing how sensor data collection should be performed directly
by mobiles [2]. Mobiles equipped with proper applications
capable of collecting sensor data can be scattered dynami-
cally across large geographical areas so that they can acquire
data from the surrounding environment opportunistically.
Therefore, mobiles allow gathering location and time-based
data so that, on the one hand, citizens can acquire greater
knowledge on about their city and authorities can achieve
better knowledge on people’s perception of their city, thus
tailoring civic policiesmore effectively to the real needs of the
population. In addition, several MCS applications nowadays
are intertwined with social networks, so that mobile users can
contribute with both their social posts and the data sensed by
their devices. The number ofMCS-related projects is improv-
ing constantly and it can be broadly categorized according to
monitoring domains.
• Environment: in this category, several projects have
addressed so far data collection and monitoring for
multiple parameters such as air pollutants [3], water
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pollutants [4], noise levels [5], [6] and electromagnetic
fields [7].

• Transportation: transportation systems, road [8], traffic
and parking [9] can be controlled via MCS-based appli-
cations, where users can provide context information
about road status, parking availability and so on.

• First response: critical situations such as first response
to natural disasters [10] or emergency management [11]
may benefit from the availability of mobile-provided
sensor readings (provided that in such emergency sce-
narios wireless coverage is guaranteed).

• Large-scale events: sport competitions or music festi-
vals, can exploit MCS-related solutions for monitoring
crowds [12] in order to analyse crowd behaviour in real
time or to promptly tackle unwanted events such as
thefts, disappearance, etc.

Several elements have to be considered when designing a
MCS applications [13]. First of all, contributed data must be
collected and managed through a dedicated mobile app. This
app has to sense, (possibly) pre-process locally and (option-
ally) send sensed data to remote/cloud-based servers [14].
Sensors data should be associated to location-based and geo-
referenced data (i.e., situated data creation), without any
significant time-related or space-related restriction (i.e., time
continuity). Sensing data should be collected with high-
spatial resolution and from a wide variety of scenarios,
in order to make the data collection process representative
of a real scenario. Then, users should be allowed to opt for
a specific sensing typology by selecting between actively
monitoring and contributing data (i.e., participatory sens-
ing) and letting the app to collect data in background
autonomously (i.e. opportunistic sensing). For support-
ing participatory sensing, a MCS-based application should
exhibit training elements in order to improve user’s aware-
ness on the correct procedure to collect data and should be
capable of motivating users and of involving them into active
participation. Usually in the case where the MCS application
attracts committed users, then the knowledge from the col-
lected observations is not worth the spending. Participatory
sensing allows enhancing the data quality but results in much
less data than the opportunistic approach. Therefore we posit
the need for developing intelligent systems to support oppor-
tunistic MCS. The intelligent layer that collects the sensing
data on the device must act beyond merely interfacing with
the embedded/connected sensors to transfer the data to the
cloud. It must as far as possible enhance locally the quality of
the observations, from calibration to contextualization.While
calibration may be achieved through regression analysis [15],
contextualization requires prediction. This paper is related
how contextual data can infer the accuracy of collected data.

The next subsection will describe how context aware-
ness has been referred to in scientific literature, while
Section III will explain why, once collected, data have to
be processed properly for assessing their accuracy level.
Indeed, proper data manipulation and management pro-
cedures must be considered in order to increase data

quality or assess data quality in a reliable way. MCS systems
can benefit from contextual information in order to increase
their effectiveness. It is widely-accepted to consider a context
as any piece of information capable of characterizing the
situation or the status of an entity [16]. Therefore, several
sources of context can be identified in the area of MCS
and the role of context awareness is pivotal to assess data
quality, as deeply addressed in [17]. The authors of [17]
introduces a three-level context representation, where the
low-level context is the one provided by raw data col-
lected through physical sensors, virtual sensors (i.e., software
applications) or logical sensors (e.g., databases, logs),
the high-level context is inferred through meta-data and the
topmost-level context is the estimation of the user state that
can be achieved by combining the subsumed levels. More
specifically, the high-level inferred context can be subdivided
into: 1) device context, related to the mobile technical param-
eters (e.g., connectivity, computational resources); 2) user
context, related to user’s profile and location; 3) physical con-
text, provided by parameters such as temperature, noise level,
etc.; 4) temporal context, related to the specific time frame
during which the situation to be characterized is happening.
Also in the area of MCS-based noise monitoring, that will be
examined in the case study proposed in Section V, data qual-
ity can be affected by poor context awareness, as described
in [18], where poor or misleading sensor calibration, location
and metadata determine whether contributed readings are
reliable or not.

III. RELATED WORK AND MOTIVATION
One of the critical issue inMCS is represented by data quality,
sometimes referred to as data credibility or data trustwor-
thiness, which is endangered because of multiple factors,
such as the deployment scale, resource constraints, loss of
connection [19] or even because the data sources are often
barely controllable, unevenly skilled, and hardly accountable
due to either their sensor or the managing personnel. In the
literature, a large variety of approaches have been proposed
and a consistent part focuses on aworking life-cycle aiming at
enhancing data collected and therefore improving the quality.
The life-cycle encompasses operations to be performed both
on the data sources side and on the data collection side
as well, such as, interpolation, cleaning, de-duplication and
integration [20].

However it is necessary to assess data quality, recognize
low quality and distinguish unreliable data from the oth-
ers [21]. The traditional solution relies on the application of
ad-hoc defined or standard objective quality metrics, which
however require the identification of the onemore appropriate
to the specific data scenario [22] and calculation of the met-
rics for all the data instances, often unfeasible and expensive
especially in IoT architectures or BigData environments [23].

One of the promising approaches is represented by the
data-driven methods [24]. A research stream considers
the use of general-purpose outlier detection methods for
data produced in MCS, which has been argued that is is
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ineffective [25] because of the difficulty to conciliate outlier-
based notions with the quality metrics. The alternative is
represented by classification models built on empirical MCS
readings. In [26], the authors propose the use of the Hierarchi-
cal Temporal Memory based on neocortex learning to detect
anomalous patterns in spatio-temporal data. Wu et al. [27]
investigate classification and forecasting of the trustworthi-
ness by exploiting collaborative filtering. Huang et al. [28]
focuses on the device quality and report a classifier based on
the Gompertz function to calculate device reputation scores
as a reflection of the trustworthiness of data contributed by
that device.

However, the classification ofMCS data is not a trivial task
for several reasons. First, low quality can raise several effects
and can be manifested in different shapes, such as extreme
events, erroneous recordings or anomalies [29]. They can
even occur simultaneously and often follow the probability
distribution of high quality data so as they can be assimi-
lated to normal MCS readings. Second, being geo-localized
and time-stamped, sensing data suffer the property of auto-
correlation, which makes traditional machine learning poorly
accurate due to the violation of the independence assumption
(i.i.d.). To remedy these effects, auto-correlation should be
explicitly accommodated in the classification models. Auto-
correlation has a double facet since it involves both the spatial
component and the temporal component of the sensed data.
Spatial auto-correlation refers to the dependence among read-
ings done by sensors close to each other and it is reflected in
the similarity of the values [30]. Indeed, the larger the spatial
closeness the higher the (positive) correlation. Temporal auto-
correlation refers to the dependence between data readings
done by the same sensor within a short time, so values
recorded within a short time are more similar than those far
away [31]. Third, classification models need user effort in
recognizing reference sensing readings, which requires large
collections of manually labelled data. This can be obtained
through the intervention of authoritative annotators onto the
sensing devices or implementation of collaborative labeling
processes [19]. One alternative has been studied in the recent
literature under the paradigm of transductive learning and
focuses on the exploitation of unlabelled data in combination
with few labelled data, which asks for much less human
intervention [32]. In the transductive learning, the classifica-
tion models are required to perform inferences as accurate
as possible on the same set of unlabelled data, on which the
models are learnt. So, it is not necessary they are general and
applicable on any sensor, which is the same scenario we have
in this paper, when recognizing the cases of low-quality data
in a specific architecture of MCS.

To our best knowledge, this is one of the first stud-
ies of transductive learning on sensing data, or more gen-
erally spatio-temporal data. In the literature, we can find
works which investigate the two dimensions separately. For
instance, Bruzzone et al. [33] propose transductive Sup-
port Vector Machines (SVMs) for classifying spectral-spatial
images. The algorithm is iterative and gradually searches

the optimal discriminant hyper-plane in the feature space.
In [34] the authors explore the use of graph-based represen-
tation for time-series classification in the transduction. They
use Gaussian fields and harmonic functions in an iterative
process where data labels’ instances are repeatedly propa-
gated through the neighboring data instances. The strength of
label propagation is proportional to the strength of a connec-
tion considering all connections of a node or all connections
of a pair of nodes.

In this paper, we propose to assess data quality of MCS
sources through a classification approach able to distinguish
MCS readings in categories of data trustworthiness. The
approach leverages the spatial auto-correlation and temporal
auto-correlation to label readings whose trustworthiness is
unknown (unlabelled) by exploiting the labels of (known)
readings which are spatial closed and temporally contiguous.
We consider the data scenario of scarcely labeled readings
and design a transductive learning algorithm to train the clas-
sifier both on labelled and unlabelled information, in order
to perform accurate inferences on the categories of the unla-
belled part.

IV. THE ALGORITHM
This section is devoted to the description of the algorithm we
design to predict the level (label) of trustworthiness of the
sensing data above described. We first provide basic notions
and then explain how the algorithm works.

Let D be the set of sparsely labelled data which comprises
the set L of labelled data and set of U of the instances with
unknown trustworthiness (D = L∪U). The setD is spanned
on a vector X of (numeric and discrete) attributes and a
discrete attribute Y , which denotes the trustworthiness level.
For the instances of D included into the set L, the labels are
known, while for the data ofU , the values of Y are determined
by the algorithm.

Following the transductive paradigm, the algorithm inputs
both the full information represented by L and the partially
given information represented by U , it learns a classification
model and predicts the trustworthiness for the instances of the
unlabelled part. This is done through an iterative convergence
approach [35], [36] aiming at improving the accuracy of
the classification model through a procedure that converges
to a configuration of the predictions on U as accurate as
possible. Before the iterations starts, the algorithm performs
a feature augmentation step, which generates an extended
set of descriptive properties for every instance and which
has the final effect of making that instance ‘‘aware’’ about
the distribution of the values (for each attribute) over the
instanceswhich aremore correlated to it. These new attributes
are updated during the iterative process, in order to ‘‘propa-
gate’’ accurate predictions over correlated instances. To do
that, it is necessary to take only the predictions that could
truly improve the classification model, so we do consider
only the predictions with high confidence, generated for the
current iteration, and feed them the learning process of the
next iteration.
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The presence of the spatial autocorrelation and temporal
autocorrelation implies the existence of a smoothing effect,
for which nearby instances tend to share the same labels.
Therefore, we should capture the local patterns of auto-
correlation through the construction of ‘‘neighborhoods’’ of
instances. This suggests us to define the new attributes so as
theymirror the distribution of the values in the neighborhoods
and determine the confidence of the predictions by consider-
ing the labels of the neighbors.

To capture the two-fold nature (spatial and temporal) of
the sensing data, the notion of neighborhood should account
for the presence of the spatial autocorrelation and of the
temporal auto-correlation jointly, therefore the neighbours
of an instance will be the data which are ‘‘spatially’’ and
‘‘temporally’’ close to that instance. Indeed, this allows us to
nicely capture the typical scenario in which the data recorded
by the same device in a short time tend to have the same
trustworthiness, as well as, the data, spatially close to each
other, which have been recorded in a short time tend to have
the same trustworthiness level.

For every instance m, we build the spatio-temporal neigh-
borhoodN (m, δs, δt ) composed of the instances whose spatial
distance from m does not exceed δs and which have been
recorded within a time δt from m, formally:

N (m, δs, δt ) = {p|p ∈ D, distance(m.c, p.c) ≤ δs,
m.t − p.t ≤ δt , if m.t ≥ p.t,

p.t − m.t ≤ δt , otherwise} (1)

The terms m.c and p.c denote the spatial coordinates of
the instances m and p respectively, while the terms m.t and
p.t denote the recording times.

A. FEATURE AUGMENTATION
The notion so defined of neighborhood is used to define new
attributes which realize a feature augmentation step in the
proposed algorithm. By taking recent studies into account
which address the auto-correlation property through the com-
putation of variation summarization statistics [37], we con-
sider two classes of new attributes for the feature spaceX×Y ,
respectively, formulated as follows:
• Class 1. Given the base numeric attribute A, we build
two new attributes, AN (mean) and AN (stDev), based
on A. Both attributes are computed by aggregating A
over the neighborhoods N (m, δs, δt ) constructed with
maximum spatial distance δs and maximum temporal
contiguity δt . Let m be an instance, AN (u,mean) and
AN (u, stDev) are computed as the mean and standard
deviation of the values of A falling in the neighborhood
N (m, δs, δt ). Both the new attributes allow us to summa-
rize average and variance, local to the neighborhoods,
of the numeric attributes.

• Class 2. Given the base discrete attribute A that takes
d distinct values, we build d new attributes. These
attributes represent the frequency histogram of A,
as it is computed on the neighborhoods N (m, δs, δt ).

In practice, we build one attribute for every distinct value
of A. Let m be an instance, val be a distinct value of A,
AN (m, val) is computed as the frequency of val over the
neighborhood N (m, δs, δt ).

We remark that the Class 2 is used to build the new
attributes associated to the attribute Y (trustworthiness lev-
els). It should also be noted that the attributes of Class 2
associated to the attribute Y can change during the iterative
procedure, because of the refinement process of the labels of
the instances U , while the attributes of Class 1 associated to
the feature space X are valued once and remain unchanged.

B. PREDICTION CONFIDENCE
We measure the confidence of the labels predicted at each
iteration, in order to select those more confident that are then
fed back into the learning process for the next iteration. Intu-
itively, confident predictions should manifest the property
of auto-correlation, so that similar labels can be plausibly
propagated to the neighbours. The higher the autocorrelation
of the label with neighbour labels, the more confident its
prediction. To define the measure, we estimate the presence
of the predicted label associated to the instance m over the
neighborhood N (m, δs, δt ) by quantifying the times in which
the prediction on m is identical to the labels of its neighbours
included in the set L (labelled neighbours). The choice of
comparing the predicted labels against those original of the
set L is done to provide validity to the estimation of the
confidence.
However, we should note that the temporal component

could have a contribution larger than spatial component in
the calculation of the confidence because onsets and effects
of the urban processes often depend on the timing of human
lifestyles and daily periods more than phenomena related
to the spatial dislocation. For instance, onsets of the envi-
ronmental pollution could be concentrated on the sunlight
rather than moonlight, even when they are observed in the
same geographic area. At the same way, we can register
high concentration of noise pollution during daytime than
nighttime. To encode this, when checking for the equality
between the prediction of m and labels of the neighbours,
we inject the temporal distances between the instance m
and its neighbours into the confidence measure and assign
weights to the distances dependently on their values. In prac-
tice, we build two sorted sets with the neighbours, one set
with the instances recorded before the instance m and one
set with the instances recorded after m. So, the weights are
determined by the number of instances that separate m from
the neighbours. For instance, given four neighbours p, q, r
and s so sorted p.t < q.t < m.t < r .t < s.t , the weights of
the comparisons between p and m, q and m, m and r , m and
s will be 3, 2, 3, 2 respectively, resulting from the difference
between the half cardinality of the neighborhood (that is, 5)
and the number of separating instances. Whether the cardi-
nality is odd, the half cardinality is rounded to the greater
integer. Considering the weighting schema above illustrated,
the confidence measure for the predicted label done on the
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Algorithm 1 Transductive Classification Process L,U ,
δs, δt ) 7→ Û
Require: L : the labeled set spanned on X × Y ; U : the

unlabeled set spanned on X
Require: δs : the maximum threshold for spatial closeness;

δt : the maximum threshold for temporal contiguity
Ensure: Û : the set U labeled with the predicted labels Ŷ
1: Nst← Nst∪ buildNeighborhood(L ∪ U , δs, δt )
2: XN ← performFeatureAugmentation(L ∪ U ,X,Nst)
3: YN ←performFeatureAugmentation(L ∪ U ,Y ,Nst)
4: F ←learnClassificationModel(L,X× XN × Y × YN )
5: Û ← labeling(U ,F)
6: repeat
7: RU← computeConfidence(Û ,Nst)
8: B← pickBetterRanked(sort(RU), sizer )
9: Û ← Û ∪ B
10: U ← U − B
11: YN ←updateAttributes(L ∪ U ∪ Û ,Y ,Nst)
12: F ←learnClassificationModel(L,X×XN ×Y ×YN )

13: Û ← labeling(U ,F)
14: until (U 6= � OR #it < MAX_IT )

instance m is so formulated:

R(m) =

∑
p∈{N (m,δs,δt )∩L} (σ (m.t, p.t)× (equal(y, p.y)))∑

p∈{N (m,δs,δt )∩L} (σ (m.t, p.t))
,

(2)

where σ (m.t, p.t) determines the weight associated to every
comparison (that is, temporal distance between m and p),
equal(y, p.y)) is 1 when the prediction y equals p.y, 0 oth-
erwise. It has values in the range [0,1], where 1 denotes the
highest number of occurrences of the label y in the neigh-
borhood and therefore corresponds to the largest confidence,
while 0 indicates the prediction is poorly confident.

C. TRANSDUCTIVE CLASSIFICATION PROCESS
A top-level description of the transductive classification pro-
cess is reported in Algorithm 1), which performs learning
and prediction along two stages, that is, initialization and
iteration.

In the initialization stage (Algorithm 1, lines 1-5), it per-
forms three main operations:

1) For every instance of D = L ∪ U , it constructs
the respective neighborhood with the instances which
have spatial distance less than δs and temporal distance
less than δt . This is done by considering the spatial
coordinates and recording time of m, as illustrated in
the formula 1 (Algorithm 1, line 1). The values of δs
and δt are set by the user. Then, for each attribute X
of the attribute vector X, it generates new attributes
of Class 1 and Class 2, dependently on whether X is
numeric or discrete. The computation considers both
the labelled instances and unlabelled instances of

each neighborhood Nm ∈ Nst previously determined
(Algorithm 1, line 2). Finally, it generates new
attributes of Class 2 for the label-attribute Y with
the procedure used for the attributes X. In this case,
the computation considers only the labelled instances
of each neighborhood Nm ∈ Nst because the unlabelled
instances have no prediction for the attribute Y at the
initialization stage (Algorithm 1, line 3). Clearly, all the
instances will have the same set of new attributes, while
the values are specific per instancem and depend on the
data distribution over the respective neighbors Nm.

2) The algorithm learns a classification model F from the
training set L, which is now represented with an aug-
mented feature spaceX×XN ×Y ×YN (Algorithm 1,
line 4). This allows us inject the auto-correlation into
the learning process since the beginning, without mak-
ing the subsequent computation burden because the
new attributes are built once only.

3) The model F is finally used to initialize the unknown
labels of the instances U (Algorithm 1, line 5), which
are stored as Û . This way, the predictor F is able to esti-
mate the data trustworthiness by considering addition-
ally the contextual information provided by the nearby
sensors (spatial auto-correlation) and by the readings
done by the same sensors in the past (temporal auto-
correlation), besides of information the sensors record
in themselves.

In the iteration stage (Algorithm 1, lines 6-14), we aim
at improving the predictive accuracy of F and, to this end,
we exploit the auto-correlation property from the most con-
fident predictions inferred along the iterations. Basically,
the algorithm carries out the following operations:

1) For every instance m previously labelled and stored
in the set Û , it computes the confidence values by
comparing the prediction of m against the originally
known labels of the instances of L included in the
neighborhood Nm, as illustrated in the formula 2
(Algorithm 1, line 7).

2) The confidence values RU are sorted and then we
pick only the first sizer instances with higher rank,
being considered as mostly reputable. The assigned
labels (stored in B) will be maintained as such because
they will contribute to the subsequent operations, since
the instances are now ‘‘stabilized’’. However, these
instances will have a role different from the originally
labelled instances L, in accordance with the philoso-
phy of the transductive learning and, in fact, they are
removed from the target set (unlabelled instances) U
and moved in the set Û , which is different from L
(Algorithm 1, lines 8-10).

3) The new configuration of labels, caused by the reduc-
tion of U and extension of Û , is propagated over all
the instances (L,U ,Û ) through the update of the new
attributes. It should be noted that only the attributes
YN are influenced by the update, since those of the
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set XN remain unchanged, being derived by the
attributes X (Algorithm 1, line 11).

4) In accordance with the transductive learning, the clas-
sification model F is (re-)trained on the originally
labelled instances L, which are now ‘‘aware’’ about
the new labeling scenario (Algorithm 1, line 12). So,
the predictor F can leverage the i) confidence of the
predictions (Û ) and ii) reinforced configuration of the
descriptive attributes, in order to improve the accuracy
of the instances left in U (Algorithm 1, line 13).

This iterative procedure stops when one of the two stop-
ping criteria is satisfied, specifically, either the set U is
empty or the number of iterations completed reaches an user-
defined threshold MAX_IT . However, the depletion of U is
guaranteed to happen why every iteration removes a portion
of instances equal to sizer (which is defined by the user).

V. APPLICATION TO THE APOLLON PROJECT
This section is devoted to the presentation of the Apol-
lon project as regards to the application scenario, featuring
aspects, platform architecture and addressed test cases.

A. PROJECT DESCRIPTION AND SPECIFICITY
The Apollon project, as already anticipated, aims at devel-
oping an efficient monitoring system exploiting heteroge-
neous environmental sensors. Collected data are processed,
aggregated and validated in near-time before making them
available to final users via proper visual dashboards hosted
by the platform frontend.

One of the featuring core aspects of the Apollon project is
the coexistence of several types of sensors, scattered across
the geographical area under observation. These devices may
range from smartphones (which collect measurements thanks
to either their embedded sensors or external pluggable sen-
sors) to low-cost mobile sensing stations (e.g., Arduino-based
sensing boards hosting several sensors). According to a more
general perspective, involved devices can be categorized into:

• Fixed stations: this group encompasses low-cost
metering equipment deployed by city administrators
when/where needed and under their maintenance and
control. These stations can be deployed in a fixed loca-
tion for long periods or, alternatively, can be deployed on
vehicles provided by city authorities and city responders
(e.g., metropolitan police cars, traffic police cars, etc.) so
that their sensing devices can be moved around the city
without additional costs.

• Mobile Crowd Sensing: this category refers to data
sources whose behaviour complies with MCS require-
ments. Therefore, any citizen owning a mobile device
can participate to monitoring campaigns and contribut-
ing her/his measurement data to the platform. Such a
category exploits self-scalability and dynamic infras-
tructures of edge/cloud computing.

It is plausible to estimate limited number of available
devices belonging to the first category if compared to the

mobile devices used in the framework ofMCS activities. That
is the reason why the MCS paradigm is commonly suggested
as a way to improve traditional sensor network functionalities
and deployment strategies in terms of dynamicity, automatic
scalability and low-costs.

B. PLATFORM ARCHITECTURE AND MCS-BASED
MOBILE APP
The Apollon project platform encompasses several compo-
nents. The platform architecture in the large is represented
in Figure 1. Starting from the bottom, the following layers
have been defined:

• Edge and IoT Layer: it collects heterogeneous devices
adopted as data sources. The project manages station-
ary sensors (e.g., fixed monitoring stations provided
by authorities and/or environmental protection agencies
for pollution control) as well as mobile sensors (e.g.,
monitoring stations placed on top of vehicles routing
across urban areas for mobile pollution control). A fur-
ther type of mobile sensors is represented by personal
electronic devices such as smartphones and tablets, oper-
ating according to the MCS principles and collecting
data via their embedded sensors or via external sensors
(either plugged or wirelessly connected to the smart-
phones). Additional data sources such as open data and
institutional data repositories as well as social media
streams belong to this layer, too. In the framework of
the Apollon project, several physical parameters are
monitored: noise levels, particulate matter (i.e., PM10,
PM2.5, PM1), volatile organic compounds (VOCs),
UV-A/B rays.

• Hybrid Data Collection and Processing Layer: this
layer is devoted to data storage, management, filter-
ing and integration operations performed on the data
received from the sources just enlisted above. This layer
also performs geo-referencing and time-stamping pro-
cesses in order to reference measurement data in time
and in space properly.

• Business and services Layer: this layer is in charge of
performing complex operations on data coming from the
data layer in order to feed services hosted in the Service
sublayer. Business-to-Business (B2B) and Business-to-
Consumer (B2C) services are exposed. Several specific
modules are present in this layer, such as advanced
geo-referencing, sentiment analysis, user management,
semantic analysis and integration, open data creation.

• Presentation Layer: it represents the multi-faceted
interface used by project stakeholders to access the
platform. The layer offer visual dashboards thanks to a
dedicatedWeb portal, a mobile app and a TelegramBOT.
The contents accessible via the presentation layer vary
depending on the specific stakeholder type that request
them.

As depicted on top of Figure 1, several end-users types
have been envisioned for this project. They range from
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FIGURE 1. Platform architecture in the large for the Apollon project.

communities of interest (e.g., citizens groups and associations
interested in performing pollution measurement, factories
and industries interested about their level of environmental
pollution) to public authorities, from citizens (both single
individuals and associations) to other end user categories such
as schools or healthcare providers.

By starting from such premises, it is clear that the entire
project architecture as well as its purposes are complex and
variegated. Therefore, in order to focus on the specific aspects
dealt with this paper, it is now worth to point out the com-
ponents that will be considered in this research. We will
concentrate our analysis on MCS data sources (i.e., smart-
phones) by applying the processing and classification algo-
rithm described in Section IV in order to determine the level
of reliability of such data.

Therefore, the first aspect to be considered is the way
users can contribute to monitoring campaigns, according to
the MCS principles and to the citizen science aims described
in Section II. To address those requirements, a mobile app has
been designed and developed. It allows users to participate to
measurement campaigns by providing sensor data related to
noise levels and particulate matter levels. Noise levels can be
sensed via internal or external, pluggable microphones. Par-
ticulate matter levels can be sensed by using proper external

devices for indoor-outdoor air quality control. Only sensor
readings coming from smartphone microphones will be con-
sidered for the data quality assessment in this research work.
The trustworthiness analysis of air monitoring data will be
addressed in a forthcoming research study.

Two screenshots from the mobile app (Android version)
are depicted in Figure 2. The first one (on the left) is the
opening app screen: from this panel, the user can start to
monitor noise levels or particulate matter levels. Since we are
focusing on noise only, the second option will be discarded
in this description. Once the noise monitoring functionality
has been selected, the user can decide whether starting an
automatic measurement session (i.e., the mobile app works
in background and sends measurement values each 60 sec-
onds) or a manual session (i.e., the user selects in advance
the duration of the measurement session). These two working
modes are representative of the two broad categories in MCS:
the opportunistic sensing (i.e., users are not directly involved
in collecting data but they offer sensing devices and platforms
only) and the participatory sensing (i.e., users are engaged in
data collection activities more actively, thanks to informative
materials, feedback from the devices/apps etc.) respectively.
The second screenshot shows how ongoing noise measure-
ments are shown to the user. The app monitors the sound
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FIGURE 2. Screenshots from the project Apollon mobile app: opening
screen (A) and noise measurement dashboard (B).

pressure level (SPL, an instantaneous quantity) and the
equivalent continuous sound level (LEQ, which is the time-
averaged SPL on a given time window). Both these quantities
are shown in the numerical dashboard on the upper part of the
screen and also charted in the area graph below. Three inter-
action buttons (i.e., start measurement, stop measurement and
show measurement suggestions, depicted with a microphone
icon, a square icon and a question mark icon, respectively)
complete the interface.

It is important to point out that, while the user, especially
when involved in a participatory sensing activity, can receive
suggestions from the app itself on how to perform measure-
ment correctly, thus directly intervening on the measurement
quality, the same does not apply to the opportunistic sens-
ing which, conversely, can produce large amount of data
from untrusted/unrealiable source. Indeed, as explained in
Section IV, once sensor readings are collected, additional
systems of assessing their trustworthiness are needed. The
next sub-section is devoted to describe managed data.

C. SENSOR READINGS FROM MCS SOURCES
Only sensor data related to noise level control have been con-
sidered in this study. These data originate from the Apollon
mobile app and they are addressed to the data processing
components hosted in the Data Layer. The sensing device
adopted to perform the noise metering sessions is the smart-
phone built-in microphone. In addition, in order to improve
measurement quality, an external pluggable microphone can
be used, provided that it is properly connected to the smart-
phone where the mobile app of the project is installed and
running.

Independently from the specific microphone type in use,
the mobile app collects several contextual parameter in order

to improve the elements supporting measurement quality
analysis. These additional parameters are readings that come
from other internal sensors of the same smartphone used for
measuring noise levels and they contribute to create the so-
called context awareness of the device referred to the scenario
where noise levels are being monitored. Each time a noise
measurement is sent from the app to the data layer of the
project platform, it is enriched by the contextual parame-
ters. It is also clear that the more additional sensors are
available, the richer the achievable contextual dataset is and,
consequently, the more reliable the trustworthiness analysis
of the mobile-generated data can be. As already asserted in
Section II, context awareness has become a core element
for determining sensor readings quality [17], [18]. Before
examining the proposed use case and how noise levels and
contextual parameters are fed into and processed by the clas-
sification algorithm, let us examine in more details the data
typologies managed by the Apollon project mobile app. The
app collects and sends the quantities specified in the follow-
ing list.

1) NOISE LEVELS
Noise levels are measured in dB(A), they oscillate within
the measuring range of the smartphone microphone. Micro-
phone precision, resolution and accuracy affect noise lev-
els value. A common smartphone-embedded microphone
exhibits a directional response (i.e., the sensitiviy is higher
when incoming sounds are picked up from the front of the
microphone) and can detect incoming sounds in the range
[+20;+110] dB(A). When an external, pluggable micro-
phone is used, it has an omnidirectional response (i.e., equal
sensitivity in all directions) and a sensing range between
[+20;+110] dB(A). Moreover, smartphone microphones do
not have any shielding against wind and, therefore, their
readings are impacted differently depending on whether they
are used outdoor or indoor. Table 1 reports typical noise
values for different scenarios. The features of smartphone
microphones just enlisted above demonstrate how noise level
measurements introduce a bias in comparison to sensor read-
ings provided by professional (or semi-professional) sound
level meters. Therefore, the very first issue to be addressed,
even before considering data trustworthiness assessment via
pre-processing algorithms once sensor readings have been
collected, is to determine the adopted sensors’ accuracy.
We have already examined this aspect in a previouswork [38],
by comparing sensor readings from different smartphone
microphones against a professional, class-I sound level meter.
Sensor readings were provided by a previous version of the
mobile app described in this research work while the sound
source was a digitally-generated, steady, mid-level and broad-
band signal at a fixed frequency and with a fixed waveform.
Repeated comparisons were performed at different locations,
representative of different urban scenarios. The overall aver-
age accuracy we achieved was ±5 dB(A), thus confirming
similar outcomes from other research work [39]. Moreover
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TABLE 1. Noise levels for typical scenarios.

we have already cited that regression algorithms [15] can even
improve this aspects

2) CONTEXT: LUMINOSITY
Luminosity values are measured in lux, this parameter is
provided by the luminosity sensor placed in the top-front side
of the smartphone. It is used to acquire additional knowledge
on the light conditions in the environment where the smart-
phone is placed. A common smartphone-embedded luminos-
ity sensor has a range of [+0.01;+5000] lux. Such a piece
of information can be used to infer whether the smartphone
is in daylight or in different levels of darkness. However,
readings from this sensor cannot be used to assess univocally
where the device is. For instance, very low luminosity levels
can be collected in different scenarios: the device is within a
closed bag; the device is outdoor, during the night, without
any external source of light, the device is indoor, in a closed
room without any light. The same applies with high lumi-
nosity values, which can be determined by sunlight, artificial
lights and so on. Luminosity values change depending on
whether the user is indoor or outdoor. Table 2 reports typical
luminosity values for different scenarios.

3) CONTEXT: PROXIMITY
The proximity parameter is provided by the proximity sensor
of the smartphone, which is placed in the top-front side of the

TABLE 2. Luminosity values for typical scenarios.

TABLE 3. Proximity values for typical scenarios.

device. Its values represent the distance between the sensor
and any obstacle placed in front of it. Readings from such
sensor are usually provided in cm ranging from 0 to greater
than 10. Such a contextual parameter is useful in order to
determine whether any obstacle is close to the device. Since
the microphone and the proximity sensor are both placed in
the front side of the smartphone, it is plausible to infer that
when the proximity sensor values are low, an object is close
to the device and therefore its presence can also affect how the
microphone collects sounds incoming from the surroundings.
Moreover, proximity values can be correlated properly to the
luminosity values: for instance, a low proximity value and
a low luminosity value plausibly indicate that an obstacle is
close to the device and few considerations can be done on
the surroundings, while a high proximity value and a low
luminosity value plausibly indicate that the device is unob-
structed and placed in a dark environment. Table 3 reports
typical proximity values for different scenarios.

4) CONTEXT: DETECTED ACTIVITY
This contextual parameter is provided directly from the
Android operative system. By leveraging on the read-
ings from the device 3-axis accelerometer and gyroscope,
the Android operative system can detect the user’s activ-
ity patterns with an associated confidence level. Detectable
activities are of the following types: device in a vehicle,
device on a user who is walking, device in still position,
etc. The activity recognition feature is offered amongst the
publicly available Android APIs (since release 21) in order
to develop apps that can detect when a user starts or stops a
specific activity (e.g., an app that must determine whether the
user is driving in order to disable push notifications or not).
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TABLE 4. Detected activity codes according to Android OS APIs.

In our case, activity recognition can be performed so that
activities not compatible with proper noise measurement pro-
cedures are identified (e.g., noise measurements performed in
a still position are preferable than measurements performed
by a user who is running). The available activity codes are
enlisted in Table 4.

5) CONTEXT: LOCATION AND TIMESTAMP
On the one hand, the device location can be used to enrich
context awareness if correlated to time stamping. On the other
hand, measurement timestamps can be used to enrich context
awareness if correlated to device locations. Timestamps are
provided by the mobile app as the date and time (plus time-
zone) reported by the device at the moment of noise level
recordings. Locations are provided by themobile app in terms
of latitude and longitude coordinates.

6) CONTEXT: CORRELATION OF LOCATION AND TIMESTAMP
If location s and timestamp t have their own importance
as context parameters, their proper correlation is even more
important. Indeed, as anticipated in Section IV, sensor read-
ings exhibit an intrinsic two-fold nature, as they are closely
related in space and time. Therefore, it is highly likely that
noise levels acquired in a short time lapse by the same device
show the same reliability (or unreliability). Similarly, it is
plausible to attribute the same trustworthiness to noise levels
originated in a short time lapse by different devices sharing a
close spatial proximity.

D. REFERENCE CASES
The availability of several contextual parameters can improve
the trustworthiness assessment effectiveness as for data
and sensor readings coming from MCS-based applications.
However, in order to achieve such an outcome, proper consid-
erations on how to combine contextual parameters in a mean-
ingful way are needed. To this aim, we have examined several
reliability and unreliability scenarios where the parameters
described in the previous section have been considered. These
sets of reference values help to train the model properly.

Let us consider a noise level measurementmi,s,t originated
by a mobile device located in a location s at the timestamp t .
Now let us consider a set of reference cases where the reli-
ability of the provided measurement is defined in terms of
the contextual parameters (i.e., luminosity l, proximity p,

detected activity da, timestamp t , location s). The reliabil-
ity assessment spans across the following values: reliable,
poorly reliable, not reliable. Reference test cases are enlisted
in Table 5 and are now discussed in details.

The simplest reference case entails measurements exceed-
ing sensing boundaries of the adopted sensing device:
these values can be considered not reliable as the sens-
ing device cannot provide such readings. Therefore, since
our sensing device is a smartphone-embedded (or external)
microphone, we mark as unreliable measurements below
20 dB(A) or beyond 120 dB(A) independently from the val-
ues of contextual parameters.

If a measurement is within the range ]+20;+50] dB(A),
it is reliable if luminosity goes below 200 lux and proximity
is beyond 5 cm, independently from the other parameters.
This scenario corresponds to a smartphone that is measuring
low noise levels in a scarcely lit environment without any
obstacle in its proximity (e.g., the device could be located
in a poorly lit room or outdoor at nightime). Measurements
from the same noise levels range are poorly reliable if the
proximity sensor shows a value under the 5-cm threshold,
independently from the other parameters, as this reading
indicates an object close to the device and, consequently,
a potential obstruction to the incoming sounds. We also
marked it as poorly reliable those measurements, in the same
noise level range, for which the detected activity is different
from STILL and the proximity is beyond 5 cm as they are
representative of a user moving around with its smartphone:
since smartphone microphones do not have wind shielding,
it is unlikely that user’s movements (either by vehicles or on
foot) do not raise noise levels over the 50 dB(A) threshold.
Instead, a measurement in this noise level range is unreliable
when it shows luminosity below 100 lux (i.e., significant
darkness), proximity over 5 cm (i.e., no obstacles in front
of the device), a timestamp belonging to the daytime range
(i.e., from 6 a.m. to 10 p.m.) and a location not compatible
with such a timestamp. This scenario represents a dark setting
with no obstruction or environmental condition apparently
determining it and, therefore, should not be considered as
reliable. In order to clarify further this assumption, let us
refer to the timestamp vs location compatibility, which can
be explained as the combination of latitude and longitude
values for which at a given time and date it is plausible to
have specific illumination conditions (e.g., at the same time,
illumination conditions vary depending on the latitude where
the observer is located).

Let us now consider measurements coming from the inter-
val ]+50;+90] dB(A). They are reliable when the associated
luminosity is above 10 lux and proximity is above 5 cm (i.e.,
no close obstacles), without any other restriction on detected
activity, timestamp and location. Such measurements are
poorly reliable when proximity is below 5 cm as an obstacle
may obstruct the smartphone microphone. Similarly, poor
reliability is present in dark settings (i.e., l < 50 lux), during
daytime (i.e., between 6 a.m. and 10 p.m.) and at locations
not compatibile with such timestamp for the same reasons
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TABLE 5. Reference cases for evaluating reliability of noise level measurements depending on contextual parameters luminosity l , proximity p, detected
activity da, timestamp t and location s. Each noise level measurement is sent by a mobile device with corresponding contextual parameters attached.

explainedwhenmeasurements in the range ]+20;+50] dB(A)
were considered.

Finally, if noise levels are within the ]+90;+120] dB(A)
range (i.e, very high noise levels), they are reliable if no obsta-
cles are in front of the microphone (i.e., p > 5 cm) and the
setting is not completely dark (i.e., l > 10 lux). If darkness
increases (i.e., l < 10 lux), these measurements are less
reliable as it is unlikely to have very high noise levels in urban
settings in pitch black. Further context parameters should be
needed in order to clarify the reason of so low luminosity
values but, since the majority of commercial smartphone
cannot provide such additional elements, we mark this sce-
nario as poorly reliable. When the microphone is obstructed
(i.e., p < 5 cm), these measurements are considered as
not reliable, as it is unlikely that a covered microphone can
provide readings close to the upper bound of its sensing range.

E. PROBLEM SIZE AND TEST CASES
In order to provide empirical evidence to the proposed solu-
tion for trustworthiness assessment, we performed experi-
ments on a dataset of MCS data collected by the architecture
illustrated in Figure 1. The dataset includes noise pollu-
tion readings recorded by a set of five smartphone devices,
moving aroud the geographic area of Lecce (Apulia Region,
Southern Italy), during the period 2019/05/27 – 2019/07/01.
The considered geographic area has a surface extension of
nearly 12 squared kilometers and measurements have been
performed by volunteers scattered across this area. As for the
spatial distribution of gathered readings, data captors were
requested to move all around the city and to station, if pos-
sible, in the proximity of noise hotspots, such as congested
road junctions, construction sites, and so on.

Specifically, we have 4335 readings uniformly dis-
tributed over the categories (991 instances for not reliable,
1782 instances for poorly reliable and 1562 for reliable),
so we have no imbalanced concern for the classification
task. The reliable-to-overall instance rate confirms that MCS
scenarios require significant amounts of collected data in
order to achieve meaningful insights. Moreover, it is worth

to remark that, at this stage, we considered data collected
via mobile crowd-sensing campaigns only. The APOLLON
project, however, is aimed at addressing wider monitoring
scenarios, where fixed monitoring stations are available as
well. This specific kind of sensor source will be considered
in an upcoming version of the proposed algorithm.

The dataset of 4335 readings has been used to arrange
experiments aiming at training and testing the classification
models. In particular, we performed a quantitative evaluation
on the predictive capabilities of the transductive algorithm in
performing accurate inferences on the trustworthiness level
of the unknown noise pollution readings. The accuracy was
measured in terms of the F-score and averaged over 5 trials
executed according to the inverse 5-fold cross validation.
More precisely, for each trial, the algorithm is trained on one
fold (which represents L) and tested on the setU composed of
the remaining four folds.We guaranteed that the training set L
was balanced. By following the transductive setting, the set L
contains a smaller part of the whole dataset, and, more pre-
cisely, it has a balanced percentage of 10%. The accuracy was
estimated on three variants of the algorithm, which were built
by using three base learners to train the predictor F . Specifi-
cally, we integrated the classification algorithms of Decision
Tree (DT), Random Forest (RF) and Logistic Regression (RF)
available in the framework Apache Spark -MLlib [40]. They
were used in the default setup suggested by the framework.

VI. RESULTS AND DISCUSSION
The three variants of the algorithm were tested along two
main experimental setups, in order to study their influence
on the predictive accuracy, these are i) size of the set of
confident predictions (sizer ), ii) size of the neighborhoods
in terms of the values of the thresholds δs and δt . To this
end, we considered three different values of sizer , that is, 5%,
10%, 15% and three different neighborhood configurations,
that is, δs = 250 meters and δt = 10 minutes (thereafter,
n_10_250), δs = 500 meters and δt = 5 minutes (thereafter,
n_5_500), and δs = 500 meters and δt = 10 minutes
(thereafter, n_10_500), which let us build neighborhoods
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FIGURE 3. The F-score values computed on the unlabelled st along the
iterations when δs = 250 meters, δ5 = 10 minutes. The results include the
three variants designed with three different base learners respectively,
Decision Tree, Logistic Regression, Random Forest.

FIGURE 4. The average values and standard deviation values computed
on the F-score values obtained with δs = 250 meters, δ5 = 10 minutes.

with different sizes (number of instances contained), that is,
4, 5 and 7, on average, respectively. For a fair comparison,
we set MAX_IT to 10, which allows the experimental trials
terminate under different conditions.

FIGURE 5. The F-score values computed on the unlabelled st along the
iterations when δs = 500 meters, δ5 = 5 minutes. The results include the
three variants designed with three different base learners respectively,
Decision Tree, Logistic Regression, Random Forest.

FIGURE 6. The average values and standard deviation values computed
on the F-score values obtained with δs = 500 meters, δ5 = 5 minutes.

The F-score values computed along the iterations with
n_10_250 are reported in the Figures 3, while those com-
puted with n_5_500 are reported in the Figures 5, finally, the
F-score values computed with n_10_500 are reported
in Figures 7. In the Figures 4, 6, 8, there are the average
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FIGURE 7. The F-score values computed on the unlabelled st along the
iterations when δs = 250 meters, δ5 = 10 minutes. The results include the
three variants designed with three different base learners respectively,
Decision Tree, Logistic Regression, Random Forest.

FIGURE 8. The average values and standard deviation values computed
on the F-score values obtained with δs = 500 meters, δ5 = 10 minutes.

values and standard deviation values computed on the F-score
values.

The first consideration we can do is on the number of
the iterations. Regardless of the neighborhood configuration,
the predictive accuracy increases as new iterations are per-
formed. The highest gain accuracy is obtained at the initial

iterations, which indicates the algorithm benefits from the
best confident predictions since at the early. This confirms
the effectiveness of the iterative learning approach.We should
also note that acceptable F-score values can be reached even
before the execution of 10 iterations. Clearly, this leads ben-
efits from the viewpoint of the running times.

Another consideration deserves the behaviour of the accu-
racy with respect to the number of confident predictions
selected during the iterative process. We see that the low-
est value of sizer (5%) guarantees the more stable (less
variable) F-score response over the three base learners
(Figures 4a, 6a, 8a), meaning that the refinement process of
the predictor F allows effectively us to improve the predic-
tions of the instances, which are selected later, instead of
removing them from U at the early. This is confirmed by the
higher variance of the F-score when sizer is 15%.

As to the neighborhoods, the indication we can draw is the
higher accuracy is obtained with the larger number of neigh-
bours. In fact, we see F-score values greater than 0.95 only for
the configuration n_10_500 (Figures 8), on the contrary, for
n_5_500 and n_10_250, the accuracy is under the threshold
of 0.95 (Figures 4 and 6). This is why the use of greater
neighborhoods generally leads to increase the ‘‘awareness’’
of the predictor F about the surrounding instances of a tar-
get instance and, consequently, improve the prediction of
the trustworthiness levels. In any case, this confirms the
advantages of the use of feature augmentation to account for
‘‘contextual’’ noise readings.

Finally, as to the base learners, we observe that the Ran-
dom forest implementation offers the better F-score values.
Compared to the Decision Tree implementation, it gains less
accuracy, especially in the last iterations.

VII. CONCLUSION
Enriching Mobile Crowd Sensing (MCS) data with contex-
tual details is essential to maximize the effectiveness of con-
tributed data without explicitly requesting additional infor-
mation to the end-user. This paper proposes to leverage on
machine learning to contextualize the gathered observations,
in a way that is both resource efficient and accounts for the
specific of the crowdsensors, spanning the device character-
istics, the end-user’s behavior and the environment. We have
designed a computational solution working on the most usual
and recurrent scenarios for monitoring urban noise pollution,
assuming that we know the context and situation the devices
operate only for a part of them. Therefore, we have devel-
oped a transductive learning algorithm able to learn on the
data coming from fully known devices and infer context and
working situations for those devices with a partial descrip-
tion. Additionally, transductive learning is able to refine the
accuracy of the inferential model with computational costs
we can keep under control. The proposed algorithm works
on a scenario of the balanced classification, but we plan to
investigate the case of imbalanced data.

The application scenario has been provided by the
MCS-enabled platform Apollon for urban pollution
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monitoring (currently in deployment in Apulia Region -
Italy). Amongst the several architectural components and
monitored environmental pollutants only the management of
MCS-collected noise levels has been considered. In addi-
tion to noise level peculiarities, an extensive description of
the contextual metadata achievable from MCS sources as
well as their proper combination with noise levels has been
addressed. A validation session has been conducted to quan-
titatively measure the influence of the working conditions
on the accuracy. We firmly consider that crowdsensing will
be increasingly a significant source of data to be exploited
for civic purposes. However, this also means attracting a
large-enough crowd over time. This is known to be a hard
problem and solutions lie in the ability for the crowdsensing
applications to self-adapt to the end user scenarios. We are
currently investigating such solutions where urban computing
leverages on intelligent systems to maximize the exploitation
of data collected from the crowd.
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