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Abstract: We studied the influence of convex incentives, e.g. option-like compensations, on the behavior of
financial markets. Such incentives, usually o�ered to portfolio managers, have been o�en considered a poten-
tial source of market instability. We built an agent-basedmodel of a double-auctionmarket where some of the
agents are endowed with convex contracts. We show that these contracts encourage traders to buy more ag-
gressively, increasing total demand andmarket prices. Our analysis suggests that financial markets with many
managers with convex contracts are more likely to be more unstable and less e�icient.
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Introduction

1.1 Portfolio managers may be induced to take too risky positions by incentives that are convex functions of the
final wealth, because losses do not a�ect their compensations asmuch as gains. Because of this feature, Rajan
(2006) argued that convex incentive structures canbe listed among the causes of instability in highly developed
financial markets. Convex incentives have been the subject of several papers who analyzed their connection to
the financial crisis of 2007-8 (see e.g., Bebchuk & Spamann 2010; Dewatripont et al. 2010; French et al. 2010;
Gennaioli et al. 2012).

1.2 Assessing the impact of convex incentives on financial markets is challenging from an empirical point of view
because of the di�iculty in finding the necessary data. An alternative is to examine experimental evidence, as
in Holmen et al. (2014), who found that convex incentives lead to higher market prices. Fabretti et al. (2014)
proposed an Agent BasedModel (ABM) to examine the laboratory experiments by Holmen et al. (2014) and pro-
vided evidence that convex incentives may have a positive e�ect on prices, and a negative one on the overall
liquidity of the market. This paper extends the analysis of Fabretti et al. (2014) by examining a longer trading
period to study the convergence ofmarket prices in the long run, the implications of agents risk preferences on
the submissions of limit and market orders, the e�ect on the market due to the presence of noise traders and
the allocative e�iciency of a double auction market in the presence of a convex compensation structure.

1.3 We propose a model with artificial agents who may be either rational or irrational. Rational agents make their
decisions by maximizing their expected utility, considering their current portfolio, the distribution of the divi-
dend, and the structure of their compensation. We study two compensation structures, the linear one, where
the payo� is equal to the final wealth, as it is the case when an agent invests his/her ownmoney, and the con-
vex one, where the payo� is determined by an excess returnwithout sharing of the losses1. Irrational agents are
noise traders who do notmaximize any utility function but take their decisions randomly. In our setting convex
compensation structure are option-like. The market is organized through a double auction mechanism where
traders post their buy or sell orders on the order book or execute their market orders.

1.4 We study how risk aversions and compensation schemes of the rational agents, interacting with the actions
of noise traders, influence the dynamics of the prices, of the order book and of the overall market liquidity.
Moreover, we measure the e�iciency of the market, defined by its capacity to reach an equilibrium where the
expectations of the rational agents are satisfied, and the final distribution of the wealth amongmarket partici-
pants.
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1.5 We find that convex compensation structures increase prices, spreads and market volatility but that they de-
crease trading volumes, which is in line with the predictions of many theoretical models, e.g. Allen & Gorton
(1993), Malamud & Petrov (2014) and Sotes-Paladino & Zapatero (2014). We observe that the correlation of final
wealth and risk aversion decreases when agents are endowed with a convex contract, because convex incen-
tives increase agents’ risk appetite. This extends the results of Fabretti et al. (2014)who studied a similar setting,
but over a shorter timehorizonandwithoutnoise traders. The totalwealth tend tobe transferred fromthenoise
traders to the rational ones, an observation that is in agreement to what predicted by Sandroni (2000) and that
contributes to the literatureon thee�ects of noise traders in financialmarkets, originatedby the seminal papers
by Long et al. (1990) and Blume & Easley (1992).

1.6 As regard tomarket e�iciency, we see that our artificial market is almost immediately allocative e�icient when
there are only linear contracts, while it takes longer to reach equilibriumwhen there are convex contracts. This
is in line with Gode & Sunder (1993), who showed that double auctions are allocative e�icient market protocol.
However, as found out by LiCalzi & Pellizzari (2008), the key assumption for allocative e�iciency is the “resam-
pling” mechanism. In Gode & Sunder (1993) this mechanism consists in deleting no executed orders a�er each
trade so that all inactive (no having exchanged yet) agents have a new chance to trade; similarly in our setting
at any trading period t, when any agent is called to act, any previous book order by him/her is cancelled and
he/shecanpost anewone. As claimedbyLiCalzi &Pellizzari (2008), thismechanism“expands theopportunities
for trades as well as the pool of potential counterparts”, which improves the allocative e�iciency.

1.7 Theanalysis ofmarket and limit orders shows that convexcompensation structuresa�ect the typeof theorders,
but not their quantities. In fact, we observe that, by increasing the percentage of convex contracts, the number
of limit ordersdecreaseswhile thenumberofmarketorders increases. In linewith the fact that convex contracts
lead to an overvaluation of the asset, we observe that the majority of the limit orders is on the sell side, while
most market orders come from the buy side.

1.8 The rest of the paper is organized as follows: Section 2 introduces themodel, Section 3 reports our simulations
with results while Section 4 presents some conclusions. In appendix some details about the analytical study
of the agent maximization problem and equilibrium price are reported, although they can be found in Fabretti
et al. (2014).

The Model

2.1 We implement a double auction market with an open order book in which artificially intelligent agents trade
on a single security. The security pays, at a future time T , a dividendX that is a random variable defined as

X =

{
X1 with probability p
X2 with probability 1− p , (1)

whereX1 andX2 are greater thanor equal to zero. Shorting assets andborrowingmoney are not allowed. Each
trading period consists of T trading times in which each trader, randomly selected, can submit a market or a
limit orders. We refer to Fabretti et al. (2014) for more details andmotivations about this setting.

The agents

2.2 We assume that there areN agents trading the asset and that i-th agent is provided, at the initial time 0, with
an amount of cashCi,0 andωi,0 shares of the asset. An agent can be either a noise or a rational trader. Rational
traders take their decisions by maximizing their expected utility at time T . Rational agents have a Constant
Relative Risk Aversion (CRRA) utility function

ui(x) =
x1−γi

1− γi
, (2)

where γi is the parameter of risk preference. Noise traders decide randomly on their trades, only caring of their
budget constraints.

2.3 Let be the wealth function given by

W (θ, P, C, ω,X) = C + (ω + θ) ∗X − θP. (3)
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The final wealth of agent i is
Wi,T =W (θi,T , Pi,T , Ci,T−1, ωi,T−1, X) (4)

where θi,T are the units of asset exchanged by agent i at time T for the price Pi,T , while Ci,T−1 and ωi,T−1

represent the quantities of cash and asset held at time T −1.Wi,T is a random variable which becomes known
only a�er the dividendsX are distributed. Each rational agent i receives a compensation at time T depending
on her final wealth a�er the dividend distribution. If agent i has a linear contract, he/she receives the amount
Wi,T ; if he/she has a convex contract he/she receives a fixed amount, while ifWi,T is greater than a given level
K, he/she also gets an extra proportional to the surplus. The formal specifications of the contract functions are

fi(Wi,T ) =

{
Wi,T linear contract

φ+ δmax(Wi,T −K, 0) convex contract (5)

where φ, δ andK are contractually specified constants.

2.4 At time t, the trader i enters into the market with an amount of cash Ci,t−1 and ωi,t−1 units of the asset, and
determines the amount of units θ∗i,t to be exchanged at a priceP bymaximizing his/her expected utility subject
to the budget constraints, that is

max
θi,t

E[ui (fi (W (θi,t, P, Ci,t−1, ωi,t−1, X)))] (6)

Ci,t−1 − θi,tP ≥ 0

ωi,t−1 + θi,t ≥ 0

Note that the agents are myopic, because they optimize their portfolio without considering the possibility of
trading at future times. A short discussion of the solution of Equation 6 is contained in the Appendix A to this
paper.

Simulations

2.5 Themarket is organized as a double auction, where agents can submit either market or limit orders. A rational
trader entering into the market checks the best quotes available in the book and then decides, by comparing
the respective utilities, whether to place amarket order (buy or sell), or a limit orderwith an o�er that improves
the current trading bookwith a lower bid or a higher ask price. If the agent is a noise trader, the three decisions
(buy, sell, or limit order) are taken randomly with equal probability, while the quantity to be traded is chosen
from a uniform distribution with support given by considering both the budget constraints and, in the case of a
market order, the bid or asked shares.

2.6 The simulation algorithm proceeds as follows:

1. Trader i is randomly selected among those who have not yet traded in the present round.

2. Any previous book order by trader i, if still present in the book, is cancelled 2.

3. The trader decides (rationally or randomly according to the type) whether to submit a sell order, a buy
order, or a limit order.

Rational and noise traders

2.7 A rational trader decideswhether to submit a sell order, a buy order, or a limit order by comparing the expected
utilities of three alternatives

a) Selling at the current bid price P b the number of units equal to the minimum between the units de-
manded at P b and the units hold by the trader.

b) Buying at the current ask price P a the number of units equal to the minimum between the units o�ered
at P a and c/P a, where c is the money hold by the trader.

c) Holding her current portfolio until time T .

2.8 If themaximal expected utility is given by a), the trader submits a sell order, if it is b) a buy order, if it is c) a limit
order. The specifications of the orders are determined as follows:
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• (Submission of a sell order). Let P b(t) be the current bid price. Agent i solves Problem (Equation 6) with
P = P b(t). If the optimal solution θ∗i is a negative value then the agent places the order, otherwise the
agent does not sell any asset and a new agent enters the market or a new round starts. If the quantity
posted in the book is greater (in absolute value) than θ∗i , the quantity θ∗i is exchanged, otherwise the
agent’s demand is only partially satisfied and the next bid in the order book is examined.

• (Submission of buy order) The same procedure is repeated by taking P = P a(t), the current ask price. If
the optimal solution θ∗i is a positive value then the agent places the order. If the quantity posted in the
book is greater (in absolute value) than θ∗i , the quantity θ∗i is exchanged, otherwise the agent’s demand
is only partially satisfied and the next ask in the order book is examined.

• (Submission of a limit order) A pricePr is chosen randomly from a uniform distribution between the cur-
rent bid and ask price. The agent solves problem (Equation 6) with P = Pr and, if the optimal quantity
θ∗ is di�erent from zero, posts a book order, either buy or sell, according to the sign of θ∗.

2.9 A noise trader selects randomly with equal probability one of the following:

a) Selling, at the current bid priceP b, a random quantity3 (within the interval going from 0 to theminimum
between the total number of his/her units ω and the outstanding lot demanded at P b).

b) Buying, at the current ask price P a, a random quantity (within the interval going from 0 to the minimum
between the outstanding lot o�ered at P a and c/P a, where c is the money hold by the trader).

c) Posting a limit order with a random quantity (within his/her budget constraints) at a random price be-
tween the bid and the ask prices.

Market and Equilibrium prices

2.10 The market price Pt is the mean of all the traded prices recorded during time t. In the case of no trades, Pt
is taken as the closing mid price, that is the mean of the last ask and bid prices. We will compare Pt to the
equilibrium price P ∗

t at time t, that is the price which clears the market, i.e. the value P that satisfies

N∑
i=1

θ∗i,t(P ) = 0, (7)

where θ∗i,t(P ) is the optimal demand for agent i at time t and at price P . Of course, only rational agents are
utility maximizers and are considered for the computation of the equilibrium price. Note that the functions
θ∗i (P ) are not increasing, but they may not be continuous. Therefore, it is possible that there is a point P at
which the total demand changes sign and then Equation 7 does not have a solution. In this case, we take such
a point, that is the price which maximizes the exchanges, as the equilibrium price. In general, the equilibrium
price has to be determined through a numerical procedure. Appendix B contains more details on this issue.

2.11 Tomeasure the total welfare, we compute, at any time t, the total expected utility

Ut =

N∑
i=1

E[ui(fi(W (θ = 0, P = 0, Ci,t, ωi,t, X)))], (8)

and we compare it to the total equilibrium utility, that is the total expected utility that may be reached in case
of exchanges at P ∗

t , the equilibrium price computed at time t,

U∗
t =

N∑
i=1

E[ui(fi(W (θ∗i (P
∗
t ), P

∗
t , Ci,t, ωi,t, X)))]. (9)

Simulations

3.1 Wedivide our analysis into four points. The first one focuses on the overall e�ect on themarket of the presence
of irrational traders. The second one studies the correlation between agents portfolios and their risk aversion.
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Name/Symbol Description Value

X1, X2 dividend values 15, 65
p dividend probability 0.8
C0 initial cash 2000
ω0 initial number of asset 40
φ fixed payo� in the convex contract 1600
δ fee in the convex contract 0.4375
K benchmark 2000

Table 1: The parameters used for the simulations. C0 and ω0 are the initial endowments, the same for all the
traders. This choice implies that the expected payo� of an agent with a convex contract who does not perform
any trade is the same as that of an agent with a linear contract.

Figure 1: Volumes are reported for three percentage of noise agents, 0%, 10% and 50%. As expected, volumes
increase as noise agents percentage increase. In this plot the percentage of convex contract is 50.

The third one compares market prices to equilibrium prices and total utility to equilibrium utility. The fourth
one examines market and limit orders.

3.2 We restrict the analysis on risk averse agents assigning risk preference parameters γi randomly from a uniform
distribution between 0 and 10. Table 1 shows the parameters of the simulations (agents’ endowments, type,
risk preferences, contracts, initial endowments and convex contract parameters), which are the same used by
Holmen et al. (2014) and Fabretti et al. (2014). We remark that the values assigned to the parameters of the
contract, φ, δ and K and to the initial endowments ω0 and C0 are such that an agent with a linear contract
has the same expected payo� as an agent with a convex contract, if they both keep their initial portfolio. This
ensures that, onaverage, the sumofall the final compensations is constant, independentlyon the ratiobetween
convex and linear contracts, allowing us to compare the prices under di�erent distributions of the contracts
among the agents. We also changed the parameters in several other tests (not reported in the paper) to make
sure that our qualitative considerations are robust with respect to the choice of the parameters.

The e�ect of noise traders

3.3 Figure 1 shows the average percentage volume exchanged across simulations as a function of time for three
cases, corresponding to 50%, 10% and 0% of the traders being noise ones. In this experiment, we kept the
number of convex contracts equal to 50% of the total. We performed 1000 simulations, with T = 100 and
Nagents = 100. For each of the three cases, we see that volumes decrease with time, indicating that a�er
a certain point, agents almost stop their trading. In general, and not surprisingly, noise traders increase the
volumes of exchanges. To study the distribution ofwealth between noise traders and rational oneswe report in
Figure 2 the average units of assets (le�) and the average amount of cash (right) per capita as a function of the
time, for the case of 10% of the traders being noise ones. We note the transfer of wealth from the noise traders
to the rational ones. This is in line with Sandroni (2000) who studied the conditions for the extinction of noise
traders in a competitive market.
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Figure 2: Average wealth per capita of noise and rational traders as a function of time. The le� plot represents
the units of asset, the right one the cash. Noise traders are 10%of the total. Contracts are half linear half convex.

Figure 3: Correlation at each time t between risk aversion and cash (le� hand side) or units of asset (right hand
side).

Correlation between risk aversion andwealth

3.4 To study how the specification of the contract a�ects the decisions of the rational traders, we computed, for
each simulation and for each time t, the correlations between the risk aversions and the cash or the units of
assets hold by each rational agent. We represent themean values across the simulations of the two correlation
for each t in Figure 3 for the cases of all linear contracts and all convex contracts. For both contracts, the mean
correlation is always positive for the cash (le�) and negative for the units of asset (right). This is expected, since
higher risk aversion should lead to a positionwithmore cash and less assets. We also see that convex contracts
exhibit a lower correlation (in absolute value), which is sometimes not even significantly di�erent from zero.
This means that convex incentives strongly a�ects the choices of the traders, by weakening the influence of
their risk aversions. We note that the correlation starts from zero, since the initial endowments are constant
among agents and then it converges towards a constant level. In the linear case, the stable level is reached
earlier.

Market prices and equilibrium prices

3.5 To evaluate the e�iciency of the double auction market and the influence of linear and convex contracts, we
observe the market prices Pt and compute the equilibrium prices P ∗

t and the corresponding total equilibrium
utility U∗

t as well as the total utility Ut. In a first set of 1000 simulations, we considered 90 rational traders
endowedwitha linear contract and 10noise traders. In the secondset the rational tradershadaconvexcontract.
Figures 4 and 5 refer, respectively, to the linear and to the convex cases. Each figure reports, on the le�, the
average market price Pt across all simulations, the equilibrium price P ∗

t and a constant line representing the
equilibrium price at time 0, on the right, the average across all the simulations of the ratio betweenUt andU∗

t .
Observing the figures on the le� we see that the prices for the linear case are much lower than those of the
convex one. This is due to the fact that the convex contract increases the demand for the risky asset, boosting
its price. In the linear case the market prices bounce around the equilibrium price. In the convex case they
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Figure 4: On the le� hand side, the market price is plotted with the static equilibrium and the dynamic equilib-
rium for T = 100, Nagents = 100, all linear contracts, 10% of noise traders. On the right hand side, the ratio
between the total expected utility and the total equilibriumutility. Values approaching 1means that themarket
is allocative e�icient.

Figure 5: On the le� hand side the market price is plotted with the static equilibrium and the dynamic equilib-
rium for T = 100,Nagents = 100, all convex contracts, 10% of noise traders. On the right hand side the ratio
between the total expected utility and the total equilibrium utility. Contrary to the linear case, values approach
1 only on the long run.

tend to be above it and have wider oscillations. This fact may be a consequence of the characteristics of the
demand functions, continuous for the linear contracts and discontinuous for the convex ones, see Figure 10 in
Appendix A. Holders of the convex contract tend to assume more extreme positions, proposing and accepting
exchanges at prices higher than equilibrium. The Figures on the right show that in both the cases, the ratio of
the twoexpectedutilities converge toone,meaning that themarketmechanism is e�icient and reaches aglobal
welfare. However, we note that the convergence is faster in the linear case. As already observed in the previous
analysis of the correlations (Figure 3), the presence of convex contracts make the market more unstable and
slower in reaching a steady state.

The order book analysis

3.6 To analyze the order book quantities and their dependence on convex contracts we simulated a market with
100 traders, varying the proportion of convex contracts between 0 and 1, while keeping noise traders percent-
age equal to 10%. Parameters are as given in Table 1. For any percentage of convex contracts we made 30
simulations and for each simulation we recorded the following quantities:

• LOs: the total number of limit orders;

• MOs: the total number of market orders;

• MOBs: the total number of market orders from the buy side;

• MOSs: the total number of market orders from the sell side;
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Figure6: Thenumberof limit orders (le�panel) and thenumberofmarketorders (rightpanel) for 30 simulations
plotted versus the percentage of convex contracts. The solid line is the median.

• LOBs: the total number of buy limit orders;

• LOSs: the total number of sell limit orders;

• LOBEs: the total number of executed buy limit orders;

• LOSEs: the total number of executed sell limit orders.

3.7 The main e�ect of a convex incentive is increasing the greed of the traders. This is evident when examining
the number of limit and market orders versus the proportion of convex contracts. Indeed, Figure 6 shows that
the number of limit orders decreases with the number of convex contracts, while market orders increase with
it. Overall, the total amount of limit and market orders is independent of the percentage of convex contracts.
Agents with convex contracts aremore impatient and prefer submittingmarket orders rather than posting limit
orders. Figure 7 shows how limit orders are distributed between bid and o�er. We see that only the number of
limit orders on the sell side reacts to the increase of convex contracts, while the number of those on the buy
side remains constant. However, when we observe the number of executed limit orders, see Figure 8, we see
that changing the ratio of convex contracts has no impact, both on the buy and on the sell side. This means
that one of the e�ects of convex contracts is that of decreasing the number of the non-executed selling orders,
as the traders submit o�ers at prices that are in general too high. Interestingly, we see that market orders ex-
hibit an opposite behavior. In fact, see Figure 9, the number of market orders on the buy side increases with
the percentage of convex contracts, while the number of market orders on the sell side stays almost constant.
Agents endowed with convex contract tend to buy more than sell. We can observe that when the percentage
of convex contract is above 50%, market orders on the sell side react weakly, while market order on the buy
side become flatter. This can be a side e�ect because whenmore agents have similar demand functions, fewer
exchanges take place. Such e�ect may also be visible in the right panel of Figure 7, where the number of sell
limit orders decreases at a lower rate as the percentage of convex contracts approaches 100%. In conclusion,
the order book analysis confirms that convex contracts do change the way agents post their orders as shown
by the analysis in Appendix A. In particular, Figure 10 shows that a convex contract pushes a risk averse trader
towards a demand similar to that of a more risk loving agent: convex contracts reduce risk aversion!

Conclusions

4.1 With our agent based model, we investigated the impact of convex contracts on the price dynamics and on
the order book. We found that convex contracts produce higher prices and larger deviation of prices from the
rational equilibrium (the price that clears the market when only rational traders are involved). However, we
showed that our artificial double auction market is e�icient as it permits convergence to a global welfare but
the presence of convex contracts make such a convergence slower. Furthermore, our analysis on correlation
shows that convex contracts have a strong influence on the decisions of the traders, dominating the e�ect of
risk aversion.

4.2 The structure of the order book is strongly a�ected by the presence of convex contracts, in fact they reduce
the number of limit orders submitted on the sell side, while increasing the number of market orders from the
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Figure 7: The number of buy (le� panel) and sell (right panel) limit orders in 30 simulations versus the percent-
age of convex contracts. The solid line is the median.

Figure 8: The number of executed buy limit orders (le� panel) and executed sell limit orders (right panel) in 30
simulations versus the percentage of convex contract. The solid line is the median.

Figure 9: The number of buy market orders (le� panel) and sell market orders (right panel) in 30 simulations
versus the percentage of convex contract.

buy side. Convex contracts encourage traders to buy more aggressively, increasing the total demand and con-
sequently the market prices. The analysis of the order book shows that prices increase in presence of convex
contract because convex contract pushes agents to buymore and to sell less, and to buy in a rush, usingmarket
orders rather than limit orders.

4.3 In conclusion, we remark that our model examined the e�ects of one particular kind of convex compensation,
that is the option-like structure, which flattens bad outcomes, and linearly rewards good ones. This is the struc-
ture that is mostly used for real markets. We believe that our qualitative results still hold for the case of other
convex structures, but this should be verified with further tests. Another important limitation of the present
analysis is the assumption of myopic agents who optimize their portfolio as if there were only one period to
go. By introducing expectations on the evolution of market prices and on the probability of a limit order to be
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executed, one could try to model a more complex andmaybemore realistic model, where the agent perform a
dynamic optimization and are not myopic but far-sighted.
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Appendix A: Rational demands

In this section we analyze the optimization problem of the rational agent’s to give some insights on the opti-
mal demand function and how it changes according to the contract type. Then we study the equilibrium price
aggregating the agents’ optimal demand.

Recall that the rational trader solves the problem (Equation 6). We consider separately linear and convex con-
tract functions, starting from the linear case.

Let ν(θ, P ) be the first derivative with respect to θ of the expected utility of the final wealthW (θ, P ), that is

ν(θ, P ) =
∂

∂θ
E[u(W (θ, P ))]. (10)

For any given price P , the function ν(θ, P ) is decreasing with respect to θ when the utility function is concave
(risk-averse agent) while it is increasing for a convex utility. In the risk-averse case, the optimal demand θ∗, that
is the solution to problem (Equation 6), either satisfies the First Order Condition (FOC)

ν(θ, P ) = 0, (11)

when it belongs to the feasible interval [−ω, C0

P ] or it coincides with one bound of the interval. More precisely,
it is equal to the lower bound −ω when the marginal expected utility ν(−ω, P ) is negative, it is equal to the
upper bound C0

P when ν(C0

P , P ) is positive, for all the remaining cases it lies within the feasible interval.

Thus, the optimal demand is the continuous function

θ∗(P ) =


C0

P if P ≤ P d
z(P ) if P ∈ (P d, Pu)
−ω if P ≥ Pu

(12)

where z(P ) satisfies the FOC
ν(z(P ), P ) = 0, (13)

P d is the solution to
ν

(
C0

P
, P

)
= 0 (14)

and Pu satisfies
(−ω, P ) = 0. (15)

When the agent is not risk averse, that is when his utility is a convex function, his optimal demand is

θ∗(P ) =

{
C0

P if P ≤ Ps
−ω if P ≥ Ps

(16)

where the switching price Ps satisfies

E

[
u

(
W

(
C0

P
, P

))]
= Eu [(W (−ω, P ))] . (17)
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Consider our case with a linear contract and a Constant Relative Risk Aversion (CRRA) we have

(θ, P ) = E[(W0 + (ω + θ)X − θP )−γ(X − P )]. (18)

In the risk-averse case, that is for γ positive, it is easy to obtain Pu = E[X] and

P d =
E[X1−γ ]

E[X−γ ]
. (19)

The demand function is

θ∗(P ) =


C0

P if P ≤ E[X1−γ ]
E[X−γ ]

z(P ) if P ∈ (E[X1−γ ]
E[X−γ ] , E[X])

−ω if P ≥ E[X]

(20)

When the agent is risk-neutral, i.e. when γ = 0, we get

Pu = P d = E[X] (21)

and the optimal demand function becomes

θ∗ =

{
W0

P if P < E[X]
−ω if P > E[X]

(22)

Note that in the caseP = E[X], the agent is indi�erent between buying or selling any amount of the asset and
Problem (Equation 6) is solved by any feasible θ.

When the contract function is convex and the agent is risk-averse, the expected utility in Problem (Equation 6)
is piece-wise concave as a function of θ. The reason of the piece-wise concavity stems from the fact the contract
function in this case is piece-wise linear. Since the assetX assumes only two values, the expected utility has
two nodes, corresponding to the values of θ satisfying

W0 + (ω + θ)Xi − θP = K, i = 1, 2 (23)

In this case, the optimal demand θ∗(P )may coincide with the boundaries of the feasibility interval. This leads
to an optimal demand function always discontinuous, which can be found only numerically. It is defined as in
Equation 16 for any value of the parameter gamma.

Figure 10 represents the optimal demand functions in all cases, linear contract first line and convex contract
second line for di�erent levels of risk preference. The demand function is continuous for a risk-averse agent,
but it is discontinuous for a risk-neutral and a risk-seeking agent. The discontinuity point is the highest pricePs
atwhich the agent is willing to invest all themoney in the risky asset. It can be identified by solving Equation 17.
The value ofPs dependson the risk preferences and it decreaseswith the level of risk preferenceγ. When the in-
centive is convex, the optimal demand function is always discontinuous, independently of the risk preferences.
By comparing the plots in the linear and convex case in Figure 10, we found that the convex incentive increased
the demand of the risky asset for each level of risk propension.

Appendix B: The equilibrium price

We can consider theoretical the equilibrium price only when all the traders are rational. The equilibrium price
is the price which clears the market, that is the value P that solves the Equation 7.

Theaggregatedemand function is anot increasing functionofP , with anumberof points of discontinuity that is
less than or equal to the total number of agents. Given that the aggregate demand is discontinuous, Equation 7
may not have a solution, and hence an equilibrium price may not exist. However, we can always identify the
value, where the aggregated demand changes its sign. This price, denoted by Peq represents the price that
maximizes the volume of exchanges between the agents. We call it the "quasi-equilibrium" price. Of course,
any equilibrium price is also a quasi-equilibrium price.

For the existence of an equilibrium price, there must be a su�icient degree of heterogeneity among agents. We
assume that agents have the same initial endowment (C0 units of cash and ω units of asset). Therefore, if they
also have the same level of risk preference and the samecontract function, theywillmake the samechoices and
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Figure 10: The optimal demand functions are represented for linear contract (up) and convex contract (down)
for a risk averse agent (on the le� hand side), a risk neutral agent (on the middle) and for a risk lover agent (on
the right hand side). Only the risk averse agent with a linear contract has a continuous optimal demand, others
have adiscontinuous demandwhich correspond to abangbang strategy. The switchingprice (the discontinuity
point) increases with risk propensity and is higher in case of convex contract (ceteris paribus).

obviously no price can clear themarket (however, also in this case, therewould exist a quasi-equilibriumprice).
When agents’ preferences or contracts exhibit enough variation among agents, the market clearing condition
Equation 7 could be satisfied.
To clarify this point, let us consider a simple example with only two agents whose demand functions are

θ∗i (P ) =

{
W0

P if P ≤ Psi
−ω if P > Psi

(24)

with Ps1 ≤ Ps2. By aggregating the demands we get

2∑
i=1

θ∗i (P ) =

 2C0

P if P ≤ Ps1
C0

P − ω if Ps1 < P ≤ Ps2
−2ω if P > Ps2

(25)

Theaggregatedemand is equal to zeroonly ifPs1 6= Ps2, that iswhen the twoagentshavedi�erentpreferences.
In such a case, the equilibriumpricePeq exists and is equal to C0

ω if and only ifPs1 < Peq < Ps2, thus it depends
on the utility functions and on the type of the contract through the values Psi.
It is possible to generalize the previous argument to a set of N agents with discontinuous demand functions
given by

θ∗i (P ) =
C0

P
1P<Psi − ω1P>Psi , i = 1, . . . , N (26)

where1A is the indicator function of the setA. Assuming, without loss of generality, that the sequence of nodes
Psi is increasing, the equilibrium price exists and is given by

Peq =
N − κ
κ

W0

ω
, (27)

for an integer κ between 1 andN − 1, if and only if

Psκ < Peq < Psκ+1. (28)

Model Code

Themodel is publicly available in CoMSES Computational Model Library at this address:
https://www.openabm.org/model/4984/version/1/view
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Notes

1This setting is equivalent to consider two types of agent, an investor who invests her own wealth and a
portfolio manager who invest money on behalf of others. Under this interpretation this model o�ers a tool to
study the impact of intermediation on financial markets.

2This rule was inserted to simplify the optimization problem faced by the trader, but it is also important to
enhance the allocative e�iciency of the market, see LiCalzi & Pellizzari (2008).

3Here and in what follows, when not explicitly indicated wemean the uniform distribution.
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