
WORKFLOW PARTITIONING IN

MOBILE INFORMATION SYSTEMS

Luciano Baresi1, Andrea Maurino1, and Stefano Modafferi1

1Politecnico di Milano

Dipartimento di Elettronica e Informazione

P.zza L. Da Vinci 32 - 20133 - Milano Italy

baresi, maurino, modafferi@elet.polimi.it

Abstract

The increasing success of wireless technologies is sustaining the dif-
fusion of mobile information systems, but the youth of the underlying
technology and its peculiar characteristics are impacting the develop-
ment of such systems. For example, the execution of business processes
in such a context must cope with the variable and fluctuating bandwidth
available to the different devices. This leads the designer to stress the
independence of each actor – by minimizing interactions and knowledge
sharing – to increase the reliability of the whole system.

To this end, the paper proposes a rigorous approach for partition-
ing the execution of BPEL4WS workflows on sets of portable devices,
that is, the infrastructure of mobile information systems. The approach
abstracts BPEL4WS processes into attributed graphs and uses a graph
transformation system as rules to split single workflows into meaningful
sets of related processes. The paper presents such rules and exemplifies
them on a case study in the cultural heritage domain.

Keywords: Mobile information systems, distributed workflows, partitioning rules

1. Introduction

In these years, mobile technologies are deeply changing our way of
leaving. The more these technologies become reliable and widely avail-
able, the more business scenarios use them. New wireless technologies,
like Bluetooth or Wi-Fi, are creating the technological backbone for mo-
bile information systems (MobIS): The structure of these systems is not
fixed and all business processes must be able to deal with nomadic actors
and dynamic changes. It is true however that the youth and limitations
of these technologies still impact the systems that run on them: Roam-



2

ing, frequent disconnections, and security holes [Gaertner and Cahill,
2004; Vaughan-Nichols, 2003], along with the variable bandwidth offered
by the wireless medium, must be taken into account to design and imple-
ment reliable mobile systems. The execution of a business process in a
mobile environment – with different devices connected through different
network technologies – needs new strategies with respect to the tradi-
tional solutions adopted for centralized workflows. These solutions rely
on a single engine that knows and controls all system resources, but mo-
bility demands for decentralized executions carried out by a federation
of heterogenous devices. All these requirements lead to a new strategy
that stresses the independency among actors – to minimize the necessity
of interaction and knowledge sharing – and thus increases reliability.

This paper tackles the problem by proposing formal partitioning rules
to transform a unique workflow into a set of federated workflows that
can be executed by different engines. This is the typical scenario where
different devices contribute to the enactment of the whole process by
executing a fragment and synchronizing with the others. The paper
builds upon the approach described in [Maurino and Modafferi, 2004]
for transforming BPEL processes and paves the ground to the release
of an automatic slicing engine for the run-time partitioning of business
processes.

Partitioning rules exploit the UML profile for BPEL [Thatte, 2003],
to abstract workflows as attributed graphs (i.e., stereotyped activity
diagrams), and graph transformation theory [Baresi and Heckel, 2002]
to formally specify the steps that lead to the separate workflows (i.e., the
set of graphs). The rules are implemented by using AGG (Attributed
Graph Grammars, [Beyer, 1992]) as supporting tool for both modeling
and validation. Two other results of the paper are the validation of the
proposed rules and its application to a case study in the cultural heritage
domain.

The paper is organized as follows. Section 2 introduces graph transfor-
mation to set the basis of this work. Section 3 describes the partitioning
rules identified for moving from centralized to decentralized workflow ex-
ecutions. Section 4 applies the rules on an example process taken from
the risk management in the cultural heritage domain. Section 5 summa-
rizes the related work on decentralized workflow models and Section 6
concludes the paper.



Workflow Partitioning in Mobile Information Systems 3

2. Graph transformation

Before describing our partitioning rules, we introduce graph transfor-

mation [Baresi and Heckel, 2002] as the formal background needed to
understand them.

A typed graph transformation system G = 〈TG, C, R〉 consists of a
type graph TG, a set of structural constraints C over TG, and a set R of
rules p : L → R over TG. The type graph defines the types of nodes and
edges that can be used to create graphs. The set of structural constraints
identifies constraints on how nodes and edges are linked, and rules state
how graphs can be modified. In particular, a graph transformation rule
r : L → R consists of a pair of TG-typed instance graphs L, R such
that the intersection L ∩ R is well-defined (this means that, e.g., edges
which appear in both L and R are connected to the same vertices in
both graphs, or that vertices with the same name have the same types,
etc.). In other words, the left-hand side L defines the pre-conditions
that must hold on the graph to enable the rule while the right-hand side
R describes the post-conditions, that is, the modifications on the graph
after applying the rule.

The application of a graph transformation rule comprises three steps:

We find an occurrence oL of the left-hand side L in the current
graph G (the BPEL process, in our case).

We remove all the vertices and edges from G which are matched
by L \ R. The remaining structure D := G \ oL(L \ R) must be a
legal graph: no edges are left dangling because of the deletion of
their source or target vertices. In this case, the dangling condition

is violated and the application of the rule is prohibited.

We glue D with a copy of R \ L to obtain the derived graph H.
We assume that all newly created objects, links, and attributes
get fresh identities, so that G ∩H is well-defined and equal to the
intermediate graph D.

Usually, rules must be composed to peform significant transforma-

tions. Thus, a transformation sequence s = (G0
p1(o1)
=⇒ · · ·

pn(on)
=⇒ Gn) in

G, briefly G0
s

=⇒
∗

G Gn, is a sequence of consecutive transformations us-
ing the rules of G such that all graphs G0, . . . , Gn satisfy the topological
constraints.

In this paper, we concentrate on AGG (Attributed Graph Grammars,
[Beyer, 1992]) to model and validate our rules. AGG allows users to
specify complex structures as graphs and exploits the Java type system
to associate attributes with values. It also supports layered rules where



4

layers fix the application order among rules. The interpretation starts
with level-zero rules and then moves to higher ones. Besides pre- and
post-conditions (left- and right-hand side graphs), AGG also supports
negative application conditions, that is, sub-graphs in the left-hand side
that must not exist to enable the rule. Additionally, rules can embed
conditions on attribute values in the form of boolean Java expressions.

3. Partitioning rules

The Business Process Execution Language for Web Services [Thatte,
2003], hereafter BPEL, provides an XML notation for specifying the
behavior of businesses based on Web Services. A BPEL process is de-
fined in terms of its interactions with the partners that provide services,
require services, or participate in a two-way interaction with the process.

In this paper, we do not present the XML representation of these
processes, but we adopt an extended version of the UML profile for

automated business processes, described in [Gardner and al., 2003], to
render the workflows as stereotyped UML activity diagrams and thus
attributed graphs as summarized in Table 1.

BPEL Primitive Graph Element

Basic Activities Basic activities are rendered as Activity nodes.
Each of these nodes has an attribute device,
which stores the name of the device that controls
the activity, a type, equal to normal, and a name

equal to the one of the UML activity.

Links between activities Links are rendered as edges of type follow be-
tween Activity nodes.

Structured activities Structured activities are rendered with two
special-purpose Activity nodes. Their attributes
type and name have the same values and are equal
to Start<Name> and End<Name>, where <Name>

is the type of the corresponding UML structured
activity (e.g., Loop or Switch). Each structured
activity is also associated with a number, which
is assigned to the variable value of the two added
Activity nodes.

Table 1. Translation guidelines

Partitioning rules operate on such an abstract representation to create
the set of cooperating workflows. The application of partitioning rules –
and the execution of disconnected operations – requires that the work-
flow meets the following requirements: (1) The control of the execution
of a specific task can be assigned to a single device; (2) The StartLoop



Workflow Partitioning in Mobile Information Systems 5

and EndLoop nodes of While structured activities must be assigned to
the same device; (3) The Start node of Pick, Switch, and While struc-
tured activities is in charge of evaluating the condition; (4) The workflow
has no global variables and all the variables are passed as parameters
between different actors. If all requirements are met, the partitioning
process starts identifying where to partition the workflow and how to
maintain the execution flow across structured activities. Then it defines
the sub-workflows by creating local views.

Rules are organized in layers that govern their applicability. Rules
that belong to “low” layers are applied before those of “high” layers.
Within each layer, rules can triggered in a non deterministic way.

The lowest-level rules (layer 0) are devoted to synchronizing (delegat-
ing) the execution flow between two activities of a Sequence that are
executed by different devices. Fig. 1(a) shows the AGG rule Add dele-

gate that synchronizes Sequences split on different devices. The rule can
be applied if there is an Activity node (either simple or structured),
controlled by an actor A1 followed by another Activity node controlled
by a different actor A2. The right-hand side of the rule introduces two
new special Activity nodes where the former is controlled by A1, and
the latter by A2. These two nodes add a pair of invoke/receive activities
to forbid the second activity to start before the completion of the first
one. Notice that this rule is also able to partition Sequences that belong
to Flow activities. The delegation (synchronization) is described by the
delegate arc between the two newly introduced Activity nodes.

The main problem with partitioning structured activities, like Switch
or Pick ones, is to be sure that all devices involved in such activities
follow the same branch. In fact, while in Flow activities all branches are
executed in parallel, in Switch activities only one branch is executed.
Consequently, rules of layer 1 identify all the controllers involved in such
structured activities and add a Flow activity before any Switch (resp
Pick) node to communicate the chosen branch to the other controllers.

Fig. 1(b) shows the rule IdentifyStartSwitch (layer 1) that identifies
Switch nodes. The right-hand side of the rule identifies the beginning
of a Switch activity. Notice that the existence of the rule Add Delegate

ensures that there always exists an Activity node controlled by the
same device as the one controlled by the StartSwitch node.

Rule AddStartSwitch (layer 1), not shown here, marks all activities
directly connected to StartSwitch nodes with isSwitched arcs. Each
arc is enriched with two attributes: device and value. The former
represents the device that controls the switch; the latter identifies the
specific switch controlled by the device.



6

1:Activity


device=A1


2:Activity


device=A2


name=N


follow


:=


1:Activity


device=A1


2:Activity


device=A2


name=N


follow


Activity


device=A1


type=”Normal”


name=”Do “ +N+” To “+ A2


value=0


Activity


device=A2


type=”Normal”


name=”Execute “ +N+ “from “+A1


value=0


delegate


follow


1:Activity


device=X


value=V1


2:Activity


device=X


type=”StartSwitch”


name=”StartSwitch”


value=V


follow


:=


1:Activity


device=X

2:Activity


device=X


type=”StartSwitch”


name=”StartSwitch”


value=H


follow
 Activity


device=X


type=”StartFlow”


name=”StartFlow”


value=H


Activity


device=X


type=”EndFlow”


name=”EndFlow”


value=H


follow

beforeSwitch


follow


:=
1:Activity
 2:Activity


3:isSwitched


device=X


value=H

follow


1:Activity
 2:Activity


3:isSwitched


device=X


value=H


isSwitched


device=X


value=H


:=


1:Activity


device=X


type=”StartFlow”


name=”StartFlow”


value=H


2:Activity


device=X


type=”EndFlow”


name=”EndFlow”


value=H


follow


4:Activity


3:isSwitched


device=X


value=H


1:Activity

device=X


type=”StartFlow”


name=”StartFlow”


value=H


2:Activity


device=X


type=”EndFlow”


name=”EndFlow”


value=H


follow


Activity


device=X


type=”Normal”


name=”SendDec”


value=H


Activity

device=X


type=”Normal”


name=”ReceiveDec”


value=H


follow


follow


follow
 4:Activity


:=


1:Activity


isSwitched


device=X


value=H


1:Activity


:=


1:Activity


3:Activity


4:Controller


device=X

2:Activity

device=X1


type=”Normal”


follow


follow


1:Activity


3:Activity


AddDelegate


(a)


(b)


IdentifyStartSwitch


(c)


IterateSwitch


(d)


Remove


SwitchArc


(e)


IterateRemoveSwitch


(f)


RemoveOtherDevice


follow


4:Controller


device=X


Figure 1. Partitioning rules



Workflow Partitioning in Mobile Information Systems 7

Starting form these isSwitched nodes, four further rules (layer 2)
mark all activity nodes involved in the Switch activity. Fig. 1(c) shows
one of such rules. This rule is applied when a node with an isSwitched

arc follows another node without such arc. The right-hand side adds a
new isSwitched arc to the latter node.

Similarly, the rules that belong to layers 1 and 2 deal with Pick struc-
tured activities. These rules are very similar to the ones described for
Switch activities and are not shown here for lack of space. The par-
titioning of While activities is slightly more complex. The number of
iterations is not known a-priori and the variables that control the loop
can be updated by any actor involved in the activities that belong to the
loop. Consequently, like for other structured activities, we introduce a
Flow activity before the StartLoop node, with the goal of communicat-
ing to the other devices involved in the While activity if the condition is
satisfied. We also add another Flow activity before the EndLoop node to
communicate to the other devices if the loop condition is still satisfied.

After suitably decorating Switch, Pick and While activities, the rules
at layer 3 address the problem of partitioning them. These rules add
special-purpose activities to notify the branch followed by the execu-
tion of a given structured activity. Rule Remove Switch Arc, shown in
Fig. 1(d), describes it. The rule is activated when there exists at least
one activity marked with an isSwitched arc whose attributes device

and level are equal to those of the StartSwitch node. If the left-hand
side is matched, the right-hand side adds two new Activity nodes be-
tween the Flow nodes created by the rules at layer 1 to communicate
the followed branch.

The last set of rules (layer 4) removes extra arcs added in layer 1.
Fig. 1(e) shows the rule for removing isSwitched arcs.

After extending the host graph (BPEL process), we can create the
local views to decentralize the workflow execution. By “local”, we mean
that each actor only knows its tasks, i.e., its sub-workflow. More details
about local views in business processes can be found in [Van der Aalst
and Weske, 2001]. To create views, we set the context in terms of the
actor (device) for which we want to produce the view and apply the
following rules: (1) We remove all activities whose execution is not con-
trolled by the current actor; (2) We translate all structured activities,
with the exception of Sequences, that do not include “local” activities
into Sequences with no tasks.

For example, Fig. 1(f) shows the rule RemoveOtherDevice that imple-
ments the first rule. The left-hand side is applied as long as we find a
node not controlled by the specific device. The right-hand side removes
that node and adds a direct arc to fill the hole, that is, between the two



8

tasks before and after the removed one. Notice that even if the whole
workflow is composed of one task only, it is always connected to the
nodes that correspond to the start and end of the workflow. The rule
that corresponds to the second bullet is not presented here.

Validation. The feasibility of the described transformation depends
on the assumptions that:

Partitioning rules define a graph transformation system that ex-
poses a functional behavior, i.e., is confluent and terminates;

The execution flow of the original workflow is preserved. This
means that the local process views do not alter the global execu-
tion.

The first assumption is mandatory to ensure that the actual transfor-
mation does not depend on the order with which we apply rules (con-
fluence) and does not enter infinite loops (termination). In other words,
even if we apply the same set of rules in a different order, we obtain the
same result. The second assumption is needed to preserve the original
“behavior” even if we move from centralized to decentralized execution.

We can check the first hypothesis by exploiting the critical pair anal-
ysis capabilities supplied by AGG. The set of critical pairs represents
precisely all potential conflicts: given two rules p1 and p2, there exists
a critical pair if and only if p1 may disable p2, or p2 may disable p1.
If no conflicts exist between any pair of rules the graph transformation
system has a functional behavior [Hausmann et al., 2002].

After designing our rules, we used AGG to check all possible pairs in
the same layers, that is, all pairs of rules that could potentially be in
conflict: After some modifications all layers do not present conflicts.

As to the second hypothesis, currently we do not have a formal way
to prove that partitioning does not alter the execution flow. We are
conducting experiments with formal models that allow us to analyze
the execution traces in the two cases (i.e., centralized and decentralized
execution), but currently our proof is based on the observation that
partitioning rules only add activities to synchronize the different sub-
workflows, which do not alter the execution flow. Even the rules that
create the local views do not modify the execution flow because they
create a view of the process by deleting those elements that are controlled
by other devices and filling the holes with empty sequences.

Besides these two observations, our confidence is supported by the
results obtained on several case studies. One of them is presented in the
next section.



Workflow Partitioning in Mobile Information Systems 9

4. Example application

This section demonstrates the application of our rules on a signifi-
cant case study in the cultural heritage. Interested readers can refer
to [Maurino and Modafferi, 2003] for more details on the example.

Italy probably hosts one of the widest and most significant cultural
heritages in the world; unfortunately, because of many factors, they
are in danger of destruction. This situation imposes the definition of
an administrative and scientific instrument to manage and protect the
huge cultural heritage. In 1990, the Italian government began a project
to realize MARIS: the risk map of cultural heritage.

In this case study, we consider that the MARIS system can be im-
proved by using cooperative mobile information systems in the data
acquisition phase. The goal of this map is to create a complete reposi-
tory of the state of all cultural heritages in a given region. In particular
the risk map aims at allowing users to process data regarding territorial
danger factors and vulnerability conditions of monuments and helping
local and state administrations improve their decision-making processes
for conservative interventions.

Since we concentrate on the data acquisition phase, we consider that
we have to define a risk level associated with each site and create a site
description card to fully describe it. All data must be stored electron-
ically and consequently the data acquisition is facilitated by the use of
mobile devices like laptops, PDAs, or smart phones.

The whole process for managing the cultural risk map is composed
of several sub/processes, some of them executed in parallel. The one
presented here defines how to describe a given cultural site through a
site description card (hereafter, card). The card is composed of a number
of items and changes according to the specificities of what is described
(e.g., a church, an archeological site, or an historical building).

Fig. 2 shows a simplified process for filling in a card for a romanic
church, where we foresee the use of four devices.

The first step for partitioning the workflow of Fig. 2 is its translation
into an AGG Graph. This is only a problem of using the right format:
For example, the activity diagram can be saved as an XML/XMI file
and then converted into a GXL file. XMI (XML Metadata Interchange)
is the OMG standard XML format to exchange UML models. GXL is
the XML-based language used by AGG to describe graphs.

Then AGG applies iteratively the rules described in Section 3 to dec-
orate the workflow and then create the sub-workflows. For example, we
can apply rule Add Delegate to the Start Controller of the Flow activ-



10

Device 1


<<WHILE>>


<<RC>> ReceiveFillIn


<<I>> StaticRiskAnalysis


<<I>> FrescoDescription


<<I>> FrescoDamage


<<RE>> returnReport


<<I>> FrescoPhoto


<<WHILE>>


<<I>> Risk Description
 <<I>>DangerPhoto
 <<I>> GPS Position


Device 3


Device 2


Device 4


Damages


exist


Damages


do not


exist


Risks


exist


Risks


do not


exist


I = Invoke, RC = Receive, and RE = Reply

Device 1 Device 2

ReceiveFillIn receives the card
that the team has to update.
The completion of this task ac-
tivates the Flow activity.

FrescoDamage evaluates – and if
needed describes – the damages
on the frescos of the church.

ReturnCard returns the filled
card after terminating all
branches of the Flow activity.

Static Risk Analysis evaluates
the number of external damages
in the analyzed site.

FrescoDescription supplies a
textual description of damages
on frescos.

RiskDescription describes the
risks from a given static problem
in the site.

Device 3 Device 4

DangerPhoto takes a picture of
the static risk.

FrescoDamagePhoto takes a pic-
ture of the damage on frescos.

GPSPosition determines the ex-
act GPS position of the static
risk.

Figure 2. The process with its portions assigned to the devices



Workflow Partitioning in Mobile Information Systems 11

ity and the Static Risk Analysis activity to introduce two new tasks as
shown in Fig. 3.

follow
 delegate
 follow


Activity


Device=1


Type=”StartFlow”


Name=”StartFlow”


Value=1


Activity


Device=1

Type=”Normal”


Name=”Do StaticRiskAnalysis To 2"


Value=0


Activity


Device=2

Type=”Normal”


Name=”Execute StatiRiskAnalysis From 1"


Value=0


Activity


Device=2


Type=”Normal”

Name=”StaticRiskAnalysis”


Value=0


Figure 3. Example of ADDDelegate rule

The last step is the definition, for each device, of the local view of
the workflow, which for the sake of brevity are super-imposed onto the
workflow directly in Fig. 2.

5. Related work

The opportunities given by workflow distribution have been thor-
oughly studied in the field of business process design in the last ten
years. The main goal of this research is the cooperation/integration
among different companies, that is, among different workflows. This
problem reappears nowadays with mobile information systems and the
problems that come with them. In [Jablonski et al., 2001], the authors
present a comparison among the different approaches to distribution.

Cross-Flow [Grefen et al., 2000] provides high-level support to work-
flows in dynamically-created virtual organizations. Virtual organiza-
tions are created dynamically by contract-based match-making between
service providers and consumers. In Agent Enhanced Workflow [Judge
et al., 1998], the agent-oriented solution presents the interesting aspect of
building execution plans using a goal approach. Event-based Workflow
Process Management [Eder and Panagos, 1999] includes an event-based
workflow infrastructure and addresses time-related aspects of process
management. The main feature of ADEPT [Reichert and Dadam, 1998]
is the possibility of modifying workflow instances at run-time.

MENTOR [Muth et al., 1998] provides an autonomous workflow en-
gine. In this approach the workflow management system is based on a
client-server architecture. The workflow itself is orchestrated by appro-
priately configured servers, while the applications invoking workflow ac-
tivities are executed on the client sites. In enterprise-wide applications,
workflows may span multiple autonomous organizational units. Conse-
quently, heterogeneity and scalability impose an approach in which a
large workflow can be partitioned into a number of sub-workflows (e.g.,
based on organizational responsibilities) handled by different servers.
It considers the workflow as a statechart that reflects the control flow
among activities and uses orthogonal rules to partition it.



12

The METEOR (Managing End to End OpeRations [Anyanwu et al.,
2003]) system leverages Java, CORBA, and Web technologies to sup-
port the development of enterprise applications that require workflow
management and application integration. It enables the development of
complex workflow applications that involve legacy information systems,
are geographically distributed, and span multiple organizations. It also
provides support for dynamic workflow processes, error and exception
handling, recovery, and QoS management. Exotica [Mohan et al., 1995]
is characterized by the possibility of disconnected operations. It does
not permit complete decentralization because it maintains a central unit
and all operations obey a client/server paradigm. WISE [Alonso et al.,
1999] exploits the Web for its engine and offers an embedded fault han-
dler. WAWM [Riempp, 1998] focuses on the problems related to work-
flow management in wide area networks. Mobile [Jablonski and Bus-
sler, 1996] is developed to support inter-organizational workflows and
is strongly based on modularity. This characteristic alleviates change
management and also allows users to customize and extend aspects in-
dividually.

The analysis of these proposals suggests two different and dual ap-
proaches to the problem of workflow coordination. The first approach
supports the integration of autonomous and preexisting workflows and
it aims mainly at the coordination of different and independent actors.
The second approach supports the decomposition of single workflows to
support its autonomous execution by means of different engines. Cross-
Flow, Agent Enhanced Workflow, Event-based Workflow process Man-
agement, Adept, WISE and WAWM belong to the first approach. Men-
tor, Exotica and Mobile belong to the second class.

Described systems also offer three different solutions to the definition
of partitioning and allocation rules. The first solution proposes spe-
cific definition languages (Cross-Flow, Agent enhanced workflow, Men-
tor, Exotica). The second solution proposes the extension of workflow
languages with distribution rules (Cross-Flow, ADEPT, WISE, WAWM,
Mobile). The third solution does not consider the language for distri-
bution rules (Event-based, workflow Process Management). Cross-Flow
belongs to more than one class because the distribution rules are split
into several parts.

Our delegation model supports disconnected components, like Exot-
ica, the independence of workflow engines, like MENTOR, and the pos-
sibility of modifying the workflow instance at run-time, like ADEPT.
Moreover, we argue that the mobile environment needs a language stro-
ngly oriented to the automatic execution, like BPEL, but we also de-
mand for lightness, which is a mandatory feature if the system runs on



Workflow Partitioning in Mobile Information Systems 13

portable devices in ad-hoc networks. As far as the definition of rules is
concerned, our approach defines partitioning rules, but does not define
allocation rules. It demands them to the specific business process and
application domain.

6. Conclusions and future work

The paper presents an approach for partitioning the execution of
BPEL processes onto a network of mobile devices. The approach pro-
duces an overall execution model that is “equivalent” to the centralized
one, but supports disconnected components and independent workflow
engines.

Partitioning rules are specified using a graph transformation system
and implemented using a special-purpose tool called AGG. In this paper,
we demonstrate that these rules do not alter the execution flow by means
of sound observations and the presentation of a case study. The complete
demonstration is part of our future work. We are also working on making
presented rules more robust and on analyzing the transactional behavior
of partitioned sub-workflows.

The final goal is the definition of an automatic engine for the run-
time partitioning of workflows to execute them on a federation of mobile
devices.

Acknowledgments.. This work has been developed within the Ital-
ian MURST-FIRB Project MAIS (Multi-channel Adaptive Information
Systems) [MAIS Consortium, mais]. We are grateful to Prof. B. Pernici
for the profitable discussions about the arguments of this paper.

References

Alonso, G., Fiedler, U., Hagen, C., Lazcano, A., Schuldt, H., and Weiler, N. (1999).
WISE: Business to business e-commerce. In RIDE, pages 132–139.

Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., and Kochut, K. (2003). Healthcare
enterprise process development and integration. Journal of Research and Practice
in Information Technology, 35(2).

Baresi, L. and Heckel, R. (2002). Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective. In Proceedings of the First International Con-
ference on Graph Transformation (ICGT 2002), volume 2505 of Lecture Notes in
Computer Science, pages 402–429. Springer-Verlag.

Beyer, M. (1992). AGG1.0 - Tutorial. Technical University of Berlin, Department of
Computer Science.

Eder, J. and Panagos, E. (1999). Towards distributed workflow process management.
In In proc. of Workshop on cross-Organizational Workflow Management and Co-
ordination, San Francisco, USA.



14

Gaertner, G. and Cahill, V. (2004). Understanding link quality in 802.11 mobile ad
hoc networks. Internet Computing, 8:1:55 – 60.

Gardner, T. and al. (2003). Draft uml 1.4 profile for automated business processes
with a mapping to the bpel 1.0. IBM alphaWorks.

Grefen, P., Aberer, K., Hoffner, Y., and Ludwig, H. (2000). Crossflow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering, 15(5):277–290.

Hausmann, J. Hendrik, Heckel, R., and Taentzer, G. (2002). Detection of conflicting
functional requirements in a use case-driven approach: a static analysis technique
based on graph transformation. In International Conference on Software Engineer-
ing, pages 105–115.

Jablonski, S. and Bussler, C. (1996). Workflow Management: Modeling Concepts,
Architecture and Implementation. International Thomson.

Jablonski, S., Schamburger, R., Hahn, C., Horn, S., Lay, R., Neeb, J., and Schlundt,
M. (2001). A comprehensive investigation of distribution in the context of workflow
management. In In proc. of International Conference on Parallel and Distributed
Systems ICPADS, Kyongju City, Korea.

Judge, D., Odgers, B., Shepherdson, J., and Cui, Z. (1998). Agent enhanced workflow.
BT Technical Journal, (16).

MAIS Consortium (http://black.elet.polimi.it/mais/). Mais: Multichannel Adaptive
Information Systems.

Maurino, A. and Modafferi, S. (2003). Challenges in the designing of cooperative mo-
bile information systems for the risk map of italian cultural heritage. 1st Workshop
on Multichannel and Mobile Information Systems, held in conjunction of confer-
ence on Web information Systems Engineering, 2003, Roma.

Maurino, A. and Modafferi, S. (2004). Workflow management in mobile environments.
In proc. of International Workshop on Ubiquitous Mobile Information and Collab-
oration Systems UMICS, Riga, Latvia.

Mohan, C., Alonso, G., Gunthor, R., and Kamath, M. (1995). Exotica: A research per-
spective of workflow management systems. Data Engineering Bulletin, 18(1):19–26.

Muth, P., Wodtke, D., Weisenfels, J., Dittrich, A. Kotz, and Weikum, G. (1998).
From centralized workflow specification to distributed workflow execution. Journal
of Intelligent Information Systems, 10(2):159–184.

Reichert, M. and Dadam, P. (1998). Adeptflex − supporting dynamic changes of work-
flows without losing control. Journal of Intelligent Information Systems, 10(2):93–
129.

Riempp, G. (1998). Wide Area Workflow Management. Springer, London, UK.

Thatte, S. (2003). Business process execution language for web services. www-106.
ibm.com/developerworks/webservices/library/ws-bpel/.

Van der Aalst, W.M.P. and Weske, M. (2001). The p2p approach to interorgani-
zational workflows. In In Proc. of Conference on Advanced Information Systems
Engineering CAiSE, pages 140–156, Interlaken, Switzerland.

Vaughan-Nichols, S.J. (2003). The challenge of wi-fi roaming computer. IEEE Com-
puter, 36:7:17–19.


