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a b s t r a c t

We present a method to model sound descriptor temporal profiles using segmental models. Unlike stan-
dard HMM, such an approach allows for the modeling of fine structures of temporal profiles with a
reduced number of states. These states, we called primitives, can be chosen by the user using prior
knowledge, and assembled to model symbolic musical elements. In this paper, we describe this general
methodology and evaluate it on a dataset made of violin recording containing crescendo/decrescendo, glis-
sando and sforzando. The results show that, in this context, the segmental model can segment and recog-
nize these different musical elements with a satisfactory level.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The basic symbolic elements in modeling musical sound are of-
ten related to notes, i.e. events of constant pitch over a given dura-
tion. This assumption can however be limiting for a wide range of
new music, from contemporary classical (Kaltenecker, 2001; Möl-
ler, 2009; Bevilacqua et al., 2006) to electroacoustic music (Smalley,
1997). In such cases, temporal variations of sound characteristics
are central and should be emphasized for modeling.

Such considerations were already pointed out and addressed, as
early as the mid-1900’s, in Pierre Schaeffer’s works on a generic
ontology to describe musical sound (Schaeffer, 1966; Schaeffer
et al., 1967). His categorization was deeply grounded on notions
of temporal profiles of perceived spectral properties named typo-
morphology. Later, the role of temporal features was fully estab-
lished from a perception standpoint (Grey, 1977; Mcadams et al.,
1995).

From a computational point of view, sound categories defined
by Schaeffer (summarized in Chion, 1983) are appealing. Models
for some of these categories were recently implemented (Ricard
and Herrera, 2004; Peeters and Deruty, 2008) using discriminative
models. However, in these works, the aim was rather put on build-
ing parameters to condense the sound descriptors temporal pro-
files, which only captured specific aspects.

Similarly, we follow a morphological approach for musical
sound modeling. Our general goal is to model temporal profiles
of audio descriptors while relating them to a symbolic level. For
this, we propose to use a Hidden Markov Model framework, which
proved to be successful to model temporal data (Rabiner, 1989;
ll rights reserved.
Ghahramani, 2001; Young et al., 2006). The benefits of using such
generative state models include the possibility to build in a
straightforward manner hierarchical temporal structure, integrat-
ing prior knowledge. For example, in (Raphael, 1999; Ryynänen
and Klapuri, 2008), a Hidden Markov Model (HMM) for constant
pitch notes was incorporated into a higher level state model repre-
senting context knowledge (a score, a musicological model, or a
perceptive model as in Vogel et al., 2005). Extensions to such mod-
el for constant pitch note were proposed in (Cont, in press) to ac-
count for multiple pitches in a single event such as trills.
Although these works embedded temporal structures, the model-
ing still relied on the notion of successive steady values instead
of accounting for a specific shape.

In this paper we propose to model sound descriptor profiles
using a statistical framework called segmental models (SMs).
SMs are a generalization of HMMs that address three of their prin-
cipal limitations: (1) weak duration modeling, (2) assumption of
conditional independence of observations given the state sequence
and (3) restrictions on feature extraction imposed by frame-based
observations (Ostendorf et al., 1996). In contrast to HMMs, SMs
provide explicit state duration distributions, explicit correlation
models and use segmental instead of frame-based features. Specif-
ically, SMs allow for the adequate modeling of temporal profiles
with structural flexibility (Ostendorf et al., 1996) and permit to
incorporate expert knowledge at any structural level of the model.
SMs, previously proposed for pattern matching (Ge and Smyth,
2000) or for handwriting modeling in (Artières et al., 2007) reveal
to be effective when only partial training data is available. Further-
more, the explicit modeling of the duration proved to increase
robustness to noisy conditions (Morris et al., 2002).

If SMs have been used and implemented in the audio commu-
nity in the context of speech processing (Deng et al., 1994), they
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were much less exploited to our knowledge for non-speech sound.
In a previous study, we investigated preliminary aspects of the
modeling power of SMs (Bloit et al., 2009). In this paper we report
on a general methodology using SMs for the modeling of temporal
sound features that can be related to a symbolic level. In particular,
the modeling of music elements such as crescendo/decrescendo,
glissando, tremolo and sforzando within a continuous stream is
demonstrated. Nevertheless, as described, the approach we pro-
pose actually allows the user to build its own vocabulary using
simple procedures.

This paper is structured as follows. First, we describe the seg-
mental method and explain key differences with standard HMM
models. Second, we describe the method for building the vocabu-
lary made of musical units. Finally, we report and discuss results
obtained on violin recordings.
2. Modeling framework

In this section we first present the segmental model (SM),
which can be considered as an extension of standard HMMs. Sec-
ond, we discuss important differences between HMMs and SMs.
2.1. Segmental model

In a segmental model, we consider a joint distribution
pðyT

1; l
N
1 ; q

N
1 Þ over observation frames yT

1 ¼ ½y1; y2; . . . ; yt ; . . . ; yT �, a se-
quence of hidden states qN

1 ¼ ½q1; q2; . . . ; qn; . . . ; qN� with segment
durations lN

1 ¼ ½l1; l2; . . . ; ln; . . . ; lN�, where N is the number of units
in a state sequence, and T is the number of observed D-dimensional
frames (yt 2 RD). The K possible states S ¼ fs1; s2; . . . ; sk; . . . ; sKg
usually can be seen as symbolic units. In our case, these are the
states corresponding to the musical elements that the user chooses
to model.

The hidden layer dynamics is modeled with three distributions:

1. a state prior distribution pðiÞ ¼ pðq1 ¼ siÞ 8si 2S,
2. a state-duration distribution pðljsÞ, where l belongs to a finite

set of durations L,
3. a transition probability matrix A with elements defined as

aij ¼ pðqn ¼ si; qnþ1 ¼ sjÞ 8ði; jÞ 2 ½1; . . . ;K�2.

The state dynamics is semi-Markov, i.e. the state-distribution
could be governed by any chosen law. In comparison, the exponen-
tial duration law in HMMs usually favors shorter state durations
(Tóth and Kocsor, 2005).

The observation distribution differs from an HMM as illustrated
on Fig. 1. Instead of emitting a single observation, a segmental state
qn with duration ln emits a segment ytn

tn�lnþ1 with probability
pðytn

tn�lnþ1jln; qnÞ where tn is the ending time of the nth segment.
As a consequence, there is possibly fewer elements in qN

1 than in yT
1.
Fig. 1. Observation emission process for a single state. The HMM state emits one
observation frame. A segmental model state emits an observation sequence, which
distribution is also conditioned on segment duration ln .
Considering this formulation, the joint distribution over the
model variables can be expressed as:

pðyT
1; l
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1 ; q

N
1 Þ ¼ p yT

1jl
N
1 ; q

N
1

� �
p lN

1 jqN
1
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p qN

1

� �
: ð1Þ

The segmental model makes the assumption of independence
between observation segments given state and duration pairs.
For the first term in (1) this yields the following expression:

p yT
1jl

N
1 ; q

N
1

� �
¼
YN
n¼1

pðytn
tn�lnþ1jln; qnÞ: ð2Þ

Moreover, the assumption of state conditional independence
between successive segments durations allows to express the sec-
ond term in (1) as:

pðlN
1 jqN

1 Þ ¼
YN

n¼1

pðlnjqnÞ: ð3Þ

Finding the most likely state sequence for an observation se-
quence involves searching a state space that has a size of approx-
imately jSj � jLj (approximately only because we can define a
different distribution support for each distinct state in S). This is
done by finding

bN ; q̂bN1 ; l̂bN1
� �

¼ argmax
N;qN

1 ;l
N
1

p yT
1jl
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1 ; q
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1
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1 jqN
1

� �
pðqN

1 Þ; ð4Þ

which explores every possible segmentation. This is solved with an
extension of the Viterbi algorithm (Deng et al., 1994; Russell, 2005),
with an additional search dimension spanning every possible dura-
tion in the decoding lattice.

2.2. Motivations

The following example points the specificity of the segmental
modeling framework compared to a classic HMM. From its descrip-
tion, we intend to give a qualitative insight on our motivations.
Consider the classes fA;B;Cg shown in Fig. 2 characterized by spe-
cific temporal profiles, each being segmented in three successive
parts: an initial constant phase, a transition step, and a final con-
stant phase. Given the clear 3-phase structure of each class, it
seems straightforward to build a three-state left-to-right model
for each class.

Let us consider Dðs1; s2Þ, the probabilistic divergence between
two states. In the HMM case, the discrimination of class A and B
would essentially rely on the high values given by Dða1; b1Þ and
Dða3; b3Þ, and much less on the Dða2; b2Þ since the data in both
states span over the same interval. For the same reasons, B and C
could be easily discriminated. However, the discrimination be-
tween A and C would be more problematic since their only distinc-
tive feature lies in their middle phase: a single HMM state for this
phase would not suffice to discriminate between A and C, since
they would both share similar distribution centered on close mean
values. To solve this within a standard HMM framework, a signifi-
cant larger number of states should be necessary to model the mid-
dle phase of the C model. However, the use of segmental states
could discriminate between A, B and C, since the states would mod-
el the entire segment profiles and not only segment mean values.

3. Method

We present the followed methodology on a violin phrase data-
set. Details on the set of primitives, and their associated duration
distributions are given. We also explain how the primitives are
assembled together to model elements of a musical vocabulary be-
fore presenting the evaluation procedure.



Fig. 2. Three classes fA;B;Cg defined by their specific time profiles, and their annotation into sub-unit, annotated as ½x1; x2; x3� for a given class X.
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3.1. Dataset

We recorded a dataset with musical elements selected for their
specific temporal profiles. Precisely, we defined a musical vocabu-
lary composed of four pitch profiles (Fig. 3a),

� P1: upward glissando,
� P2: downward glissando,
� P3: constant pitch,
� P4: tremolo,

and four intensity profiles (Fig. 3b),

� I1: crescendo,
� I2: decrescendo,
� I3: constant intensity,
� I4: sforzando.

Crescendi (resp. glissandi) correspond to a continuous intensity
(resp pitch) increase from one level to another. Sforzando consists
in a sharp attack, a short decay followed by a longer sustain. Trem-
olo corresponds to two pitches alternating very rapidly.

We generated short music sketches by randomly combining
these vocabulary elements. Each sketch contains two randomly
chosen pitches, in a four-beat score. Each beat consists in a combi-
nation of one intensity profile Ii and one pitch profile Pj. No global
dynamic levels (e.g. piano or fortissimo) are imposed but only dy-
namic variations (crescendi and decrescendi). Fig. 3c shows an
example of such a generated music sketch.

The generated scores were interpreted by a violin player at a
fixed tempo of 25 bpm. We recorded 25 sketches containing the
various pitch and intensity profiles in random proportions. From
the recording (sampled at 44,100 Hz), we extracted two sound
descriptors, highly correlated to the musical notions of pitch and
intensity, namely fundamental frequency (de Cheveigné and
Kawahara, 2002) and loudness (Moore et al., 1997). These descrip-
tors were computed on 46.4 ms windows, with a hop size of
Fig. 3. Vocabulary of four profiles on the pitch dimension (a) and four profiles on
5.8 ms, yielding an approximate frame rate fr ¼ 172 Hz for the
descriptors data. In order for the considered pitch profiles to be
shift-invariant along the frequency axis, we use a logarithmic scale
(unit: cents).

3.2. Set of primitives

We designed a set of primitives as elementary units of the
vocabulary elements. One advantage of the proposed methodology
is precisely to leave to the user the choice of these primitives. This
choice allows one to emphasize particular profiles, that could be
related to notation or semiotic level. In our case, our choice (see
Fig. 4) was motivated by works by Bootz and Hautbois where they
introduce a set of parametric temporal patterns (Bootz and Haut-
bois, 2007) related to Temporal Semiotic Units (Frey et al., 2008).
We devised the primitives as follows:

� f1: constant horizontal,
� f2: linearly increasing,
� f3: linearly decreasing,
� f4: impulse up,
� f5: impulse down,
� f6: bell shape.

3.3. Model topology

The primitives were concatenated to build profile models of the
vocabulary elements. Formally, this consisted in defining a topol-
ogy for the segmental model. The pitch and intensity profile classes
were therefore defined as follows:

� P1 and I1: left–right topology with primitives ff1; f2; f1g.
� P2 and I2: left–right topology with primitives ff1; f3; f1g.
� P3 and I3: single state with primitives ff1g.
� P4: left–right topology with primitives ff4; f1; f5; f1g.
� I4: left–right topology with primitives ff6; f1g.
the intensity dimension (b). A sketch example combines these profiles (c).



Fig. 4. Set of primitives.
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Such a topology is relatively intuitive to define. For pitch and
loudness glissando classes P1;2 and I1;2, the succession of primitives
ff1; f2; f1g model the continuous progression from one pitch (resp.
intensity level) to another pitch (resp. intensity level), while P3

and I3 represent a constant period. For pitch class tremolo P4, we
interleaved short constant segments between primitives f4 and f5

to authorize some temporal flexibility. Since the state duration dis-
tribution is explicitly defined by a non-exponential distribution,
we did not allow self-transitions for states.

The profile models were further merged into a global profile-se-
quence model, with a topology allowing transitions between all
the profile models (see Fig. 5). A uniform prior distribution was
set for states entering a profile model. Notice that two independent
profile-sequence models were built for pitch and intensity, in order
to allow different segmentations depending on the considered mu-
sical dimension.

3.4. Model distributions

In order to capture the shape of a primitive, along with its char-
acteristic duration, we used a trajectory model to represent the
state conditional observation probability (right term in Eq. 2). For
a given state sk with duration l, the trajectory model is a sequence
of l Gaussians with means ll

1 sampled on a primitive shape, and a
shared variance term rk. The observation likelihood is approxi-
mated, as done in (Artières et al., 2007):

�logpðyl
1jl; skÞ ¼

1
2

Xl

i¼1

ðyi � liÞ
2

r2
k

: ð5Þ

Because we wanted to recognize shapes without depending on their
absolute spatial values, we modeled the data’s first order time
derivative

For the state duration distributions, we simply set a uniform
distribution defined on a set of possible durations Lk for each
state. This avoids to bias the segment duration towards a shorter
durations as it would be the case with an exponential law. It also
allows the user to decide which segments are likely to be stretched
or not. This is crucial for musical data where the specific structure
of a profile calls for non-linar stretching along its primitives. For
example, the cases of vibrato, glissando and ornement typically fol-
low different schemas when stretched: for the vibrato, more cycles
Fig. 5. Global topology for the sequence model of pitch p
should be added to the vibrato, for the glissando, the whole shape
should be stretched while for the ornement, the main note should
be stretched but not the ornement (Desain and Honing, 1992).

The model parameters where manually set by observation on a
single example for each profile, outside the testing database. The
primitives f1;2;3 are characterized by their constant slope. Observa-
tion distribution for their corresponding states in the global model
were thus set with a unique value for ll

1.
Primitives f4;5;6 were defined by sampling a representative

example. In contrast to the previous primitives, we wanted here
to benefit from fine shape details of actual sampled data.

Primitives were assigned duration distributions and linearly
resampled according to each possible length. In our case, we chose
to allow for a relatively large duration range for f1;2;3ð½0:230; 2:5� s).
The range distribution for the impulse primitives f4;5 is short
([0.025; 0.075] s), which was consistent with the fact they essen-
tially model sharp transitions. For f6; the duration range is medium,
i.e. between in the other mentioned cases ([0.375; 1.12] s).
3.5. Evaluation tasks

The proposed approach was evaluated on two independent rec-
ognition tasks performed on the recorded dataset:

� task T1: recognize the four pitch profiles within a sketch.
� task T2: recognize the four intensity profiles within a sketch.

As such, the recognition tasks included two sub-tasks, namely
segmentation of the classes within a continuous stream and classi-
fication. Each sketch is decoded twice: once with the pitch model,
and once with the loudness model (Fig. 5). The decoding is
achieved through maximizing the most likely state sequence (see
Eq. 4). The resulting sequence of state-index qN

1 and durations lN
1

are subsequently mapped to the corresponding profile labels and
associated time tags. This information is then handled to the eval-
uation step.

Evaluation is carried out using segmentation metrics defined for
the MIREX 06 Score Following contest (Cont et al., 2007), as well as
usual phone recognition metrics as presented in (Young et al.,
2006). Each sketch in the test set was manually annotated with
time tags and profile name labels as a reference. The evaluation
metrics are computed as follows. A one-second tolerance window
is centered on the reference time tag. For each reference segment,
we attribute a detection label depending on what is detected inside
the tolerance window: if a new event with the correct label is de-
tected, we register a hit (H); if it has a wrong label, we register a
substitution (S). If the correct label start within the reference seg-
ment region, but outside the tolerance interval, it is a late (L),
and if no label starts within the tolerance interval, we register a
rofiles, and the sequence model of intensity profiles.
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deletion (D). Any additional event starting during the reference was
counted as an insertion (I).

4. Results

Typical recognition results are illustrated on Fig. 6 for one ex-
cerpt of a recorded sketch. In this figure, segmentation results are
displayed for both pitch and intensity profiles. This sequence di-
rectly indicates the two levels of modeling we set: the level of prim-
itives (dashed lines), and the level of classes (solid lines), grouping
the primitives and corresponding to symbolic music elements we
wanted to model. Precisely, each primitive expresses different
phases of the class. On this particular example, we can see that
the crescendo (class I1) has a longer increase phase with shorter con-
stant phases, while an opposite behavior is found for pitch (class
P1). The detailed view for the pitch class P4, displayed on Fig. 7,
illustrates the ability to capture the periodic aspect of this class,
indicated by the clear repeated sequence of states fs8; s9; s10; s11g.

We found that the segmentation was relatively robust to vari-
ous artefacts that were present in the descriptor profiles. For exam-
ple, loudness values were drastically altered by the note tremolo
occurring simultaneously, which was supposed to appear only in
the pitch estimation (classes I1 and P4 on Fig. 6). Such an effect
however did not influence the segmentation and recognition. This
shows that an adequate choice of primitives can adequately add
Fig. 6. A four-beat music sketch (a) with its resulting segme
robustness. Pitch estimation also suffers from artefacts, especially
on class P4. Nevertheless, the SMs were able to segment correctly,
excepted for large errors which forces the system to insert incor-
rect elements.

The evaluation metrics are reported for all tested sequences on
Fig. 8. They show that classes were correctly recognized in 86% of
the cases for pitch and 63% of the cases for loudness. For the pitch
profiles, occasional substitutions, deletions and late detections
were found (resp. 2%, 3% and 9%). However, the number of inser-
tions was relatively important (meanI ¼ 82:5%). As already men-
tioned above, pitch estimation errors typically led to insertions,
especially at note onsets where pitch values are largely erroneous.

Interestingly, the analysis actually reveal some interpretation
features that were not expected by our choice of the class struc-
ture. For example, when playing two successive upward glissandos
(P1), the violinist would perform a short downward glissando in be-
tween, not indicated in the score. Such an effect clearly appears in
the signal and was correctly detected and labeled by the segmental
model (see P2 insertion on Fig. 6).

Results on loudness classes exhibited more errors (meanL ¼ 5:5%,
meanD ¼ 9:5%, meanI ¼ 12:5%). More substitutions were however
performed (meanS ¼ 22%) than for pitch. However, substitutions
were dependent on the sequence as can be seen on Fig. 8. These er-
rors can be explained by the difference between the score and the
instrumentalist performance: for instance, the preparation for a
ntation into intensity profiles (b) and pitch profiles (c).



Fig. 7. A detail view from the decoded state sequence for pitch profile P4 from Fig. 6c.
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Fig. 8. Stack view for evaluation metrics of all sequences (with a one-second
tolerance interval), as a percentage related to the number of reference profiles per
sequence: (a) scores on task T1; and (b) scores on task T2 (H = hit, L = late,
S = substitution, D = deletion).
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sforzando may imply an intensity raise of the previous stroke, what-
ever class it may pertain to.
5. Conclusion

In summary, we proposed a method to model sound descriptors
as temporal profiles, using a modeling framework based on seg-
mental model, still rarely exploited for non-speech audio. Actually,
our approach is well suited for morphological sound description.

We described our methodology for modeling and segmenting in
a particular case of violin phrases, and carried on an evaluation.
The results showed promising results, while indicating specific
limits of the current model. This suggested future refinements of
the global sequence model, simply built by assembling elementary
profile models at the signal level. For example, additional context
modeling could be taken into account. Also, these two sound
descriptors were considered as independent streams, while they
both relate to the same performance. Fusing the data streams could
yield better segmentation results, by relying on data correlations,
or compensating for noise in one of the streams. Besides, we could
apply this modeling framework to multidimensional descriptors.
Extending the segmentation towards an online version could also
be considered with a short-time Viterbi algorithm (Bloit et al.,
2008).

Finally, although no statistical learning was used to optimize
the model parameters, the evaluations demonstrated that the di-
rectly interpretable model structure allows for user-centric defini-
tion of the model primitives. Such a flexibility represents a
promising feature of this method.
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