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Abstract  To support countries implementing CSA solutions, the Economics and 
Policy Innovations for Climate Smart Agriculture (EPIC) group at FAO uses a meth-
odology based on building a solid evidence base. The knowledge gained from data-
sets that combine household, geographical and climate data helps design policies 
that enhance food security and climate resilience while also taking advantage of 
mitigation opportunities to obtain financing. Appropriate application of CSA prin-
ciples depends on specific conditions that vary between and within countries. 
Demographic, environmental, economic and institutional factors are all important 
determinants of the effectiveness of any particular policy. This chapter builds upon 
econometric results obtained from previous analyses by developing a conceptual 
model that introduces the temporal aspects of household vulnerability. The method 
is based on a factorial design with two vulnerability levels (high and low) and two 
production methods (conventional or business as usual, and improved agricultural 
management with high CSA potential). Farms are classified into groups based on 
cluster analysis of survey data from Zambia. Results provide a baseline consisting 
of probability distributions of yields, labor use, cash inputs and profit for each of the 
four combinations of vulnerability level and production system. This is useful for 
stochastic dominance analysis, but additional work is required to incorporate the 
temporal aspect of the problem. The chapter identifies data gaps and additional 
analyses required to capture the spatio-temporal aspects of household vulnerability 
and adaptive capacity.
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1  �Introduction

In its most general definition, resilience is the ability of a system to react or cope 
with change. More specifically, the concept refers to the ability of a system to 
respond to shocks (temporary) or more persistent adverse trends (stressors) 
(Hoddinott 2014). In the context of food security, resilience means being able to 
achieve or maintain food security in spite of shocks or permanent stressors. This 
implies reducing the risk of becoming food insecure, increasing adaptive capacity to 
cope with risks and effectively respond to change over time.1

From the standpoint of CSA, of which food security is one key pillar, the impor-
tance of understanding resilience arises from the need to address the vulnerability 
of farm households to climate change, which is determined by a combination of 
adaptive capacity and exposure to shocks and slower changes (Adger et al. 2004; 
IPCC 2007a; OECD 2009; IPCC 2014).

A conceptual framework for thinking about resilience is illustrated in Fig.  1. 
Adaptive capacity is affected by both the internal state of the farm household (edu-
cation, age, farm area, assets owned, land productivity) and the external state expe-
rienced at the local level (technologies available, institutions, policies, infrastructure, 
markets).

This is a dynamic system where the internal state changes over time depending 
on the outcomes of household decisions such as the crop mix, input use, production 
methods and off-farm activities. The outcomes are affected by climate (through 
yields) and markets (through prices) which are out of the control of the household. 
For example, a good season combined with strong markets helps build financial 
capital reducing vulnerability, whereas a string of poor seasons may result in loss of 
financial or human capital (by the selling of assets or migration of family members 
to the city), increasing vulnerability of the household.

Both the internal and external states can change over time depending on policies, 
for example education and extension improve the internal state (human capital), 
whereas R&D and transport infrastructure improve the external state by providing 
new technologies and improving access to markets. Climate change affects the 
internal state indirectly by changing the yield probability distributions, for example 
due to increasing frequency of dry spells, floods and storms. It can also affect the 
external state, as in the case of severe storms destroying transport and communica-
tion infrastructure.

Individual households make decisions based on the options available to them 
(Fig. 1), and their actions result in outcomes (i.e. profits) whose probability distribu-
tion is determined by both the internal and external state as well as by the changing 
climate. These influences are represented as dotted lines in Fig. 1. The dynamic 
aspect of the problem is represented by the solid arrow between outcomes and the 

1 HLPE, Climate change and food security. A report by the High Level Panel of Experts on Food 
Security and Nutrition of the Committee on World Food Security, (FAO, Rome, 2012). http://www.
ifpri.org/sites/default/files/HLPE-Report-3-Food_security_and_climate_change-June_2012.pdf.
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internal state. The outcomes at the end of each growing season will determine 
whether the household is able to improve its state (i.e. build human and natural capi-
tal), thus enhancing its resilience.

The empirical implementation of the model illustrated in Fig. 1 requires a num-
ber of relationships to be known for the particular situation of interest. The options 
available to households depend not only on the technologies that are suitable for the 
area, but also on their ability to access these technologies through knowledge and 
investment capital. This suggests that understanding constraints at the household 
level is a key to assessing vulnerability. A behavioral model is required to under-
stand the decisions taken by households given the constraints they face. The stan-
dard approach is to assume utility maximization, where utility is a function of 
expected profits and risk (Moschini and Hennessy 2001).

The propensity of households to adopt given technology packages, and the prob-
ability distributions of outcomes, can be inferred empirically from existing data. 
Estimating the effects of climate shocks on the shape of these distributions is more 
difficult as it would require panel data for a number of years involving a range of 
different climatic conditions. In the absence of these, it may be possible to infer 
changes in outcome distributions using crop simulation models.

Many CSA practices can increase food production and the adaptive capacity of 
the food production system, while at the same time reducing net greenhouse gas 
emissions by capturing carbon in biomass and soils. However, capturing these long-
term synergies may entail significant costs in the short term, and other barriers to 
adoption of CSA may be present, particularly for smallholders (McCarthy et  al. 
2011).

According to FAO (2011) the pillars of adaptation in agriculture are soil health, 
water conservation, diversification and local institutions. The Economics and Policy 
Innovations for Climate Smart Agriculture (EPIC) programe at FAO has been 
addressing these issues for a number of years, formally grounded on a substantial 
evidence base that continues to grow (Arslan et al. 2014, 2015; Asfaw et al. 2014). 
In this study we focus on the first two factors: soil health and water conservation, 
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Fig. 1  Conceptual model illustrating the key relationships of concern in this study
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both of which are related to farming methods involving minimum soil disturbance 
(MSD). MSD, while contributing to soil health, increases water retention and mois-
ture and is considered as one of the practices with potential to contribute to the CSA 
pillars. This chapter contributes towards building up an empirical model for the 
conceptual framework illustrated in Fig. 1 as a useful tool for policy analysis. This 
paper forms a base from which the temporal aspects of the problem can be addressed 
through simulation of climate scenarios in future research.

2  �Data and Methods

The data used in this analysis come from a household survey conducted by EPIC in 
2013 to support a detailed cost benefit analysis of crop practices in Zambia, with the 
purpose of comparing agricultural practices with CSA potential to conventional 
ones (see Branca et al. 2015). Given the low adoption rate of agricultural practices 
with CSA potential encountered in the country (Arslan et al. 2014), the need for an 
ad hoc study emerged to understand the performance of households who adopt the 
recommended practices as well as related costs and benefits.

The first step required identifying a sample that allowed such comparison, start-
ing with defining what was “conventional” for Zambia as opposed to “alternative 
practices,” whose CSA potential had to be assessed. Initial screening of the farming 
practices in use in the country was conducted through literature review, key infor-
mant interviews and qualitative analysis. The screening allowed identification of the 
most common farming practices defined as “conventional”. Conventional practices 
were then contrasted with the “alternative practices” identified by compiling a list 
of various farming practices in different combinations with sustainable land man-
agement as a common factor (see Branca et al. 2015).

Households were randomly selected from the population of adopters of “alterna-
tive practices”, maintaining representativeness of agro-ecologies in different dis-
tricts, provinces and camps. Households were selected so as to cover enough 
agricultural camps with adopters of improved practices in a diversity of agro-
ecological regions while also ensuring a balanced presence of non-adopters. The 
final sample included 695 rural households randomly selected within the population 
of adopters and non-adopters in eight districts of two agro-ecological regions (AER 
IIa and AER III, see Fig. 2).2 The data collected include detailed information on 
household structural characteristics, farming practices adopted, quantities and costs 
of all inputs (including hired or family labor), yields and marketed returns, and 
input and output farm-gate prices. This information provides a baseline to study the 
adaptive capacity of different types of households based on a factorial design 
whereby we compare two vulnerability levels (high and low) and two production 

2 The sample covers the districts of Mumbwa, Chibombo, Katete, Chipata, Chinsali, Mpika, 
Kalomo, and Choma.

O. Cacho et al.



429

methods (conventional and MSD). Farms are classified into groups based on cluster 
analysis as described later.

The data suggest that a wide range of combinations of practices are being used 
by farm households in Zambia, and these have been grouped into two main catego-
ries based on the tillage method applied: (1) farmers that use conventional (CONV) 
tillage techniques (including oxen ploughing and hand hoe ploughing, ridging and 
bunding) as opposed to (2) farmers that adopt sustainable land management prac-
tices based on the principle of MSD and water conservation (including planting 
basins and potholes and ripping with oxen/tractor). Later in the analysis MSD is 
further split according to its emphasis on labor or capital inputs.

Previous work has shown that MSD generates higher average benefits in drier 
areas (Branca et al. 2013) and that adoption rates are higher in these areas, espe-
cially under high rainfall variability, both of which are conditions that characterize 
AER I, IIa and IIb in Zambia (Arslan et al. 2014). However, it should be noted that 
various SLM practices (including MSD, crop rotations with legumes, residue reten-
tion and agroforestry) have been primarily promoted in AER IIa, likely due to its 
proximity to the railway line and to Lusaka and other urban centers. Region IIa has 
received more assistance from government, NGOs and donor organizations, and is 
the geographic focus of outgrower schemes and conservation farming. This is also 
reflected in our sample as MSD fields are found only in AER IIa, which runs 
east-west through the center of the country on the plateau of the Central, Lusaka, 
and Eastern Provinces and parts of Western and Southern Provinces. The region is 

Fig. 2  Map of study area and sample points (Source: Branca et al. 2015)
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sometimes referred to as Zambia’s maize belt, as almost half of all maize produced 
in the country is grown in twelve of its districts (MAL 2007). AER IIa is also recog-
nized as a vulnerable area. About 41% of Zambian farm households live in this 
region and are mostly engaged in crop production.3 The area is characterized by a 
semi-arid climate, where maize yields are projected to decrease significantly as a 
result of increased frequency of droughts and hot days and nights based on country-
specific climate change models (Kanyanga et al. 2013).

Given the sampling frame of the data and evidence of expected benefits of the 
practices analyzed here under climate change,4 we focus our analysis only on AER 
IIa. Moreover, given the key importance of maize for food and nutrition security in 
the country (MAL 2007), we restrict our sample to maize producers, resulting in a 
subset of 487 households.

The heterogeneity of the farm populations means that vulnerability is expected 
to differ significantly between households. To capture vulnerability differences that 
are relevant to policy choices, it is convenient to identify segments of the household 
population with common attributes, and to conduct analysis for these farmer groups. 
Cluster analysis provides a method to identify the appropriate number and descrip-
tion of farmer typologies (Acosta-Michlik and Espaldon 2008).

We conduct our analysis for two types of smallholder households that were 
clearly identified based on cluster analysis: (i) smaller farms with few assets 
(hypothesized to be more vulnerable), and (ii) larger farms with more assets 
(hypothesized to be less vulnerable). We first conduct analyses of means to detect 
differences between the probability distributions of the production methods (CONV 
and MSD) between these two farm types. Variables analyzed include maize yields, 
labor use, fertilizer use, cash inputs, profits and returns to labor.

Given the baselines obtained from the analysis of household types (low and high 
vulnerability) and production systems (CONV and MSD) it was clear that there are 
two distinct types of MSD applications in the sample: one that relies mostly on 
labor (using hand hoes to dig planting basins/potholes) and another that uses capital 
(oxen or machinery) for ripping. We denote these groups as MSD-L and MSD-K, 
respectively. This classification conforms with reports in the literature that find 
labor requirements for planting basins as one of the main constraints for the adop-
tion of this practice in the region (Baudron et al. 2007; Mazvimavi 2011; Ngoma 
et al. 2014).5 No distinction regarding emphasis on capital or labor was identified in 
the case of CONV, which consisted of a relatively small sample.

3 The statistical surveys conducted by the Ministry of Agriculture and Livestock in collaboration 
with the Central Statistical Office in 2002/03 show that more than 97% of households residing in 
AER IIa are engaged in crop production activities.
4 MSD is effective in keeping soil moisture, therefore it can be expected to be adopted more widely 
in dry areas that are projected to get even drier – as reported in Arslan et al. (2014).
5 MSD primarily based on planting basins is the integral part of the Conservation Farming pack-
ages that have been heavily promoted in Zambia since 1990’s. In recent years there is a shift 
towards promoting CF based on ripping, which require less labor compared to planting basins.
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The analysis concludes by comparing the full probability distributions of key vari-
ables between farm clusters and production methods. The key variables are com-
pared in terms of stochastic dominance to determine whether any one practice would 
be preferred to others independently of the risk aversion level of the decision maker. 
The chapter concludes by identifying the additional information and analyses that 
would be required to implement an analytical model such as illustrated in Fig. 1.

3  �Results and Discussion

Descriptive analysis  Analysis of unconditional means (Table 1) provides evidence 
that farms using MSD have significantly higher average yields than farms using 
conventional till (CONV) in the study area (2101 vs 1675 kg/ha). However, this is 
accompanied by higher labor requirements (108 vs 80 days/ha) and cash inputs (274 
vs 207 $/ha). The amount of fertilizer used by farmers practicing MSD tended to be 
higher (211 vs 180 kg/ha) but not significantly (p = 0.12).

The combination of higher yields and higher input use still results in higher aver-
age gross margins under MSD ($160/ha) than under conventional till ($139/ha), but 
this difference is not statistically significant (Table 1). When the imputed cost of 
family labor is included in the calculation, profits are quite similar (50 vs 58 $/ha for 
MSD against CONV) (see also Branca et al. 2015). Return to labor is significantly 

Table 1  Tests of differences in means of key variables between farms using conventional till 
(CONV) and those using sustainable land management (MSD)

Variable CONV MSD Total
p(|T| > |t|)Number of farms 84 370 454

Maize yield** Mean 1674.52 2101.47 2022.47
(kg/ha) SE 170.49 82.34 74.47 0.03
Labor** Mean 80.49 107.97 102.88
(pd/ha) SE 8.41 5.46 4.74 0.01
Fertilizer Mean 179.81 211.33 205.50
(kg/ha) SE 17.39 8.79 7.86 0.11
Cash inputs*** Mean 206.85 273.57 261.22
($/ha) SE 15.53 9.47 8.32 0.00
Gross margin Mean 139.12 160.49 156.53
($/ha) SE 32.22 14.88 13.50 0.54
Profit Mean 58.54 49.67 51.31
($/ha) SE 32.86 15.10 13.71 0.80
Labor productivity* Mean 71.63 40.64 46.37
(kg maize/pd) SE 34.19 3.34 6.88 0.08
Return to labor* Mean 6.64 2.99 3.67
($/pd) SE 4.23 0.48 0.87 0.10

Means are significantly different at p<0.1 (*); p<0.05 (**); or p<0.01(***)
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lower for MSD than for CONV (2.99 vs 6.64 $/pd), corresponding to lower labor 
productivity (40.6 vs 71.6 kg maize/pd).

Using nationally representative data from 2004 to 2008, Arslan et  al. (2014) 
found that the adoption rate of MSD was quite low, and that it had decreased signifi-
cantly between the two years. The only province with increased adoption levels was 
the Eastern province, which is mostly in AER IIa with a high density of projects 
promoting conservation farming, of which MSD is the main component. Possible 
reasons for low adoption in general include that farmers face labor and capital con-
straints, or that they do not perceive MSD to be more profitable than using tillage – 
at least in the short run during which there may be no significant yield difference 
until the soil quality is improved, which requires 3–5 years of repeated MSD prac-
tice (McCarthy et al. 2011). Although average gross margins and average profits 
were positive for both systems, they were quite low (Table 1), and a high proportion 
of farms experienced negative profits, suggesting that the opportunity cost of their 
labor is lower than the wage rate used in the calculations,6 perhaps because there are 
no alternative employment opportunities.

Cluster analysis  Cluster analysis revealed two distinct groups of farms as described 
above and illustrated in the dendogram in Fig. 3, consisting of 55 and 45 percent of 
the sample. There are clear differences in the mean values of variables used to form 
the clusters (Table 2). Although all the farms in the sample are smallholders, Cluster 
1 has larger farms than Cluster 2 (with means of 4.02 ha vs 2.21 ha). Farmers in 
Cluster 1 tend to be better educated, have more livestock, more wealth and larger 
households. The difference in wealth is especially obvious, with an average wealth 
index7 of 0.64 for Cluster 1 compared to −0.47 for Cluster 2. All household heads 
are male in Cluster 1, whereas 30 percent of them are female in Cluster 2. These 
results suggest that farms in Cluster 2 are potentially more vulnerable to shocks, as 
they have fewer assets to draw from in emergencies (particularly livestock) and have 
less wealth. This means they are likely to be less resilient than farms in Cluster 1.

Table 3 shows that, on average, Cluster 1 farms have higher maize yields 
(2172 kg/ha vs 1838 kg/ha) and higher profits (85.69 vs 8.80 $/ha) than Cluster 2 
farms. In contrast, Cluster 2 farms use more labor (124 vs 86 pd/ha on average) and 
less cash inputs (241 vs 277 $/ha), reflecting the presence of cash constraints. This 
becomes more evident in the distribution analyses presented later. The large differ-
ence in profits between clusters (Table 3) reflects the higher reliance on labor expe-
rienced by Cluster 2, which combined with lower labor productivity (28.7 vs 60.7 kg 
maize/pd) results in lower returns to labor (2.18 vs 4.87 $/pd).

Tests of differences between CONV and MSD within each cluster (Table 4) indi-
cate that the patterns observed above for the pooled data are also present within each 
of the two clusters: MSD produces higher yields on average, but it requires more 

6 Labor costs were estimated at the prevailing wage rate in the rural labor market in the study area 
using rates that differ by farm activity type collected through a Community level questionnaire.
7 The wealth index is constructed using principal component analysis. It includes the following 
variables representing key assets owned by the household: number of ploughs, number of harrows, 
number of cultivators, number of rippers, number of tractors, number of cars, number of bikes.
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Fig. 3  Dendogram of cluster analysis

Table 2  Mean values and standard errors (SE) of variables used in cluster analysis and results of 
t test of differences between means

Cluster 1 Cluster 2 Total
p(|T| > |t|)Number of farms 251 203 454

Female head*** Mean 0.00 0.30 0.13
SE 0.00 0.03 0.02 0.00

Age of head Mean 45.71 46.00 45.84
SE 0.78 0.91 0.59 0.81

Average education* Mean 7.27 6.91 7.11
SE 0.11 0.16 0.10 0.06

Adults per ha*** Mean 1.55 2.18 1.83
SE 0.08 0.12 0.07 0.00

Dependency ratio Mean 1.25 1.23 1.24
SE 0.06 0.07 0.04 0.81

Household size*** Mean 8.38 6.57 7.57
SE 0.20 0.17 0.14 0.00

Farm size*** Mean 4.02 2.21 3.21
SE 0.20 0.11 0.13 0.00

Cattle*** Mean 9.56 0.62 5.56
SE 0.87 0.18 0.53 0.00

Goats and sheep*** Mean 9.90 3.79 7.17
SE 1.37 0.60 0.82 0.00

Wealth index*** Mean 0.64 −0.47 0.15
SE 0.07 0.03 0.05 0.00

Means are significantly different at p<0.1 (*); p<0.05 (**); or p<0.01(***)
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labor and cash inputs. As a result, MSD has lower returns to labor, with the lowest 
return ($2.15/pd) experienced by Cluster 2 farms.

It is difficult to draw general conclusions from the analysis of differences between 
means presented in Table 4. In some cases there are significant differences between 
clusters or between production methods, but these differences are not always con-
sistent. This suggests that further partitioning of MSD is required as explained in the 
Methods section. The remaining analyses distinguish between MSD-L and MSD-K 
to indicate emphasis on the use of labor or capital respectively.

Table 5 presents average values for the variables of interest, partitioning the data 
by cluster and by production system. These results show the logic behind distin-
guishing between MSD practices based on their labor intensity. The average labor 
required by MSD-L (140 and 174 pd./ha for clusters 1 and 2 respectively) is consid-
erably higher than that required by MSD-K (76 and 99 pd./ha). In fact, the labor 
used in MSD-K is comparable to that of CONV in both clusters (79 and 83 pd./ha). 
This indicates the extent to which the availability of capital (oxen in this case) helps 
overcome labor constraints of adopting MSD. As before, return to labor tends to be 
higher for CONV than for MSD (Table 5), with the exception of MSD-K in Cluster 
2, which is higher than for CONV (2.63 vs 2.34 $/pd).

Figure 4 presents cumulative distribution functions (CDF) for yields, labor and 
fertilizer use. The left sections of the yield distributions for MSD are to the right of 
those for CONV in both clusters (Fig. 4a, b), except for the lowest-yielding farms 
under MSD-K in Cluster 1. The higher labor requirements of MSD identified above 

Table 3  Means of selected variables related to maize production and t test of differences between 
clusters

Variable Cluster 1 Cluster 2 Total p(|T| > |t|)

Practicing MSD Mean 0.81 0.82 0.81
SE 0.02 0.03 0.02 0.71

Maize yield** Mean 2171.87 1837.75 2022.47
(kg/ha) SE 105.67 102.10 74.47 0.03
Labor*** Mean 85.63 124.21 102.88
(pd/ha) SE 5.34 8.05 4.74 0.00
Fertilizer Mean 215.43 193.22 205.50
(kg/ha) SE 10.04 12.43 7.86 0.16
Cash inputs** Mean 277.25 241.41 261.22
($/ha) SE 10.35 13.40 8.32 0.03
Gross margin Mean 171.84 137.61 156.53
($/ha) SE 19.73 17.76 13.50 0.21
Profit *** Mean 85.69 8.80 51.31
($/ha) SE 19.80 18.09 13.71 0.01
Labor productivity ** Mean 60.69 28.68 46.37
(kg maize/pd) SE 11.95 4.02 6.88 0.02
Return to labor Mean 4.87 2.18 3.67
($/pd) SE 1.48 0.66 0.87 0.13

Means are significantly different at p<0.1 (*); p<0.05 (**); or p<0.01(***)
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in terms of means are also evident when looking at the full distributions (Fig. 4c, d). 
These differences apply for MSD-L but not for MSD-K, which has similar distribu-
tions to CONV in both clusters.

It is interesting to note that the distributions of fertilizer use are very similar in 
Cluster 1 across all three production systems (Fig. 4e), but in the case of Cluster 2 
the distributions for MSD are to the right of those for CONV (Fig. 4f). This is a clear 
indication of the constraints faced by farmers in this cluster. Many of these farmers 

Table 4  Tests of differences in means of key variables between farms using conventional till 
(CONV) and those using sustainable land management (MSD)

Variable
Cluster 1 Cluster 2 Prob > F
CONV MSD CONV MSD Cluster Method Interaction

N 48 203 36 167

Maize yield 1925.74 2230.07 1339.55 1945.15 ** **
(kg/ha) 227.07 110.42 262.20 121.74 0.02 0.02 0.43
Labor 78.77 87.25 82.78 133.15 ** *** *
(pd/ha) 14.22 6.92 16.42 7.63 0.04 0.01 0.08
Fertilizer 214.54 215.64 133.50 206.10 ** * *
(kg/ha) 24.06 11.70 27.78 12.90 0.03 0.07 0.08
Cash inputs 244.03 285.11 157.28 259.54 *** ***
($/ha) 25.19 12.25 29.09 13.50 0.01 0.00 0.15
Gross margin 152.90 176.32 120.74 141.24
($/ha) 41.56 20.21 47.99 22.28 0.34 0.53 0.97
Profit 73.99 88.46 37.96 2.51 *
($/ha) 41.93 20.39 48.41 22.48 0.09 0.77 0.48
Labor 
productivity

101.61 51.01 31.66 28.04 ***

($/pd) 21.00 10.21 24.25 11.26 0.01 0.13 0.19
Return to 
labor

9.87 3.68 2.34 2.15 **

(kg maize/pd) 2.67 1.30 3.09 1.43 0.05 0.16 0.18

Means are significantly different at p<0.1 (*); p<0.05 (**); or p<0.01(***)

Table 5  Mean values of key variables related to maize production by cluster x production system

Cluster 1 Cluster 2
CONV MSD-L MSD-K CONV MSD-L MSD-K

N 48 35 168 36 77 90

Maize yield 1926 2188 2239 1340 2097 1815
Labor 79 140 76 83 174 99
Fertilizer 215 197 220 133 187 222
Cash inputs 244 250 292 157 233 282
Gross margin 153 204 171 121 194 96
Profit 74 64 94 38 17 −10
Labor productivity 102 32 55 32 19 36
Return to labor 9.87 3.28 3.76 2.34 1.59 2.63
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Fig. 4  Kernel density estimates of cumulative distribution functions for maize yields (a, b), labor 
use (c, d) and fertilizer use (e, f) for farmers in clusters 1 or 2 and using conventional tillage 
(CONV) or minimum soil disturbance (MSD-L, MSD-K)
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can only afford to apply fertilizer when they participate in MSD promotion pro-
grams that provide fertilizer as part of an MSD package described in this paper.

Figure 5 presents cumulative distribution functions for cash inputs, gross mar-
gins and profits. It is clear that MSD requires more cash inputs than CONV, and the 
differences are larger in Cluster 2 (Fig. 5b) than in Cluster 1 (Fig. 5a), once again 
suggesting the constraints faced by small farmers in adopting MSD.  Regarding 
gross margins, both MSD options dominate CONV in terms of second degree sto-
chastic dominance in the case of Cluster 1, (Fig. 5c).8 This dominance disappears 
when expressed in terms of profit (Fig. 5e), which considers the cash value of family 
labor. In contrast, there is no clear dominance relationship in Cluster 2 in terms of 
either gross margins (Fig. 5d) or profits (Fig. 5f).

In general, about one-third of farms experienced a loss in terms of gross margins 
(Table 6), except for the case of MSD-L in Cluster 2, where only about one-fifth of 
farms experienced a loss. This is an interesting finding that shows that poor farms 
use family labor to cope with risk.

In both clusters, when the high labor requirements of MSD-L are priced at mar-
ket rates to calculate profits, there is no clear preference relative to CONV on sto-
chastic dominance grounds.

4  �Implications and Further Work

From a policy standpoint the main issue arising from this analysis is that small, 
vulnerable farms are more likely to face labor and cash constraints, which may pre-
vent them from adopting technologies that have the potential to sustainably improve 
food security and enhance their adaptive capacity, i.e. be climate-smart. Widespread 
adoption, however, will require policies that address the barriers identified here to 
provide: (i) improved techniques that are less labor intensive, (ii) improved avail-
ability of fertilizers, and (iii) credit to cover the up-front costs of investing in soil 
health that takes several years to bear fruit.

8 Second degree stochastic dominance occurs when the area under the CDF for MSD is ≥ than the 
area under the CDF for CONV throughout the distribution (Anderson et al. 1977).

Table 6  Probability of losses in terms of gross margins and profits by cluster and production 
method

Cluster 1 Cluster 2
CONV MSD-L MSD -K CONV MSD -L MSD -K

N 50 181 52 93 96 37

P(GM < 0) 0.32 0.26 0.32 0.30 0.20 0.37
P(PROFIT < 0) 0.43 0.43 0.44 0.47 0.50 0.60
P(GM < $50) 0.41 0.32 0.40 0.42 0.29 0.49
P(PROFIT < $50) 0.54 0.50 0.52 0.58 0.58 0.69
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Fig. 5  Kernel density estimates of cumulative distribution functions of cash inputs (a, b) gross 
margins (c, d) and profits (e, f) for farmers in clusters 1 or 2 and using conventional tillage (CONV) 
or minimum soil disturbance (MSD-L, MSD-K)
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Some agronomists argue that switching from ‘conventional’ to MSD technolo-
gies increases crop yields after a few years of declining or stable yields (e.g. see 
Erenstein et al. 2008). Also farmers may need a few years of experience to acquire 
the additional knowledge and management skills necessary for more diversified 
operations. Most farmers adopt alternatives gradually. In the sample, an average 
number of 3–4 years of adoption is recorded, which is generally considered not 
enough for ‘conservative’ practices to generate the full expected benefits (Erenstein 
et al. 2008). Unfortunately not enough observations were available to for a disag-
gregated analysis by categories of number of years since adoption (e.g. up to 2 years 
and above 3 years).

The outcome distribution in Fig. 1 can be replaced with actual profit distributions 
such as Fig. 5e, f, using a different distribution for each combination of vulnerabil-
ity (high or low) and production method (CONV, MSD-L or MSD-K). These distri-
butions provide a baseline from which the dynamic aspects of the problem may be 
addressed.

The analyses presented in this chapter provide baselines to identify the most 
vulnerable farm households based on the whole distribution of the farm house-
holds in the sample. The potential contribution of MSD practices to enhanced 
resilience of households faced with climate change is better understood by focus-
ing on particular segments of the farm population: the most vulnerable house-
holds. The distributions of yields and profits illustrated in this paper would shift 
in response to changes in climate, and the nature of these shifts may differ between 
CONV and MSD. The hypothesis is that more vulnerable households (Cluster 2) 
will have lower average yields under uncertain weather events than less vulnera-
ble households (Cluster 1), and that MSD will lessen this negative effect during 
dry spells.

The expectation that MSD will show its true worth in dry years could not be 
tested because that source of variation is not included in the data. Studies of adapta-
tion to climate change in Sub-Saharan Africa have found that smallholders are 
already using a range of strategies to deal with climate variability (Skjeflo 2013), 
many of them related to sustainable land management. However, evidence also 
shows that the key variables explaining adoption of these practices are availability 
of financing and risk management instruments, availability of technical information 
to enable the adoption process, collective action at the local level, and tenure secu-
rity (McCarthy et al. 2011). Some of these constraints have been considered in this 
chapter by focusing on the most vulnerable households, but additional work is 
needed to estimate changes in the probability distributions of yields and profits 
caused by alternative policies in the presence of climate change.

The probability distributions derived in this study are useful for stochastic-
dominance analysis but they tell only part of the story. The data are for a single 
cropping season and so do not cover variations in time. To get the full picture we 
need data on a variety of climate years, including dry and wet years. This can be 
obtained from panel data or from simulations using crop and livestock production 
models. These data are required to implement the conceptual model (Fig. 1) pro-
posed in this chapter. Resilience is a dynamic concept implying adjustment through 
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time as climatic, economic and social conditions change. Future empirical work on 
this topic should focus on introducing alternative climate scenarios and undertaking 
dynamic analysis by combining econometric results and crop simulation models.
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