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The s-wave three-band Eliashberg theory can simultaneously reproduce the experimental critical temperatures and the gap values
of the superconducting materials LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2 and SmFeAsO0.8F0.2 as exponent of the more important families
of iron pnictides. In this model the dominant role is played by interband interactions and the order parameter undergoes a sign
reversal between hole and electron bands (s±-wave symmetry). The values of all the gaps (with the exact experimental critical
temperature) can be obtained by using high values of the electron-boson coupling constants and small typical boson energies (in
agreement with experiments).

The discovery of Fe-based pnictide superconductors [1–
3] has aroused great interest in the scientific community.
For the first time noncuprate superconductor shows high
critical temperature. In these systems, as in cuprates, the
superconductivity occurs upon charge doping of a magnetic
parent compound above a certain critical value. The more
relevant difference is that in cuprates the parent compound
is a Mott insulator with localized charge carriers and a strong
Coulomb repulsion between electrons, while in the pnictides
it is a bad metal and shows a tetragonal to orthorhombic
structural transition below ≈ 140 K, followed by the onset of
an antiferromagnetic spin-density-wave ordering [4]. Charge
doping gives rise to superconductivity and, at the same time,
inhibits the occurrence of both the static magnetic order
and the structural transition. The Fermi surface consists of
two or three hole-like sheets around the Γ point in the first
Brillouin zone and two electron-like sheets around M point.
Up to now, the most intensively studied systems are the 1111
compounds, ReFeAsO1−xFx (Re = La, Sm, Nd, Pr, etc.) and
the 122 ones, hole- or electron-doped AFe2As2 (A = Ba, Sr,
Ca).

At present it is not completely clear what is the micro-
scopic pairing mechanism responsible for superconductivity.

The conventional phonon-mediated coupling mechanism
is too week and cannot explain the observed high Tc
within the standard Migdal-Eliashberg theory [5, 6]. The
calculated Tc increases only marginally with the inclusion
of multiband effects and remains far from experimental
values. On the other hand, the magnetic nature of the parent
compound seems to favor a coupling mechanism based on
nesting-related antiferromagnetic spin fluctuations [7]. In
this case an interband sign reversal of the order parameter
between different sheets of the Fermi surface (s± symmetry)
is predicted. The number, amplitude, and symmetry of
the superconducting energy gaps are indeed fundamental
physical quantities that any microscopic model of super-
conductivity has to account for. Experiments with powerful
techniques such as ARPES, point-contact spectroscopy, and
STM, have been carried out to study the superconducting
gaps in pnictides (for a review see [8]). Although the results
are sometimes in disagreement with each other, a multigap
scenario is emerging with evidence for rather high gap ratios,
Δ1/Δ2 ≈ 2-3 [8]. A two-band BCS model cannot account
either for the amplitude of the experimental gaps or for their
ratio. Three-band BCS models have been investigated [9–
11] which can reproduce the experimental gap ratio but not
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Figure 1: Schematic drawing of the multiband model used in this
work. The two hole bands (1 and 2) are centered around the Γ point,
while the equivalent electron band (3) around the M point of the
reduced Brillouin zone.

the exact experimental gap values when the experimental
Tc is exactly reproduced. In this regard, a reliable study has
to be carried out within the framework of the Eliashberg
theory for strong coupling superconductors [12–18], due to
the possible high values of the coupling constants necessary
to explain the experimental data.

By using this strong-coupling approach, I show here that
the superconducting iron pnictides represent a case of dom-
inant negative interband-channel superconductivity (s±-
wave symmetry) with high values of the electron-boson cou-
pling constants and small typical boson energies. Further-
more I prove that a small contribution of intraband coupling
does not significantly affect the obtained results and that the
contribution of the Coulomb pseudopotential is negligible.

The electronic structure of pnictides can be approxi-
mately reproduced by using a three-band model (Figure 1)
with two hole bands (1 and 2) and one equivalent electron
band (3) [9]. The s-wave order parameters of the hole bands
Δ1 and Δ2 have opposite sign with respect to that of the
electron Δ3 [7]. In such systems intraband coupling could
be provided by phonons while interband coupling by anti-
ferromagnetic spin fluctuations which in a one-band system
are always pair breaking but here, in a multiband system,
the interband terms can contribute to increase the critical
temperature. In the multiband Eliashberg equations the spin
fluctuations term in the intraband channel has positive sign
for the renormalization functions Zi and negative sign for the
superconducting order parametersΔi thus leading to a strong
reduction of Tc. However, if we consider negative interband
contributions in the Δi equations, the final result can be an
increase of the critical temperature [19].

The generalization of the Eliashberg theory [12–18] for
multiband systems has already been used with success to

study the MgB2 superconductor [20–23]. To obtain the
gaps and the critical temperature within the s-wave, three-
band Eliashberg equations, one has to solve six coupled
equations for the gaps Δi(iωn) and the renormalization
functions Zi(iωn), where i is a band index that ranges
between 1 and 3 (see Figure 1) and ωn are the Matsubara
frequencies. For completeness we included in the equations
the nonmagnetic and magnetic impurity scattering rates in
the Born approximation, ΓNi j and ΓMij . In the imaginary-axis
formulation [24] the equations are

ωnZi(iωn) = ωn +
∑

j

(
ΓNi j + ΓMij

)
NZ
j (iωn)

+ πT
∑

m, j

ΛZ
i j(iωn, iωm)NZ

j (iωm),
(1)

Zi(iωn)Δi(iωn) =
∑

j

(
ΓNi j − ΓMij

)
NΔ
j (iωn)

+ πT
∑

m, j

[
ΛΔ
i j(iωn, iωm)− μ∗i j(ωc)

]

× θ(ωc − |ωm|)NΔ
j (iωm),

(2)

where ΛZ
i j(iωn, iωm) = Λ

ph
i j (iωn, iωm) + Λ

sp
i j (iωn, iωm),

ΛΔ
i j(iωn, iωm) = Λ

ph
i j (iωn, iωm) − Λ

sp
i j (iωn, iωm). θ is the

Heaviside function and ωc is a cut-off energy. In particular,

Λ
ph,sp
i j (iωn, iωm) = 2

∫ +∞
0 dΩΩα2

i jF
ph,sp(Ω)/[(ωn−ωm)2 +Ω2],

where ph means “phonon” and sp “spin fluctuations.”

Finally, NΔ
j (iωm) = Δ j(iωm)/

√
ω2
m + Δ2

j (iωm) and NZ
j (iωm) =

ωm/
√
ω2
m + Δ2

j (iωm).
In the real axis formulation the multiband s-wave

Eliashberg equations [25, 26] are
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(4)

where now ΛZ
i j(ω,ω) = Λ

ph
i j (ω,ω′) +Λ

sp
i j (ω,ω′), ΛΔ

i j(ω,ω′) =
Λ

ph
i j (ω,ω′) − Λ

sp
i j (ω,ω′). In particular, Λ

ph,sp
i j (ω,ω′) =

∫ +∞
0 dΩ(α2

i jF
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and NΔ
j (ω) = Δ j(ω)/

√
ω2 − Δ2

j (ω) and NZ
j (ω) =

ω/
√
ω2 − Δ2

j (ω).
In principle the solution of the three-band Eliashberg

equations shown in (1) (or (2)) requires a huge number
of input parameters: (i) nine electron-phonon spectral
functions, α2

i jF
ph(Ω); (ii) nine electron-SF spectral functions,

α2
i jF

sp(Ω); (iii) nine elements of the Coulomb pseudopo-

tential matrix, μ∗i j(ωc); (iv) nine nonmagnetic ΓNi j and nine

paramagnetic ΓMij impurity scattering rates.
It is obvious that a practical solution of these equations

requires a drastic reduction in the number of free parameters
of the model. According to the work of Mazin et al. [7] I

know that (i) λ
ph
ii � λ

ph
i j ≈ 0, that is, phonons mainly provide

intraband coupling but the total electron-phonon coupling

constant Σiλ
ph
ii should be very small [5, 6], (ii) λ

sp
i j � λ

sp
ii ≈

0, that is, SF mainly provide interband coupling. I include
these features in the simplest three-band model by posing

λ
ph
ii = λ

ph
i j = 0, λ

sp
ii = 0, and μ∗ii (ωc) = μ∗i j(ωc) = 0. Here,

of course, it is λ
ph,sp
i j = 2

∫ +∞
0 dΩ(α2

i jF
ph,sp(Ω)/Ω). Moreover, I

set ΓNi j = ΓMij = 0 in (1)-(2) and (3)-(4).
Within these approximations, the electron-boson

coupling-constant matrix λi j = λ
sp
i j becomes [9]

⎛
⎜⎜⎝

0 0 λ13 = λ31ν1

0 0 λ23 = λ32ν2

λ31 λ32 0

⎞
⎟⎟⎠, (5)

where ν1 = N1(0)/N3(0), ν2 = N2(0)/N3(0), and Ni(0) is the
normal density of states at the Fermi level for the i-band (i =
1, 2, 3 according to Figure 1).

I initially solved the Eliashberg equations on the imagi-
nary axis to calculate the critical temperature and, by means
of the technique of the Padè approximants [27, 28], to obtain
the low-temperature value of the gaps because in presence of
a strong coupling interaction or of impurities, the value of
Δi(iωn=0) obtained by solving the imaginary-axis Eliashberg
equations can be very different from the value of Δi obtained
from the real-axis Eliashberg equations [29]. I also solved the
three-band Eliashberg equations in the real-axis formulation.

I reproduced the critical temperature and the gap
values in three representative cases: (i) the compound
LaFeAsO0.9F0.1 with Tc = 27 K where point-contact spec-
troscopy measurements gave Δ1(0) ≈ 3.8 meV and Δ2(0) ≈
8.0 meV [30]; (ii) the compound Ba0.6K0.4Fe2As2 with Tc =
37 K where ARPES measurements gave Δ1(0) ≈ 12.1 meV,
Δ2(0) ≈ 5.5 meV, and Δ3(0) ≈ 12.8 meV [31]; (iii) the
compound SmFeAsO0.8F0.2 with Tc = 52 K where, accord-
ing to point-contact spectroscopy measurements, Δ1(0) ≈
17.0 meV and Δ2(0) ≈ 5.7 meV [32, 33].

Inelastic neutron-scattering experiments suggest that the
typical boson energy possibly responsible for superconduc-
tivity ranges roughly between 10 and 30 meV [34, 35]. In
the numerical simulations I used spectral functions with
Lorentzian shape, that is, α2

i jF(Ω) = Cij[L(Ω + Ωi j ,Yij) −
L(Ω − Ωi j ,Yij)], where L(Ω ± Ωi j ,Yij) = [(Ω ± Ωi j)

2 +
(Yij)

2]−1, Cij are the normalization constants necessary to
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Figure 2: Full symbols, left axis: calculated gap values at T = 2 K
for LaFeAsO0.9F0.1 as a function of typical boson energy Ω0. Open
symbols, right axis: electron-boson coupling constants, λ13 and λ23,
as a function of Ω0. The inset shows the spectral function used in
this model in the case Ωi j = 10 meV.

obtain the proper values of λi j while Ωi j and Yij are the peak
energies and half-widths, respectively. In all the calculations I
always set Ωi j = Ω0, with Ω0 ranging between 5 and 35 meV
and Yij = 2 meV. The cut-off energy is ωc = 12 ·Ω0 and the
maximum quasiparticle energy is ωmax = 16 ·Ω0.

In the Tc = 27 K case I know that ν1 = 0.03 and ν2 = 1
[36] while in the Tc = 37 K case ν1 = 1 and ν2 = 2 [9] and in
the Tc = 52 K case I have ν1 = 0.4 and ν2 = 0.5 [37]. Once the
energy of the boson peak Ω0 is set, only two free parameters
are left in the model: λ31 and λ32.

By properly selecting the values of these parameters it is
relatively easy to obtain the experimental values of the critical
temperature and of the small gap, which is well known. It
is more difficult to reproduce the values of the large gaps
of bands 1 and 3 since, due to the high 2Δ1,3/kBTc ratio (of
the order of 8-9), high values of the coupling constants and
small boson energies are required. Figures 2, 3, and 4 show
the values of the calculated gaps (full symbols, left axis) as a
function of the boson peak energy, Ω0. The corresponding
values of λ13 and λ12, chosen in order to reproduce the values
of Tc and of the small gap, Δ2, are also shown in the figure
(open symbols, right axis). In all materials examined, only
when Ω0 ≤ 10 meV the values of the large gap correspond to
the experimental data. Indeed, when Ω0 increases, the values
of Δ1 and Δ3 strongly decrease. As a consequence, a rather
small energy of the boson peak together with a very strong
coupling (particularly in the 3-1 channel) is needed in order
to obtain the experimental Tc and the correct gap values. In
this regard, it is worth noticing that the absolute values of the
large gaps cannot be reproduced in a interband-only, two-
band Eliashberg model [38], as well as within a three-band
BCS model. In the latter case it is only possible to obtain a
ratio of the gaps close to the experimental one [10, 11].
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Table 1: The effect of the intraband terms and Coulomb interaction on the gap values.

Pure interband λii = 0. μ∗i j = 0 Ω0 = 10 meV

Free parameters λ31 = 4.267 λ32 = 1.138 —

Results Δ1 = 10.29 meV Δ2 = 5.56 meV |Δ3| = 10.22 meV

Intraband λii = 0.4 μ∗i j = 0 Ω0 = 10 meV

Free parameters λ31 = 3.866 λ32 = 0.471 —

Results Δ1 = 10.30 meV Δ2 = 5.62 meV |Δ3| = 10.24 meV

Intraband and Coulomb λii = 0.4 μ∗i j = 0.1 Ω0 = 10 meV

Free parameters λ31 = 2.730 λ32 = 0.758 —

Results Δ1 = 7.49 meV Δ2 = 5.72 meV |Δ3| = 7.98 meV
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Figure 3: Full symbols, left axis: calculated gap values at T = 2 K
for Ba0.6K0.4Fe2As2 as a function of typical boson energy Ω0. Open
symbols, right axis: electron-boson coupling constants, λ13 and λ23,
as a function of Ω0.

I also tested the effect into the model of a small
intraband coupling (possibly of phonon origin). In the case
of Ba0.6K0.4Fe2As2 (Tc = 37 K) I fixed Ω0 = 10 meV and
λii = 0.4 since I know indeed that this coupling cannot be
very high [5, 6]. Then I determined the free parameters λ31

and λ32 in order to obtain Tc = 37 K. It might be thought that
this term can sensibly contribute to increase the gap values
but, as can be seen in Table 1, this is not the case as the gap
values only show a slight increase.

The effect of Coulomb interaction was also investigated
for the case shown in Table 1 where a weak intraband
coupling is included. I chose μ∗i j = μ∗ii = 0.1 and, as expected,
I found that the intraband Coulomb pseudopotential has
a negligible effect while the interband one [19] strongly
contributes to raise Tc and reduces in a considerable way
[24] the value of λ31. In this case, as shown in Table 1, it
is only possible to obtain the correct value of the small gap
because the electron-boson coupling is now too small and
it is impossible to reproduce the value of the big gap. As a
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Figure 4: Full symbols, left axis: calculated gap values at T = 2 K for
SmFeAsO0.8F0.2 as a function of the typical boson energy Ω0. Open
symbols, right axis: electron-boson coupling constants, λ13 and λ23,
as a function of Ω0.

consequence, this result seems to exclude a strong interband
Coulomb interaction in these compounds.

I also calculated the superconductive density of states in
all three cases. The parameters used for the Tc = 27.00±0.01
K case are Ω0 = 10 meV, λ13 = 1.115, and λ32 = 0.743, for
the Tc = 37.00 ± 0.01 K case Ω0 = 10 mev, λ13 = 4.267, and
λ23 = 1.138 and for Tc = 52.00 ± 0.01 K case Ω0 = 10 mev,
λ13 = 5.808, and λ23 = 2.208.

The value of coupling constant λ31 is in the range 1–6 and
this fact, at a first glance, may seem very unusual but these
systems have some peculiarities in common with the heavy
fermions superconductors. For example, in the compound
LaFeAsO0.9F0.1, the normal state at Tc is asymmetric and
pseudogapped, with two broad maxima that are progres-
sively smoothed out on increasing the temperature [30].
This shape is very similar to that observed by point contact
spectroscopy in materials with long-range spin-density-wave
order, like URu2Si2 [39, 40]. The calculated superconductive
normalized conductances are shown in Figure 5; the presence
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Figure 6: Calculated temperature dependence of the penetration
depth ([λ(T)/λ(T = 1 K)]2) for LaFeAsO0.9F0.1 (Tc = 27 K, red
solid line), Ba0.6K0.4Fe2As2 (Tc = 37 K, dash blue line), and for
SmFeAsO0.8F0.2 (Tc = 52 K, green dash-dot line). The insert shows
the behaviour of [λ(T) − λ(T = 1 K)]/λ(T = 1 K) obtained by
solution of Eliashberg equations: red circles for LaFeAsO0.9F0.1, dark
blue triangle for Ba0.6K0.4Fe2As2, green squares for SmFeAsO0.8F0.2.
The lines are the third-order polynomial fits.

of a hump at Ω ≈ Ω0 + Δ1 is a typical strong coupling effect
[41]. This feature, of course, is more evident when λ13 is
bigger. By cause of thermal broadening it is impossible to
separate the peaks of the gaps Δ1 and Δ3.

The penetration depth as a function of temperature has
been calculated in the three cases and is reported in Figure 6.
It is in qualitative agree with the experimental data [42]. The
inset shows the behaviour of [λ(T)−λ(T = 1 K)]/λ(T = 1 K)
at low temperature. Although at sufficiently low temperature
an exponential fit may be certainly possible the inset shows
that, on a larger T range (up to T/Tc ∼ 0.3) these curves can
be best fitted by a third-order polynomial as experimentally
observed [42].

In conclusion, I have shown that the newly discovered
iron pnictides very likely represent a case of dominant
negative interband-channel pairing superconductivity where
an electron-boson coupling, such as the electron-spin fluc-
tuactions one, can become a fundamental ingredient to
increase Tc in a multiband strong-coupling picture. In
particular, the present results prove that a simple three-
band model in strong-coupling regime can reproduce in a
quantitative way the experimental Tc and the energy gaps of
the pnictide superconductors with only two free parameters,
λ31 and λ32, provided that the typical energies of the spectral
functions are of the order of 10 meV and the coupling
constants are very high (1 < λ31 < 6).
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Padé approximants solution of the Eliashberg equations to
T ∼ TC,” Solid State Communications, vol. 53, no. 2, pp. 137–
142, 1985.

[29] G. A. Ummarino and R. S. Gonnelli, “Real-axis direct solution
of the d-wave Eliashberg equations and the tunneling density
of states in optimally doped Bi2Sr2CaCu2O8+x,” Physica C, vol.
328, no. 3, pp. 189–194, 1999.

[30] R. S. Gonnelli, D. Daghero, M. Tortello, et al., “Coexistence of
two order parameters and a pseudogaplike feature in the iron-
based superconductor LaFeAsO1−xFx,” Physical Review B, vol.
79, no. 18, Article ID 184526, 11 pages, 2009.

[31] H. Ding, P. Richard, K. Nakayama, et al., “Observation of
Fermi-surface-dependent nodeless superconducting gaps in
Ba0.6K0.4Fe2As2,” Europhysics Letters, vol. 83, no. 4, Article ID
47001, 2008.

[32] D. Daghero, M. Tortello, R. S. Gonnelli, V. A. Stepanov,
N. D. Zhigadlo, and J. Karpinski, “Evidence for two-gap
nodeless superconductivity in SmFeAsO1−xFx from point-
contact Andreev-reflection spectroscopy,” Physical Review B,
vol. 80, no. 6, 2009.

[33] D. Daghero, M. Tortello, R. S. Gonnelli, et al., “Point-contact
Andreev-reflection spectroscopy in ReFeAsO1−xFx(Re =
La,Sm): possible evidence for two nodeless gaps,” Physica C,
vol. 469, no. 9–12, pp. 512–520, 2009.

[34] A. D. Christianson, E. A. Goremychkin, R. Osborn, et al.,
“Unconventional superconductivity in Ba0.6K0.4Fe2As2 from
inelastic neutron scattering,” Nature, vol. 456, no. 7224, pp.
930–932, 2008.

[35] R. Osborn, S. Rosenkranz, E. A. Goremychkin, and A. D.
Christianson, “Inelastic neutron scattering studies of the spin
and lattice dynamics in iron arsenide compounds,” Physica C,
vol. 469, no. 9–12, pp. 498–506, 2009.

[36] M. V. Sadovskii, “High-temperature superconductivity in
iron-based layered iron compounds,” Physics-Uspekhi, vol. 51,
no. 12, pp. 1201–1227, 2008.

[37] I. I. Mazin, private communication.
[38] O. V. Dolgov, I. I. Mazin, D. Parker, and A. A. Golubov,

“Interband superconductivity: contrasts between Bardeen-
Cooper-Schrieffer and Eliashberg theories,” Physical Review B,
vol. 79, no. 6, Article ID 060502, 2009.

[39] K. Hasselbach, J. R. Kirtley, and P. Lejay, “Point-contact
spectroscopy of superconducting URu2Si2,” Physical Review B,
vol. 46, no. 9, pp. 5826–5829, 1992.

[40] R. Escudero, F. Morales, and P. Lejay, “Temperature depen-
dence of the antiferromagnetic state in URu2Si2 by point-
contact spectroscopy,” Physical Review B, vol. 49, no. 21, pp.
15271–15275, 1994.

[41] G. A. Ummarino, R. S. Gonnelli, and D. Daghero, “Tunneling
conductance of SIN junctions with different gap symmetries
and non-magnetic impurities by direct solution of real-axis
Eliashberg equations,” Physica C, vol. 377, no. 3, pp. 292–303,
2002.

[42] R. Prozorov, M. A. Tanatar, R. T. Gordon, et al., “Anisotropic
London penetration depth and superfluid density in single
crystals of iron-based pnictide superconductors,” Physica C,
vol. 469, no. 9–12, pp. 582–589, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


