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A B S T R A C T

The high chemical diversity of lipids allows them to perform multiple biological functions ranging from serving
as structural building blocks of biological membranes to regulation of metabolism and signal transduction. In
addition to the native lipidome, lipid species derived from enzymatic and non-enzymatic modifications (the
epilipidome) make the overall picture even more complex, as their functions are still largely unknown. Oxidized
lipids represent the fraction of epilipidome which has attracted high scientific attention due to their apparent
involvement in the onset and development of numerous human disorders. Development of high-throughput
analytical methods such as liquid chromatography coupled on-line to mass spectrometry provides the possibility
to address epilipidome diversity in complex biological samples. However, the main bottleneck of redox lipi-
domics, the branch of lipidomics dealing with the characterization of oxidized lipids, remains the lack of optimal
computational tools for robust, accurate and specific identification of already discovered and yet unknown
modified lipids. Here we discuss the main principles of high-throughput identification of lipids and their
modified forms and review the main software tools currently available in redox lipidomics. Different levels of
confidence for software assisted identification of redox lipidome are defined and necessary steps toward optimal
computational solutions are proposed.

1. Oxidized lipids and the epilipidome

Lipids are characterized by extremely high structural diversity
translated to the wide range of physicochemical properties which allow
them to perform different functions including organization of cellular

and organelle membranes, regulation of membrane fluidity and cur-
vature, control of cellular and organism energy metabolism, as well as
being mediators in multiple signaling pathways. Such a diverse range of
biological activities is attributed to the variety of lipid structures gen-
erally classified into eight categories including fatty acids,
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glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol
lipids, saccharolipids, and polyketides [1].

The lipidome is also subjected to different enzymatic and non-en-
zymatic modifications. Indeed, chemical modifications of biomolecules
via the introduction of small functional groups are well known reg-
ulators of various biological functions. Epigenetic regulation of differ-
ential gene expression in various tissue and cells by DNA methylation
showed its significance in the majority of biological processes and
functions [2,3]. Post-translational modifications (PTMs) of proteins
especially protein phosphorylation, glycosylation, and acetylation de-
termine the variety of proteoforms (a subset of molecular species of the
same protein carrying different PTMs) and are well known regulators of
cell signaling in physiological and pathological conditions [4]. Re-
cently, the concept of epimetabolites, products of enzymatic transfor-
mations of primary metabolites resulting in new functional activities,
was formulated by Showalter et al. [5]. Similarly, modifications of li-
pids via enzymatic and non-enzymatic modifications including oxida-
tion, nitration, sulfation and halogenation compose a new level of li-
pidome complexity (epilipidome) required to regulate complex
biological functions.

Several excellent examples have illustrated the regulatory role of
the epilipidome and lipid modifications in directing cell fate and sig-
naling events. Enzymatically oxidized phospholipids emerge as im-
portant regulators of innate immune responses [6]. For example, li-
poxygenase (LOX)-mediated oxidation in the platelet lipidome upon
thrombin activation results in the formation of over 100 oxidized
phosphatidylethanolamine (PE) lipids including species with pro-coa-
gulant activities [7]. Furthermore, it has been proposed that LOX oxi-
dation of arachidonic and adrenic fatty acyl chains in PE lipids might be
associated with induction of ferroptotic cell death along with non-en-
zymatic lipid peroxidation [8]. Non-enzymatic or Cytochrome C
mediated oxidation of cardiolipin (CL), a mitochondria specific lipid,
was shown to be involved in initiation of the intrinsic apoptotic
pathway [9]. Interestingly, a close cross-talk between lipid (CL) and
protein (cyt c) oxidative modifications in regulation of this process was
proposed recently [10]. Other well-known examples of regulatory roles
of lipid oxidation include pro- and anti-inflammatory eicosanoid sig-
naling [11] and the regulation of metabolic pathways via activation of
nuclear receptors such as peroxisome proliferator-activated receptors
[12]. The special role of oxidized lipids in the activation of innate im-
mune responses via interaction with pattern recognition receptors in-
cluding TLRs, CD36, RAGE, and scavenger receptors was demonstrated
to contribute to pathogenesis of numerous human disorders char-
acterized by chronic inflammation [13–15].

Despite the apparent significance in the regulation of multiple bio-
logical functions, the number of experimentally detected oxidized lipids
remains relatively low. The most studied and well characterized subset
of the epilipidome corresponds to oxidized free fatty acids derived from
the enzymatic reactions catalyzed by LOX, cyclooxygenase (COX), and
cytochrome P450 enzymes or through free radical driven oxidation of
polyunsaturated omega-6 and omega-3 fatty acids [16]. However, a
much smaller number of modified lipids are reported to be detected and
identified in vivo for other lipid classes such as glycerolipids, glycer-
ophospholipids (PLs), sphingolipids and cholesterylesters. The main
challenges in addressing these subsets of the epilipidome are their low
natural abundances, and the lack of knowledge about their chemical
diversity in biological matrices (e.g. biofluids, tissue homogenates, cell
extracts).

One can predict the complexity of the oxidized fraction of the epi-
lipidome based on the mechanisms known for oxidation of poly-
unsaturated fatty acids (PUFAs; Fig. 1A). The pentadienyl moiety pre-
sent in natural PUFAs is one of the main sites of lipid modification both
via enzymatic and free radical reactions. Considering only four main
oxidative modifications (hydroperoxy, hydroxy, keto, and epoxy
groups) on a defined number of bis-allylic sites (Fig. 1A) in 11 PUFAs,
the number of oxygen addition products (OAP) or so called long-chain

oxidation products (An, Fig. 1B) can be estimated by enumeration.
Furthermore, providing the possibility of oxidation mediated truncation
via Hock cleavage and β-scission reactions initiated by the formation of
lipid-bound hydroperoxide, the number of truncated or oxidative
cleavage products (OCP) can be derived (Cn, Fig. 1B). Another level of
complexity comes from PUFAs with ≥ 3 double bonds since such fatty
acid moieties can additionally form prostane ring structures via cycli-
zation of acyl chains. Ten types of prostanes (Mp, Fig. 1B) and at least
four other combinations including IsoK and thromboxanes (Mo, Fig. 1B)
are known to contribute to the diversity of this modification type (Pn,
Fig. 1B). Combination of OAP, OCP and cyclization derived structures
will provide the number of possible modified PUFAs (Fox, Fig. 1B). One
to four fatty acyl chains per lipid species (X1-4, Fig. 1A) can be theo-
retically found in different classes of lipids. Thus, a very rough esti-
mation for the number of modified lipids using 19 FA listed in Table S1
(F = 19, B0 = 6, Ft = 8) without even considering the specific mod-
ification sites will provide 733 theoretically possible oxFA species (Fox,

Fig. 1C), which lead to 1.22 × 106 total number of oxidized lipids that
contains one oxFA (Tox, Fig. 1C). The total number increases further to
1.35 × 1010 if all FA residues can be oxidized (Tall

ox, Fig. 1C). Changes in
FA, lipid classes, and modification types (e.g. nitration, halogenation,
modifications on PL head groups, or further oxidation on prostanes) can
largely influence the predicted number of possible oxidized lipids.
Additionally, oxidation products from lipid classes that do not have FA
residues such as oxysterols were not enumerated in these equations.
Furthermore, considering modification site specific isomers the esti-
mated number of lipid species rise to 2,241 for Fox, 6.31 × 107 for Tox,
and 2.61 × 1013 for Tall

ox. Thus, the predicted oxidized lipidome de-
monstrates remarkably higher complexity than its unoxidized form (sn
unspecific Tunox 1.02 × 105, sn specific Tunox 1.37 × 106). Double bond
positions in FA before oxidation (e.g. omega-3, or omega-6) and pos-
sible rearrangement after oxidation including cis/trans form of the
double bond can bring another level of complexity. Computational
software to perform estimation of the oxidized fraction of epilipidome
following the equations in Fig. 1B and site specific epilipidome are
provided on Github (https://github.com/SysMedOs/
LipidomeEstimation). The overall possible solution search space of
modified lipid structures in the molecular weight range from 200 to
1500 is enormous. Thus, prior knowledge of the analytes is extremely
important to generate an appropriate version of in silico oxidized lipi-
dome to be used for the identification to reduce the processing time and
false discovery rates.

Such structural complexity formed by addition of different func-
tional groups will certainly determine the functional activities of oxi-
dized lipids. Indeed, lessons learned from the structural and functional
diversity of free fatty acid derived oxidation products like pros-
taglandins and resolvins [17], lead to the expectation of different bio-
logical activities from structurally different oxidized phospholipids
(PLs). Furthermore, it is very probable that not only the structure but
also the active concentration and specific tissue localization of oxPLs
might determine their functional outcomes. Thus, to understand the
biological significance of modified lipids on the systems biology scale,
accurate and specific methods capable of high-throughput are required
for “big data” acquisition. Modern mass spectrometry (MS) with its high
accuracy and resolution especially when combined with other separa-
tion techniques has been shown to be the method of choice for systems-
wide profiling in several omics fields including proteomics, metabo-
lomics, and lipidomics. With some modifications, methods of structural
analysis developed for metabolomics and lipidomics can be transferred
to the analysis of oxidized lipids. Indeed, MS analysis allows simulta-
neous detection and identification of multiple molecular species present
at the wide range of concentrations in complex biological matrixes.
Thus, sensitivity of the current instrumentation in combination with
protocols developed to ensure specificity of structural elucidations
provide the opportunity to describe the diversity of oxidized lipidomes
in different experimental, physiological or pathological conditions in a
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variety of biological samples and in a truly high-throughput manner.
However, the bottleneck of current redox lipidomics remains the ac-
curacy, specificity and throughput of identification strategies.

2. Redox lipidomics analytical strategies

As mentioned above, the main challenges in the analysis of oxidized
lipids are their low in vivo abundance and diversity of physicochemical
properties. To detect low quantities of modified lipids in biological
matrices targeted or semi-targeted methods are often used to increase
the sensitivity of the detection techniques. On the other hand, structural
diversity requires the application of different analytical protocols which
complicates truly Omics coverage of the epilipidome. Usually specific
analytical methods addressing a subtype of oxidized lipids are devel-
oped and optimized based on the properties (concentration, polarity,
ionization properties, volatility, and matrix effects) of the analyte. In
terms of data acquisition strategies, lipidomics can be performed in a
targeted (multiple reaction monitoring, MRM), semi-targeted (pre-
cursor ion or neutral loss scans, PIS or NLS) or untargeted (data de-
pendent and independent acquisition, DDA and DIA) manner. Based on

the aim of the study, the quantification of known lipid targets is usually
achieved by targeted methods, while untargeted approaches are more
favorable for lipid profiling or de novo identification.

Depending on the aim of the analysis, various instrument settings
can be applied for both identification and quantification purposes. In
general, shotgun and LC-MS-based lipidomics using electrospray ioni-
zation (ESI) or matrix assisted laser desorption ionization (MALDI; in-
cluding MALDI imaging) are the mainstream lipidomics strategies. In
shotgun lipidomics, samples are directly introduced into an MS system
without prior separation. Shotgun lipidomics provides robust and high-
throughput means of lipid analysis [18]. However, identification of
oxidized lipids based on the interpretation of the MS/MS spectra ap-
pears to be very challenging without prior separation due to the large
number of isomeric species. Thus, shotgun methods are usually not
suitable for the profiling of oxidized lipid from complex mixtures.

Targeted LC-based methods, such as MRM on triple quadrupole
instruments, and more recently TOF MRM and parallel reaction mon-
itoring (PRM), can detect selected compounds with high selectivity and
sensitivity and are often used for quantification purposes. MRM-based
quantification can cover a dynamic range of up to four orders of

Fig. 1. Estimated number of lipid species in
oxidized fraction of epilipidome for a given
list of FA (F) and lipid classes (X). (A)
General types of lipid modifications in-
cluding oxidative cleavage products (Mocp),
oxygen addition products (Moap), and spe-
cific modification types such as prostane
like (Mp) and ring derived structures (Mo)
for FA with more than 3 double bonds. (B)
The equations for the prediction of oxidized
lipidome from a given number of FA, lipid
classes, and modification types. Reported
results correspond to the unique number
and combinations of modifications regard-
less of modification site. (C) The example of
predicted oxidized lipidome using the list of
19 FAs (Table S1).

Z. Ni, et al. Free Radical Biology and Medicine xxx (xxxx) xxx–xxx

3



magnitude, providing precise quantification in a broad range of biolo-
gical concentrations. However, the characteristic ionization and frag-
mentation criteria for targeted compounds need to be specified prior to
the experiment including selection of compound-specific MRM transi-
tions (pairs of precursor and fragment ion m/z) and thus require prior
knowledge of the analyte’s structure. Additionally, despite a high de-
gree of multiplexing, the maximum number of targeted analytes is still
limited by instrument capabilities.

The development of MRM methods is generally based on well-stu-
died fragmentation patterns and elution profiles from chemically de-
fined authentic standards. For oxidized fatty acids, MRM transitions
have already been developed and published in previous years based on
over a hundred commercially available standards [19–21]. For oxy-
sterols, which have more than 30 commercially available standards
including isotope labelled internal standards, MRM transitions were
also developed and reported in different use cases [22,23]. However,
for lipid classes such as phospholipids, ceramides, and glycerolipids,
which lack commercially available oxidized lipid standards, the appli-
cations of targeted methods are limited and less reported. To the best of
our knowledge in March 2019, ten authentic standards (hydroperoxy
and hydroxy derivatives of SAPC/SAPE with functional groups on
carbon 15, butenoyl and azeloyl platelet-activating factor (PAF), C5 and
C9 truncated PAPC with terminal aldehyde or carboxylic groups) and
single isotope labelled standard (1-palmitoyl-2-glutaryl-sn-glyceropho-
sphatidylcholine-d6) were commercially available for oxidized phos-
pholipids. To overcome these limitations, an elegant approach for the
detection of oxidized PC lipids in biological samples was designed by
Gruber et al. [24]. Authors used in vitro oxidized mixtures of PC(16:0/
20:4), PC(16:0/18:2), PC(18:0/20:4), and PC(18:0/18:2) lipids to de-
termine m/z values of formed OAP and OCP precursor ions which were
further used to compose a list of MRM transitions using the pair of in
vitro detected precursor m/z and fragment ion of PC head group at m/z
184 in positive ion mode. Using retention time range specific for oxi-
dized PC (earlier elution times in comparison to unmodified lipids on
reverse phase columns) as well as four commercially available oxPC
standards (POVPC, PGPC, PONPC, and PAzePC), it was possible to
optimize targeted methods for sensitive detection of oxidized PC lipids
in a variety of biological samples [25–27].

Lack of commercial standards limits the application of MRM
methods for profiling previously unknown oxidized lipids. Application
of a semi-targeted method such as precursor ion scan on triple quad-
rupole or QTrap instruments provides a compromise solution to mini-
mize the trade-offs between sensitivity and coverage of oxidized lipids.
For instance, using precursor ion scan for the fragment ions at m/z 115,
known to be diagnostic for the presence of hydroxy or epoxy functional
groups at C5 atom in PUFA, identification of several mono- and poly-
oxygenated PUFAs was achieved [28].

However, the true systems-wide profiling of oxidized lipids can only
be performed using untargeted redox lipidomics. The most common
untargeted approaches can be divided into data dependent (DDA) and
data independent acquisition (DIA) methods. A typical DDA method
utilizes an MS survey scan followed by several (the number is depen-
dent on the speed of used mass analyzer) MS/MS scans, thus resulting in
a duty cycle of 1–2 s and allowing for the acquisition of several thou-
sands of tandem mass spectra over time of chromatographic separation.
Despite the large number of MS/MS data obtained in DDA experiments,
the main disadvantage of the method is so called “undersampling” –
selection of the signals for the fragmentation is based on their in-
tensities (n signals with the highest intensity in each MS survey scan)
and thus low abundant ions are not selected for MS/MS or selected only
occasionally thus reducing the reproducibility of the fragmentation
events and identification rates between technical or biological re-
plicates [29–31]. The development of modern mass analyzers capable
of combining high mass accuracy and resolution with high scanning
rates has enabled a reduction of the effect of “undersampling”. Never-
theless, DDA experiments aiming to identify oxidized lipids in complex

biological samples often require separation of lipids by liquid chro-
matography (LC) coupled on-line to MS. LC-MS coupling usually em-
ploys separation of lipid mixtures based on reverse phase (RP) or hy-
drophilic interactions liquid chromatography (HILIC) techniques [32]
and allows to reduce sample complexity at the moment of ionization
(reducing ion suppression) as well as the number of ions competing to
be selected for the fragmentation events. For instance, combination of
two orthogonal chromatographic techniques (normal phase and reverse
phase) in combination with DDA was used for the analysis of oxidized
phospholipids (CL, PE, PC, and PS) in four different cell and tissue
models of oxidative stress [33]. Analysis of the lipidomes of rat cardiac
cells treated with peroxinitrite donor by RPLC-DDA MS allowed iden-
tification of 67 oxidized PLs including PC, PE, PG, PS, and PA lipids
[34].

Selection of appropriate stationary and mobile phases for LC se-
paration is crucial to ensure coverage of the lipidome [35] and epili-
pidome [7]. Thus, using a combination of two different RPC methods
optimized for non-polar and polar analytes combined with untargeted
MS analysis in positive and negative ion modes as well as two different
m/z ranges, Slatter et al. performed an in-depth analysis of the platelet
lipidome upon thrombin activation [7]. This analytical platform al-
lowed identification of over 100 putative oxidized PE lipids, which
were further verified in DDA experiments and relatively quantified
using MRM assay. Importantly, large amounts of data obtained in this
study and thus identification of potential oxPLs signals was performed
using an in-house designed Excel tool for peak peaking, deconvolution,
retention time correction and noise reduction which was further
translated into the open-source software LipidFinder [36].

An interesting approach for oxPL identification and characterization
of their fragmentation patterns was performed by Aoyagi et al. [37].
Authors used biogenic conversion of commercially available oxidized
fatty acids (HETE, HEPE, HDoHE, HODE, EET, EpETE, and EpDPE) by
HEK293 cells into their corresponding oxidized phospholipids. Ex-
tracted lipids were analyzed by DDA LC-MS/MS which allowed iden-
tification of 386 oxPL species that were further used to build oxPLs
spectra libraries as well as to optimize MRM transitions for the targeted
analysis. Furthermore, application of defined positional isomers of
oxidized PUFAs (e.g. 12-HETE) enabled the definition of position spe-
cific fragment ions, significantly improving the specificity of the iden-
tifications.

DIA acquisition overcomes the intrinsic limitations of the duty cycle
length vs. number of MS/MS scans characteristic for DDA methods. For
instance, the duty cycle in the All Ion Fragmentation (AIF) and MSE

method includes just two scans – one MS and one MS/MS – which al-
lows for the collection of a large number of data points for MS-based
quantification. Furthermore, DIA avoids an intensity-based selection of
precursors, and all ionizable analytes eluting from the column are
subjected to the CID during MS/MS scans. However, in comparison to
DDA data structure, where a direct and clear connection between pre-
cursor and corresponding fragment ions already exists at the level of
data acquisition, DIA data requires application of post-processing al-
gorithms aiming to assign precursors to the corresponding fragment
ions. Unfortunately, such an assignment does not currently provide a
clear precursor-fragment ion association in lipidomics datasets. The
presence of multiple signals corresponding to the fragment ions of other
precursors interfere spectra annotation and lipid identification in
manual and especially the automated software interpretations.
Furthermore, assignment of the fragment ions to the corresponding
precursors for structurally similar analytes can be ambiguous due to the
presence of the same fragment ions (e.g., signal at m/z 184 will be
present in all tandem mass spectra of PC lipids acquired in positive ion
mode, or signal at m/z 303 will be characteristic for MS/MS of lipids
containing arachidonic acid residue when analyzed in negative ion
mode). Thus, All Ion Fragmentation (AIF) and MSE methods are not
currently used for the identification of oxidized lipids, to the best of our
knowledge.
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Another DIA approach known as sequential window acquisition of
all theoretical fragment ion spectra (SWATH), relies on the combination
of an MS survey scan followed by the sequence of consecutive MS/MS
events with relatively wide isolation windows (usually 25 Da) within
one instrument duty cycle. Thus MS/MS information for all precursor
ions present at MS level is acquired and can be matched to the analytes
using preexisting fragmentation libraries. This approach was recently
applied for detection and relative quantification of four oxidized lipids
(POVPC, PGPC, PAzePC, PONPC) in the platelet lipidome of patients
with coronary artery disease [38]. However, detection of oxPCs re-
quired previous knowledge of their fragmentation patterns used for the
spectra matching as well as optimization of SWATH method by nar-
rowing down Q1 isolation window to 5 Da and enhancement for frag-
ment ion at m/z 184 to ensure the identification accuracy. Thus, au-
thors referred to this as method as MRM-like SWATH rather than as a
truly untargeted DIA method [38].

In addition to LC-MS and shotgun MS approaches, several matrices
for lipid analysis on MALDI instruments have been reported, allowing
for the fast identification of lipids in both a positive and negative io-
nization mode. Generally, due to the complexity of the (oxidized) li-
pidome in biological samples, MALDI is less used for lipid profiling.
However, the MALDI imaging (MALDI-IMS) technique has its unique
feature to provide visual information of lipid spatial distribution in a
tissue sample. Whereas MALDI-IMS of oxidized lipids represents a
promising emerging direction towards the understanding of physiology
and disease, as it allows monitoring of the distribution of lipid perox-
idation products (LPPs) in tissues [39], oxPL imaging appears to be
challenging due to the low intensities of modified lipid signals already
at MS level (low natural abundance of oxPLs plus limited sample
availability) limiting their confirmation by tandem MS. Although a
number of methods for mass spectrometry imaging are available (based
on MALDI, DESI, LAESI, LSI, LESA) [40–44], only a few studies de-
scribing the spatial distribution of oxidized lipids have been reported so
far. For example, Sparvero et al. [45] reported the use of imaging mass
spectrometry for lipidomics studies on traumatic brain injury, high-
lighting the intriguing possibility of monitoring oxidized species. Later,
Stutt et al. [46] developed a MALDI MS/MS method that enabled
imaging of truncated carboxylate-containing PC in rat spinal cord,
proving that the ions related to these species appear mostly in the gray
matter. In recent years, developments in MALDI-IMS instruments have
introduced the capability of sub-micrometer sphere resolutions, en-
abling further applications on the cellular level [47]. However, the low
abundance of LPPs still prevents wide application of imaging mass
spectrometry in this field.

In summary, over the past decades the development of new LC and
MS instruments has brought significant enhancement for the separation
and detection of lipids. Based on new stationary phases for LC, high
resolution, accuracy, speed, and sensitivity of MS instruments, various
methods optimized for different lipid classes have been published
[48–54]. Some methods specifically tuned for oxidized lipids have also
been developed [48,54]. Still, the unknown diversity of oxidized lipids
adds additional challenges not only to their analysis but to high-
throughput identification strategies as well. As a result, manual inter-
pretation of tandem spectra is usually required for the confident iden-
tification of oxidized lipid species.

3. Bioinformatics strategies for identification of oxidized lipids

3.1. Software solutions for identification of unmodified lipids

Despite a significant development in experimental designs and data
acquisition strategies for MS-based lipidomics, overall data analysis is
one of the most important parts, as it largely influences the outcome of
the entire experiment. Additionally, the application of a new generation
of high-resolution instruments produces more complex data, which
often requires significant effort in data processing using advanced

software tools. However, in contrast to other “omics” studies, such as
genomics and proteomics, software tools in lipidomics are less devel-
oped to give a universal all-in-one solution. Untargeted (redox)lipi-
domics approaches are usually based on DDA datasets and aim first of
all to identify as many lipid species as possible to reveal the complexity
of different lipidomes. In the field of oxidized lipids, the exact structural
assignment is important for further analysis of biological functions.
Thus, identification methods based only on the exact mass of the ana-
lyte are not sufficient to report the presence of oxidized lipids. The
automatic identification of oxidized lipids based on the acquired
tandem mass spectra is the fundamental procedure of high-throughput
computational workflows. Additionally, MS survey scan information
about precursor mass, isotope pattern, elemental composition and re-
tention time are used to improve the assignment depending on the
software algorithms. As in many other fields, redox lipidomics tries to
adapt currently available bioinformatics solutions to lipidomics for the
high-throughput identification of oxidized lipids.

Current bioinformatics solutions in lipidomics are represented by
three main approaches – spectra matching, top-down and bottom-up
based lipid identification (Fig. 2). Lipid identification based on the
scored match between experimental data and reference spectra libraries
is probably the most popular approach in MS-based lipidomics
(Fig. 2A). Several types of libraries are available, including MS/MS
spectra (e.g., METLIN) and lipid structures (e.g., LIPID MAPS, HMDB)
[55–57] based. Both types can rely on the experimental data, or on a
combination of experimental and computationally-predicted entries.
For instance, the LipidBlast software reports 120,000 distinct com-
pounds (including over 33,000 of PLs, usually 5,476 species per class
derived by permutation of 74 discrete FA residues) associated with
more than 200,000 in silico-generated tandem mass spectra [58]. Such a
high number of computationally predicted structures allows for the
identification of previously undetected species but requires strict con-
trol of identification results. The accuracy and coverage of library
matching strategies rely on the number of spectra collected in the li-
brary as well as the MS/MS quality. Furthermore, spectra matching
tools are inherently instrument and acquisition type dependent [58,59].
The total number of identifications is restricted by the number of
spectra included in the library, however the creation of a given spectra
library is often a time-consuming task, and greater efforts are required
for the maintenance and subsequent expansions to new compounds
and/or other instruments.

Among the most used software tools based on a similarity matching
are LipidBlast and MSDIAL tools [58,59]. Furthermore, Lipostar, a
software based on a cheminformatic approach, was recently developed
[60]. In Lipostar, lipid fragmentation is based on a collection of ex-
perimental fragmentation rules from literature and in-house data. The
library of fragmentation rules can be used to generate in silico fragment
databases of lipid structures (provided by the user) and subsequently to
apply the spectral match strategy. Although Lipostar does not directly
estimate the intensity of theoretical MS/MS fragments, several weights
and labels (e.g. “mandatory” or “recommended” fragments) can be
adjusted by the user to suit the software to the used experimental
conditions, and fragmentation rules established by the user can be also
used for in silico fragmentation.

The existing in silico top-down fragmentation algorithms for small
molecules, such as MetFrag and in silico identification software (ISIS),
can be used for certain lipid classes [61,62] (Fig. 2B). These types of
algorithms require an exact structure of the compound to estimate
chemical bond energies and other properties, which are further used for
the prediction of cleavage sites under fragmentation conditions. Due to
the high structural diversity among lipid classes, algorithms optimized
for certain lipid classes might not be suitable for other lipid classes.
Additionally, fragmentation algorithms are often unable to provide the
relative intensities of the predicted fragments. The relative intensities of
the main fragments still need to be determined using external sources,
which mainly require previous knowledge of the main fragmentation
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pattern of target lipid classes given the chosen instrument setup.
The bottom-up identification methods suggest most probable

structures by assembling identified fragments matching precursor ele-
mental composition (Fig. 2D). Thus, LipidXplorer [56], can utilize
highly customized scripts to define fragment ions from a limited range
of precursor elemental compositions. This strategy can also be adapted
to define the fragment ions for a broad range of lipid classes. However,
the current version of LipidXplorer was designed for shotgun lipi-
domics, and needs additional tuning of the configurations and work-
flows to be fully functional for LC-MS datasets [63,64]. Lipostar pro-
vides a bottom-up high-throughput strategy for lipid identification as
well, which is applied only to those features that remained unknown
after the above-mentioned spectra matching approach. Indeed, for un-
known compounds, the experimental MS/MS spectrum is searched for a
list of lipid class/subclass specific fragments collected in the library of
fragmentation rules. If matches with specific fragments of a given lipid
class are found and retention time is compatible, the unknown com-
pound is identified as a member of that lipid class, but the elemental
composition of the precursor nor scoring functions are available in the
present version of the software.

The algorithm of LipidHunter, a recently developed tool for bottom-
up identification of phosphor- and glycerolipids from DDA LC-MS/MS
datasets, relies on three main steps [65]. First, the observed MS/MS
spectrum is searched against all possible m/z values for lipid class and
fatty acyl chain specific fragments. Second, all identified fragments will
be ranked and scored. Finally, the identified fragments are summarized
to suggest the best matches that fit to the elemental composition of the
precursor. For bottom-up methods, the correct identification of the
elemental composition is very important. Thus, the high resolution of
MS spectra and high-quality isotope patterns are essential. Although no
spectra library is needed in bottom-up strategies, prior knowledge of
the lipid class and acyl chain specific fragmentation patterns is re-
quired. The quality of the bottom-up identification largely relies on the
fragment ion signals observed in MS/MS spectra and the corresponding
score system. Considering the vast possibilities of fragments from oxi-
dized lipids and potential isomeric species, the generation of fragments
list is critical for the identification accuracy.

Fig. 2. Summary of identification ap-
proaches used in high-throughput MS based
lipidomics including spectra matching, top-
down, and bottom-up strategies. Software
tools based on the spectra matching ap-
proach require an MS/MS spectra library
(A, I) or lipid library (B) as input to generate
MS/MS spectra using software embedded in
silico fragmentation algorithms (II). The
acquired spectra are then matched to the
spectra libraries and identifications are
scored based on the similarity using clas-
sical (α) or modified similarity scores (β)
algorithms. Software tools which rely on the
top-down identification approach require
the input of lipid structure database (C) to
perform in silico fragmentation based on
chemical properties of the input structures
(III) following by scoring based on m/z, in-
tensity, and bond energy (γ). For bottom-up
strategy, a high throughput assignment on
the lipid class/subclass level can be ob-
tained by using list of class/subclass specific
fragments (D). While on the lipid species
level, a highly customized workflow (E)
based on user defined matching patterns (V)
is used. Despite the algorithms that report
the matched peaks without default score
system (δ), a bottom-up identification based
on a list of defined FA (F) to enumerate all
possible lipid species (VI) can be used and
supported by the ranking score of matched
fragment ions from all identified signals (ε).
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3.2. Specific requirements for identification of oxidized lipids

Identification of oxidized lipids from high-throughput DDA experi-
ments to a certain extent follows the general logic of unmodified lipid
identification but also requires several specific steps (Fig. 3). Thus, to
confirm identity of oxPL, the precursor ion elemental composition
needs to deduce from the m/z of the corresponding MS survey scan
(Fig. 3A). Analysis of oxidized lipids usually requires high mass accu-
racy and resolution in order to distinguish oxPL species from the signals
of closely isobaric unmodified lipids. For example, deprotonated ions of
unmodified PS(18:0/20:4) and oxidized PE(18:0/22:4) with single hy-
droxy group are detected at m/z 810.5285 and 810.5649 (Δ m 0.0364),
respectively. To distinguish these two lipids, an instrument with a mass
analyzer capable of resolution (defined here as m/Δm) more than
20,000 atm/z 810 is required (810/0.0364 = 22,253).

Combination of MS analysis with reverse phase chromatography
(RPC) separation provides another level of confirmation in detection of
oxidized lipids. Due to the presence of oxygen-containing functional
groups (e.g. hydroperoxy, hydroxy, epoxy, and keto moieties) in acyl
chains, oxidized lipids become more polar in comparison to their un-
modified counterparts, and thus elute earlier in RPC applications.
Moreover, optimized chromatographic separation allows not only to
distinguish oxidized from unmodified lipids by their retention times but
also to separate numerous isomers of oxidized lipids (Fig. 3B). Indeed,
lipid with a single elemental composition, e.g. C44H80NO9P detected in
negative ion mode as a formate adduct at m/z 842.5547-, can corre-
spond either to PC lipid with palmitic acid and arachidonic acid mod-
ified to hydroxy or epoxy derivatives as well as keto derivative with the
loss of one double bond. Furthermore, considering that singly oxyge-
nated arachidonic acid can be represented by at least six hydroxylated
positional isomers (e.g. 5-, 8-, 9-, 11-, 12-, and 15-HETE) and four

isomers of epoxy derivatives (5,6-, 8,9-, 11,12-, and 14,15-EET), overall
ten isomeric species can be expected. Based on the previous experi-
ments on free eicosanoid standards, elution orders for functional (e.g.
OH before epoxy) and positional (e.g. isomers with functional groups
closer to ω-end of acyl chain elute earlier) isomers was established and
showed to hold for PL-esterified oxidized fatty acids as well. Thus,
availability of high-resolution and mass accuracy MS data when com-
bined with LC separation allows putative identification of oxPLs.
However, only confirmation at MS/MS level based on the presence of
specific fragment ions can provide structural confirmation of LC sepa-
rated isomeric oxPLs.

oxPL MS/MS spectra provide information both on the lipid class and
fatty acyl chains as well as on the type and sometimes the position of
modification (Fig. 3C and D). Similar to the identification of unmodified
lipids, specific neutral losses and fragment ions are used to define lipid
class both in positive and negative ion modes. However, identification
of modification type and especially position of the functional group
usually requires tandem MS experiments performed in the negative ion
mode. Collision-induced dissociation (CID) and higher-energy C-trap
dissociation (HCD) fragmentation of oxPL results in the formation of
intense fragment anions corresponding to the fatty acyl chains esterified
on the PL backbone. However, the presence of the oxidized fatty acyl
chain anion is not sufficient to determine the type and position of the
modified groups. Fortunately, specific neutral loss and fragment ions
are usually detected to assist more detailed identification. For the ex-
ample provided in Fig. 3C and D, the type of the modification (OH vs
epoxy) can be distinguished by the presence (Fig. 3C) or absence
(Fig. 3D) of the fragment ion formed via water loss from hydroxy de-
rivative of arachidonic acid (m/z 301.3), whereas the epoxy derivative
although characterized by the same fatty acyl anion (m/z 319.2) does
not provide this water loss. Furthermore, the specific position of the

Fig. 3. LC-MS/MS derived identification of two isomeric oxidized PC lipids (PC(16:0/8-HETE) and PC(16:0/5,6-EET)) detected as [M+HCOO]- ions at m/z 842.55
supported by three levels of confidence including high-resolution MS survey scan to deduce lipid elemental composition (A), reverse phase separation of isomeric
species (B), and modification type- and site-specific identification based on MS/MS data (C and D).
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modification group can be determined by low molecular weight frag-
ments formed via gas phase fragmentation-induced cleavage of the
oxidized fatty acyl chain usually next to the position of the functional
group (e.g. m/z 155 for hydroxy group at C8 position). Overall, such
kinds of observations derived from experiments performed on free ei-
cosanoids standards as well as on in vitro oxidized PLs, allowed the
accumulation of a set of rules summarizing specific neutral losses and
fragment ions for different types of oxidized PLs [66].

In summary, highly specific identification of oxidized lipids requires
confirmation on at least three different levels – MS1, retention time,
and MS/MS data including lipid class, fatty acyl, modification type and
position specific fragments (Table 1). Unfortunately, although often
applied to the manual analysis, this strategy has not been fully auto-
mated so far to provide truly high-throughput specific identification.
Several partial solutions for automated and semi-automated identifi-
cation of oxidized lipids are currently available and will be discussed in
the following section.

3.3. Software tools available for identification of oxidized lipids

Several available solutions provide identification of oxPLs at the
three evidence levels mentioned above (MS, RT, and MS/MS). Publicly
available lipid databases contain a number of oxidized lipids with
corresponding structures, elemental compositions and exact masses
which can be used for the identification of oxPLs based on the mass of
detected species (MS level). LIPID MAPS currently contains 246 entries
for oxidized glycerophospholipids including 48 oxPC, 51 oxPE, 36
oxPS, 36 oxPI, 36 oxPA, 36 oxPG, and 3 oxCL, most of which are cal-
culated by enumeration of C4, C5, C7, C8, C9, C12 sn-2 truncated
chains with terminal aldehyde or carboxylic functions to PLs with dif-
ferent head groups and palmitic or oleic acyl chains in sn-1 position.
Exact matching of measured m/z values derived from high-resolution
MS experiments with database entries, can be used for putative oxPLs
identifications especially when supported by RT data.

The other approach to match observed m/z values to potential oxPL
structures at the MS1 level was used by Chen et al. [53]. Authors used
previously published data on m/z values and elemental compositions
for oxPLs obtained by in vitro oxidation of lipid standards [52,54] to
compare with their experimental data on LC-MS analysis of zebrafish
plasma in type 2 diabetes mellitus model, which allowed identification
of PC-bound aldehydes (truncated lipids) as well as PC and PI peroxides
(long chain oxidation products). However, the exact identification of
oxidized species at the MS/MS level was not provided, thus limiting the
specificity of the identification of modification types and positions of
functional groups.

Recently, the software tool LOBSTAHS (lipid and oxylipin bio-
marker screening through adduct hierarchy sequences) was developed
to match lipids and their oxidized forms based on the empirically de-
fined hierarchy of ion adducts intensities [67]. The MS1 values library
included 335 fatty acids and correspondingly enumerated lipids from
other lipid classes considering the presence of up to four oxygens in one
fatty acyl chain. Authors identified multiple oxidized lipids in control
and H2O2-treated marine diatom algae lipidome including oxPLs (PC,
PE, PG), oxTAGs, and algae specific lipids like DGDG. Unfortunately,
most of the parameters for oxidized lipids were directly inherited from
their unmodified counterparts including retention time and adduct
formation. Thus, the specificity of adduct formation for short chain
carboxylated oxidized acyl chains for PC lipids was not considered. Due
to the presence of terminal carboxyl functionality, such kind of oxPCs
are represented only by deprotonated anions and not as formate or
acetate adducts typical of other PC lipids in negative ion mode. Fur-
thermore, oxidized lipids due to increased polarity of the acyl chains
should elute earlier from a reverse phase column and thus the retention
time window for their identification should be shifted in comparison to
unmodified species. Furthermore, since the identification was done at
MS1 level, no details on isomer specificity were provided.

Understanding the importance of MS/MS-based structural char-
acterization of oxidized lipids, several software tools were developed or
optimized for oxPL identification. Among the software tools for high-
throughput untargeted lipidomics, Lipostar was a pioneer in realizing
that the search for oxidized species should be included in its workflow,
due to the increasing importance of redox lipidomics [60]. However,
the inclusion of a module to search for oxidized lipids in Lipostar was
far from trivial. In a first attempt, the authors wanted to make use of the
Lipid Builder module in Lipostar (a tool for automatic generation of
lipid structures to be fragmented for customized generation of theore-
tical fragment libraries) to build databases of oxidized species. How-
ever, this approach appeared immediately too slow to fit the general
use of the software in high-throughput approaches. Therefore, there
was the clear need to reduce complexity and in the present version of
Lipostar a very simple and fast approach is applied to extract potential
oxidized species from complex lipid mixtures. Briefly, in order to reduce
the computational time, the search for oxidized species occurs in a
second step of identification. In a first step, features are identified
taking into account non-oxidized species only, looking for matches
between experimental and predicted fragmentation (with or without
the use of a database of fragmented lipids). After the first identification
run, the search for potential oxidized species is applied only to the
remained non-identified features. To avoid the generation of libraries of
fragmented oxidized species and to be able of provide results in a short

Table 1
Summary of currently available solutions for identification of oxidized lipids.

Evidence Level Approach Available solutions References

MS1: matched m/z values, exact mass and/
or elemental composition

Publicly available databases of lipid structures Lipid Maps (246 oxPLx) [49]
Matching to in-house generated or published libraries Previously published m/z values and elemental

compositions of in vitro oxidized lipids
[45–47]

In silico generated libraries LOBSTAHS [60]
Matching with m/z calculated on the fly for potentially
oxidized lipids from libraries of non-oxidized species

Lipostar (high-throughput) [53]

RT: matched retention times or retention
time range

Knowledge based, experimental observation (e.g. higher
polarity of oxPLs relative to unmodified lipids)

Lipostar (rule-based filter – oxPL RT < PL RT) [53]

MS2: assigned fragment ions and neutral
losses specific for:

• lipid class and at least one of the fatty
acyl chains

• modification type

• modification position

Experimental MS/MS spectra libraries MS-DIAL using MS/MS spectra libraries from the
lipidome of cells treated with fatty acid precursors of
oxPLs

[30]

In silico generated MS/MS spectra libraries Lipostar
CEU mass mediator
LipidMatch

[53,59,61]

Top-down or/and bottom-up ID using integrated rules
(with optimized in silico generated MS/MS spectra
libraries)

LPPtiger [29]
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time, a simple rule-based approach is used in Lipostar:

1) When a database of fragmented lipids is used for identification,
unidentified m/z entries are further tested as oxidized forms (M+O,
M+2O, M+O-2H etc.) of lipids in the database, based on the exact
masses comparison.

2) When potential oxidized species are identified based on mass
matching, the MS/MS spectra, when available, are automatically
inspected for compatible increments of fragment ions m/z.

3) Optionally, the user can reduce the FDR by applying filters, for ex-
ample requiring that for each potential oxidized lipid identified the
sample must contain the corresponding non-oxidized form. This
constraint can be reinforced requiring that the retention time for
oxidized species should be lower than that of the non-oxidized form
considering samples were separated by RPC.

Of course, this simple method is far for being exhaustive, and pro-
vides a very preliminary inspection of MS/MS data. The major draw-
back of this approach is that discrimination among isobaric oxidized
species originated from the same lipid is not possible. On the other
hand, this approach allows to pick potential oxidized species in the
minutes scale.

CEU mass mediator, a web base tool for metabolites annotation by
quiring different databases, recently provided a semi-automated solu-
tion for identification of oxPLs [66]. Based on the LC-MS/MS experi-
ments using oxPAPC standards, the authors defined and validated the
fragmentation rules of oxidized PLs including modification type specific
neutral losses and fragment ions, some of which were implemented in
CEU mass mediator module for oxidized lipids. The input data should
include m/z values of a precursor ion (MS1), and two fatty acyl chain
anions (MS2) as well as corresponding mass tolerance. For the identi-
fication of long chain oxPL species, the software substitutes the mass
increments of possible oxidative modifications (e.g. OH, keto, OOH
groups) from m/z values of acyl chain anions and tries to fit the resulted
value to the list of known unmodified fatty acyl chains. If the match is
found, the tool reports the identified oxPL with corresponding ele-
mental composition, parent (unmodified) lipid as well as potential
neutral losses specific to the modification type which can be manually
verified by the user from raw data.

Another example of software dealing with oxidized species is re-
presented by LipidMatch [68], an open source R-based tool for lipid
identification from LC-MS data. The identification process is based on
the use of in silico generated fragmentation libraries for over 250,000
lipids including, among the others, oxidized species. To generate oxPL
libraries the authors predicted 214 potential oxidized fatty acids in-
cluding 126 long chain (by enumeration of up to four oxygens to 39
unmodified fatty acids) and 88 short chain oxidation products (in-
troducing the cleavage sites on unsaturated fatty acids and adding
carbonyl or carboxyl terminal groups). By enumeration of all possible
combinations the final list of oxPLs consisted of 214 species for LPC and
LPE, 31,112 species for PC and PE, and 156,102 oxCLs, compromising
over 87% (!) of lipids from a total 250,000 species library. For each
oxPL m/z values for fragment ions specific to lipid class and acyl chains
are provided. Unfortunately, specificity of the ionization for different
short chain PC lipids was not considered and format adducts in the
negative ion mode data were calculated for both carbonyl and carboxyl
terminal oxPCs.

Simple computational enumeration methods, although providing a
large library of potential species, do not consider a probability of bio-
logical existence of predicted oxPLs. To overcome this limitations,
evidence-based approach for prediction of oxidized lipids was im-
plemented in LPPtiger software [34]. To build the algorithm for in silico
oxidation of PLs, the meta-study of publicly available data (over 170
publications) was performed to define rules of enzymatic and free ra-
dical driven oxidation of PUFAs. Based on this information, knowledge
of the oxidation mechanisms for bis-allylic positions, rearrangement of

neighbouring double bounds, cyclization to prostane ring structures,
and truncation via Hock cleavage or β-scission in PUFAs were trans-
lated into an in silico oxidation algorithm. LPPtiger can perform in silico
oxidation for any provided PL lipidome as long as defined acyl chains in
unmodified parent PL are provided (e.g. PC(16:0/20:4)). The generated
library of oxPLs is further used to perform in silico CID fragmentation
considering oxPL specific ionization and fragmentation properties.
Fragment library is used to perform similarity-based matching with
experimental MS/MS spectra providing spectra similarity score based
on reverse dot-product algorithm, similar to all spectra matching lipi-
domics software tools. However, due to the large diversity of oxPLs
structures LPPtiger additionally integrated other scoring algorithms
including the rank score developed in LipidHunter’s bottom-up strategy
[65]. Furthermore, a Fingerprint Score based on the intensity-in-
dependent matching of neutral losses characteristic to oxidized fatty
acyl chain anions was introduced. Fingerprint score allows to distin-
guish some of potential isomers derived from different modification
types – e.g. hydroxy (characterized by a water loss) vs epoxy (no water
loss). Although LPPtiger provide certain level of oxPL specificity
(modification type), the identification of position specific isomers (e.g.
5- vs 12-HETE-PL) is still missing.

4. Future directions to improve high-throughput identification of
oxidized lipids

4.1. Improving specificity of oxPL identifications

In the previous sections the crucial role of software tools to assist
high-throughput lipidomics was described, but a number of limitations
to their use in the identification of oxidized lipids was also highlighted.
Indeed, the correct identification of isomers are critical for further data
analysis (e.g. pathway analysis) but challenging for the software iden-
tification. Due to the various possible combinations of oxidized moi-
eties, the same elemental composition can be shared by large number of
isomers. However, before asking how a software for redox lipidomics
can be improved, one should ask how the experimental information on
oxidized lipids can be increased, as it is evident that good software
cannot be created without a strong experimental background on the
topic.

Unfortunately, the information about the fragmentation of oxidized
lipids is still limited. First of all, the number of oxidized lipid standards
available so far is limited and available data on fragmentation patterns
are usually based on in house prepared mixtures of in vitro oxidized
lipids. Increasing the number of chemically defined pure standards for
oxidized lipids will be a valuable strategy to increase a dataset neces-
sary to build up new algorithms. Additionally, analytical (new sta-
tionary phase for separation of isomeric oxidized lipids) and instru-
mental (sensitivity) improvements would facilitate generation of high-
quality datasets.

MS/MS spectra acquired using fixed collision energy are generally
not sufficient to assign the specific modification positions and difficult
to confirm the exact sn-1/sn-2 positions of oxidized FA chains.
Application of stepped CID and HCD fragmentation protocols based on
the combination of lower (to generate lipid class specific fragment ions)
and elevated (to induce modification-driven fragmentation on oxidized
fatty acyl chain anion) collision energies may generate more in-
formative MS/MS spectra, especially in the lower m/z region. The MSn

techniques based on consecutive tandem mass spectrometry experi-
ments such as automatic MS3 (MS/MS/MS) and MS4 methods available
on new instruments like Orbitrap Fusion Lumos, can be configured to
automatically select and fragment ions from oxidized fatty acyl chains,
providing valuable information for the assignment of exact oxidation
modification sites.

Potentially, the ion mobility mass spectrometry (IMS) technique,
capable of separating gas phase ions based on their molecular shapes
(collisional cross-sections, CCS) as well as m/z, can be optimized to
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resolve isomeric oxidized lipids prior to CID fragmentation by adding
an additional layer of separation and reducing complexity of MS/MS
spectra for isomers co-eluting in LC [69]. IMS-MS coupling already
proved to be efficient in separation of lipid acyl-chain regioisomers and
double bond positional isomers [69–71] as well as carbohydrate
anomers [72]. These kinds of techniques are expected to be extended to
the field of oxidized lipidomics.

To optimize the use of these new techniques for the identification of
oxidized lipids, new software tools able to deal with the new in-
formation gathered using MSn or IMS are required. For MSn data pro-
cessing, vendor specific programs have started to provide solutions for
the unmodified lipid identification; for example, Lipid Search (version
4.1) can distinguish multiple TG isomers using MSn data from Orbitrap
Fusion Lumos Tribid mass spectrometer [73]. Further development and
optimization are required for the identification of oxidized lipids. Third
party vendor non-specific software that supports MSn datasets e.g.
MZmine2 [74] provides a framework to integrate new algorithms or
extend existed algorithms for oxidized lipids driven by the community.
For ion mobility, there are existing tools for the prediction of CCS va-
lues, e.g. LipidCCS [75]. However, the various forms and combinations
of oxidative modifications will probably influence CCS value to a dif-
ferent extent. Thus, the transformation and evaluation of oxidized lipids
has to be performed using standards including positional isomers.

4.2. Retention time prediction

Retention time prediction for oxidized lipids could offer an addi-
tional dimension for the assignment of oxidized structures to experi-
mentally identified features. The retention time prediction is still
scarcely used in software for LC-MS-based lipidomics, although reten-
tion time is a compound-specific property. The reason is that retention
time prediction is far from being a trivial issue, strongly depending on
the experimental condition used.

Recently, few proteomics applications have been reported to use
machine learning techniques, which have been proven powerful in
many research areas to make intelligent decisions, to assist peptide
identification from MS/MS spectra [76,77]. Machine learning was also
used for the RT prediction of some unoxidized lipids in reverse phase
chromatography [78]. Descriptors used for modelling included mole-
cular mass, logP, and calculated properties like surface area, electro-
static interactions, hydrophobic and hydrophilic effects, and polariza-
tion properties. When the model includes structures from different lipid
classes (high structure variability) machine learning or QSPR models
can offer robust tools for RT prediction. Unfortunately, RT prediction
within a single lipid class (low structure variability) can be rather
challenging, as recently described for steroids in reverse phase chro-
matography, due to the high number of isotopomeric structures for this
lipid class [79]. Similarly, retention time prediction of oxidized species
is complex, as different positional isomers are expected not to show
significant differences in calculated polarity or hydrophobic/lipophilic
balance, but cis/trans conversion of double bonds and potential in-
tramolecular hydrogen bonds could increase the modelling complexity,
by acting on the three-dimensional structure of the oxidized lipid. But
how to select the best descriptors for modelling RT of oxidized lipids?
Again, more experimental data are needed to generate a training set.
Indeed, the major difficulties to train deep learning models for oxidized
lipids include the shortage of reliable assigned spectra for data training,
the lack of estimated oxidized lipid structure databases, and fast eva-
luation of computer assigned spectra during model training.

4.3. Increasing the coverage of oxidized lipid classes

The majority of published data on modified lipids describe species
derived from oxidation of esterified PUFAs acyl chains (Fig. 1). How-
ever, in addition to oxygen addition and oxidative cleavage products,
PUFAs can undergo other modifications including nitration and

halogenation. Nitrated free fatty acids and more recently nitrated PLs
and TAGs were identified in vitro and in vivo, and are usually associated
with beneficial anti-inflammatory effects [80,81]. Detailed MS and MS/
MS characterization was performed for several classes of nitrated lipids
[82,83], however fragmentation rules observed in these studies were
not implemented in identification software tools so far. Halogenated
lipids represent another fraction of epilipidome. Thus, chlorinated PLs
were proposed as pro-inflammatory markers formed upon activation of
HOCl producing enzyme myeloperoxidase at the sites of acute in-
flammation [84–86]. Furthermore, nucleophilic amino groups at the
head group moieties of aminophospholipids PE and PS provide another
prominent modification site. Similar to the proteins (e.g. hemoglobin),
aminoPLs undergo reaction with reducing sugars including glucose
with a formation of Amadori products and further degradation to ad-
vances glycation end products (AGEs) know to be associated with de-
velopment of hyperglycemia and diabetes [87–89]. Free radical mod-
ification of hydroxyl containing head groups of PLs were also proposed
[90]. For all those modification types, a number of MS/MS specific
fragment ions and neutral losses were described but not considered by
high-throughput identification algorithms so far.

Currently, no software tool claims to support identification of
modified lipids from all classes and multiple modification types. The
major challenges come from the prediction of possible structures and
corresponding fragmentation patterns. However, in future the enu-
meration of structures can be achieved by transferring the knowledge
about the modification mechanisms to the computational algorithms
optimized for each target lipid class and modification type.

4.4. Cross-platform nomenclature for oxidized lipids

The nomenclature proposed by the LIPID MAPS consortium for
native unmodified lipids is used worldwide by the lipidomics commu-
nity [1]. Furthermore, a shorthand notation system for lipid structures
at different levels of structural confirmation was proposed by Liebisch
et al. [91]. However, there is still no unified abbreviation system for
oxidized lipids available to date. Historically, at the level of oxidized
fatty acids abbreviations like 15-HETE or 12-HpETE for 15-hydro-
xyeicosatetraenoic and 12-hydroperoxyeicosatetrenoic acids are often
used with minor variations when describing the R/S isomers. Pros-
taglandins can be named in slightly different ways usually sharing the
common definition for ring types such as PGE2 and E2-IsoP. For oxPLs
the majority of studies report partial identification reporting lipid class/
species with the corresponding number of oxygens, e.g. PE(36:4)+2O
or 16:0/20:4(2O)-PE [7]. However, a clear and unambiguous nomen-
clature system for oxidized lipids capable of defining the exact structure
including modification type, position, cis-/trans- and R/S isomers while
still being flexible enough to match partial annotations is required to
unify cross-platform data comparison and integration.

Recently, a few efforts have been made through the LIPID MAPS
online tools and LPPtiger software. LPPtiger reports oxidized lipids at
the level of modification number and type without specifying its exact
position and stereochemistry. The LIPID MAPS online structure drawing
tools (http://www.lipidmaps.org/tools/structuredrawing/StrDraw.pl)
has implemented an abbreviation system for oxidized FA including a
controlled vocabulary for 11 modification types (OH: hydroxy, NH2:
amino, Me: methyl, Ke: keto/oxo, Ep: epoxy, SH: thio, My: methylene,
Br: bromo, Cl: chloro, F: fluoro, CN: cyano) and has the capability to
define the cis-/trans- and R/S isomers. This system can be extended to
oxidized FA containing lipid classes such as PLs and TG. However, both
available abbreviation systems have certain limitations. For example,
the LPPtiger abbreviation use 1xKETO to represent a keto group instead
of 1Ke which is shorter and simpler in the LIPID MAPS abbreviation. On
the other hand, the LIPID MAPS abbreviation for lipids with terminal
carboxylic acids use both OH and Ke at the same position, while
LPPtiger indicates clearly the carboxylic acid using < C10@COOH > .
Another issue is the optimization of shorthand notations and their
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manual interpretation, for example in LIPID MAPS abbreviations for
multiple OH groups it is needed to write “OH” each time, while
LPPtiger has unnecessary “x” for multiplication and so on.

This lack of unified naming and abbreviation system and the pos-
sibility to map partial ID with more detailed levels of identification for
oxidized lipids, makes the comparison of datasets derived from dif-
ferent laboratories and studies very challenging if at all possible. To
close this gap, we propose the epiLION (epiLipidome Identifier and
Optimized Nomenclature) tool to provide a unified abbreviation solu-
tion for both manually and software generated oxidized lipid IDs
(Fig. 4). Furthermore, epiLION includes a conversion module which
allows to covert different types of oxidized lipids identifications into
unified and hierarchically structures abbreviations. A demo version of
epiLION is available on Github (https://github.com/SysMedOs/
epiLION). We believe that this proposal has the potential to unify the
abbreviation system in epilipidomics and will finally allow high-
throughput data comparison and integration.

4.5. Reducing computational costs

Another important aspect in developing efficient high-throughput
software tools for redox lipidomics is their computational costs. From
this perspective, the enormous structural diversity of oxidized lipids

probably represents the most challenging tasks in developing dedicated
software, as it is responsible for:

- Combinatorial explosion due to the multiple oxygenated species
derived from a single lipid;

- Lack of knowledge about the number of possible oxidized structures
effectively formed in vivo (risk of a high number of false positives).

As described above, the matching between experimental and in silico
predicted fragment spectra is the most common approach for identifi-
cation of oxidized lipids. However, the generation of a comprehensive
database of all oxidized lipid species is extremely time and disk-space
consuming, if not unfeasible, taking into account that true diversity of
epilipidome is still an open question. For instance, in LPPtiger software,
that provides a knowledge-based in silico oxidation algorithm, the
prediction of oxPL structures and corresponding fragment spectra is still
the most time-consuming step. Thus, novel strategies need to be de-
veloped in order to find high-throughput application. For instance, new
improvements to optimize GPU-based parallel processing are currently
under development.

Furthermore, combination of software tools able to provide a list of
potential oxidized lipids in a high-throughput manner from “big data”
acquired using modern LC-MS/MS lipidomics can be further used by a

Fig. 4. Proposal for the epiLION (epiLipidome Identifier and Optimized Nomenclature) tool to provide unified abbreviations and ID conversion platform for oxidized
lipids. (A) Overview of nine identification levels for oxPLs based on a specificity of structural assignment (middle) compared to the diversity of shorthand notations
used by the community (left) and corresponding unified abbreviation system proposed by epiLION. (B) The epiLION abbreviation corresponding to 1-hexadecanoyl-
2-(5S,6R-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphoethanolamine to unify common abbreviations as well as shorthand notations provided by
LIPID MAPS, Lipostar and LPPtiger. (C) Conversion module available within epiLION to match different types of IDs reported in different studies, by different
software and databases in unified epiLION ID supporting hierarchical cross-matching.
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second software tool focused on the detailed specific identification of
modified lipids including modification type and position specific iso-
mers (Fig. 5). Such a complementary approach should significantly
reduce the computational cost for mining potentially modified lipids in
a large number of datasets at the first step and provide highly specific
and accurate identification of oxidized species using a much smaller set
of features during the second step.

5. Conclusions

Oxidized lipids display multiple biological activities and over the
last decades were shown to be implemented in onset and progression of
numerous human pathologies. Thus, high scientific interest in this field
requires systems-wide analytical and bioinformatics solutions for high-
throughput identification of the oxidized fraction of the epilipidome. A
combination of modern analytical protocols based on LC separation
coupled on-line to MS and MS/MS detection of modified lipids using an
untargeted lipidomics workflow provides access to high-throughput
omics datasets. However, identification of oxidized lipids remains a
bottleneck of redox lipidomics. Although unified, fast, robust and spe-
cific software for high-throughput redox lipidomics is still missing,
combined strategies might be applied to get closer to the goal.
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