
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 27 (2017) 993–1000

2352-1465 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.
10.1016/j.trpro.2017.12.041

www.elsevier.com/locate/procedia

10.1016/j.trpro.2017.12.041 2352-1465

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

Available online at www.sciencedirect.com

ScienceDirect
Transportation Research Procedia 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2214-241X © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-6 September 2017,
Budapest, Hungary

Calibration of the demand structure for dynamic traffic assignment
using flow and speed data: exploiting the advantage of distributed

computing in derivative-free optimization algorithms
Bojan Kostic a*, Lorenzo Meschini b, Guido Gentile a

a Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
b SISTeMA PTV Group, Via Bonghi 11, Rome 00184, Italy

Abstract

Stochastic optimization algorithms have been used in the recent literature as a preferred way for calibrating Dynamic
Traffic Assignment (DTA) models, as the computation of explicit gradients is numerically too cumbersome on real networks.
However, early experiences based on the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm have shown
performance issues when the number of variables becomes large. This suggests to focus on structural demand variables rather than
to consider all components of origin-destination (O-D) matrices. Moreover, with the possibility of distributed computing, many
algorithms that where not efficient in a standard configuration (i.e. sequential objective function evaluations within each iteration)
can become a viable alternative to SPSA. For example, parallelization can be especially beneficial for genetic algorithms, which
require a large number of independent function evaluations per iteration. In this paper we examine several optimization algorithms
applied to dynamic demand calibration using flow and speed field measurements. The problem is to minimize the distance between
results of a dynamic network loading and traffic data observed on road links. This approach is investigated in the context of
laboratory experiments, where known O-D matrices are perturbed after its dynamic assignment on the network, to prove the
effectiveness of the proposed methodology.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

Keywords: Dynamic Traffic Assignment; demand calibration; optimization; derivative-free algorithms; distributed computing.

* Corresponding author. Tel.: +39-06-445-85737; fax: +39-06-445-85129.

E-mail address: bojan.kostic@uniroma1.it

Available online at www.sciencedirect.com

ScienceDirect
Transportation Research Procedia 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2214-241X © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-6 September 2017,
Budapest, Hungary

Calibration of the demand structure for dynamic traffic assignment
using flow and speed data: exploiting the advantage of distributed

computing in derivative-free optimization algorithms
Bojan Kostic a*, Lorenzo Meschini b, Guido Gentile a

a Sapienza University of Rome, Via Eudossiana 18, Rome 00184, Italy
b SISTeMA PTV Group, Via Bonghi 11, Rome 00184, Italy

Abstract

Stochastic optimization algorithms have been used in the recent literature as a preferred way for calibrating Dynamic
Traffic Assignment (DTA) models, as the computation of explicit gradients is numerically too cumbersome on real networks.
However, early experiences based on the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm have shown
performance issues when the number of variables becomes large. This suggests to focus on structural demand variables rather than
to consider all components of origin-destination (O-D) matrices. Moreover, with the possibility of distributed computing, many
algorithms that where not efficient in a standard configuration (i.e. sequential objective function evaluations within each iteration)
can become a viable alternative to SPSA. For example, parallelization can be especially beneficial for genetic algorithms, which
require a large number of independent function evaluations per iteration. In this paper we examine several optimization algorithms
applied to dynamic demand calibration using flow and speed field measurements. The problem is to minimize the distance between
results of a dynamic network loading and traffic data observed on road links. This approach is investigated in the context of
laboratory experiments, where known O-D matrices are perturbed after its dynamic assignment on the network, to prove the
effectiveness of the proposed methodology.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.

Keywords: Dynamic Traffic Assignment; demand calibration; optimization; derivative-free algorithms; distributed computing.

* Corresponding author. Tel.: +39-06-445-85737; fax: +39-06-445-85129.

E-mail address: bojan.kostic@uniroma1.it

994 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000
2 Author name / Transportation Research Procedia 00 (2017) 000–000

1. Introduction

A simulation-based Dynamic Traffic Assignment (DTA) has been increasingly used in practice, as models able to
represent traffic dynamics are becoming more available (Barceló and Casas, 2006; Ben-Akiva et al., 2001; Gentile
and Meschini, 2011; Tampère et al., 2010). These models are capable of realistically representing traffic phenomena,
such as queues and spillback, as they effectively capture the dependencies of a complex dynamic system. Unlike in
static assignment models, where congestion on links is typically represented by a simple function between flow and
travel time, in macroscopic DTA models this relation becomes non-separable in both space and time (Gentile, 2015).

In order to use DTA models with real-world networks, both off-line and on-line, many variables constituting the
demand side and the supply side (including the route choice) have to be calibrated (Antoniou et al., 2011). Demand,
as an essential input to a DTA model, needs to be properly adjusted to represent mobility levels of the study area in
the precise manner. However, in the origin-destination (O-D) demand calibration problem, various authors proved that
there is no unique solution as the problem is underdetermined. In other words, in a system of equations describing the
problem, there are many more O-D demand flows with respect to the number of observations (Cascetta, 2009; Marzano
et al., 2009). In addition, existing methodologies for demand calibration for static assignment typically rely on the
linear relation between O-D flows and link flows due to the separability of link cost functions, which is assumed
through the assignment matrix (Cascetta, 2009). Therefore, it is difficult to apply these approaches to dynamic cases,
where the problem becomes increasingly non-linear because of congestion dynamics; hence, the assumption of linear
relation is erroneous (Frederix et al., 2013). This proves that the calibration methodologies applied to static assignment
calibration cannot effectively be transferred in dynamic context, thus making the dynamic O-D demand calibration
problem much more challenging to solve.

1.1. Motivation

Initially, the research was focused on the static O-D matrix calibration. Recently, with the expanding dynamic
traffic models and their practical implementations, the research tackling the dynamic aspect of demand calibration
goes beyond synthetic research environments, as it has become needed for practitioners. However, beside extensive
literature, the proposed methods fail to provide meaningful results when dealing with large-scale networks. Most of
the test cases use small-scale networks, often with no real data. Increase in network size, which assumes increase in
the problem dimensionality, more complex supply-demand interactions, dynamic route choices, time-dependent and
elastic demand, makes the problem more complex, i.e. assumes non-convex objective function with non-linear
relations among decision variables. Distributed computing offers many advantages over standard computing,
especially when solving heavy problems, such as the demand calibration problem. With distributed computing,
requirements for longer heavy computations can be significantly decreased.

1.2. Related work

The literature on the topic of demand calibration is quite extensive. Initial research was mainly focused on static
demand calibration, for which an overview can be found in Cascetta (2009). With a development of DTA models,
recent research, naturally, concentrates on the calibration of dynamic demand. A brief overview of dynamic demand
calibration methods, for both off-line and on-line cases, can be found in Antoniou et al. (2011). To evaluate and
compare the effectiveness of various methods, a study on benchmarking different methods has recently been
conducted (Antoniou et al., 2016), where benchmarking cases and procedures were established. As our focus is on
dynamic demand calibration, we examine only relative work in this area.

In the recent literature, stochastic iterative algorithms that do not require explicit formulation of the relationship
between O-D flows and link flows are typically used. To formulate the problem, demand calibration in DTA is
regarded as an optimization problem. To solve it, the most widely used algorithm in the literature is the Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1998, 1992), using single O-D pairs as calibration
variables. However, to improve its performance, various authors proposed modifications that increase the number of
function evaluations per iteration, thus alleviating its main advantage. Having a robust and efficient optimization
algorithm can have a significant impact on the calibration outcome. With a development of more sophisticated

 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000 995
 Author name / Transportation Research Procedia 00 (2017) 000–000 3

simulation software allowing for the possibility of distributed computing, genetic and evolutionary algorithms present
themselves not only as a viable alternative, but also, with no doubt, providing superior efficiency. Kostic and Gentile
(2015) tested several optimization algorithms besides SPSA, such as the Covariance Matrix Adaptation – Evolution
Strategy (CMA-ES) algorithm (Hansen, 2011, 2006), which was the first time it was applied in this context. In
addition, they also tested the Nelder-Mead’s Simplex algorithm (Nelder and Mead, 1965), and provided their
comparison.

1.3. Paper Structure

The paper is organized as follows: Section 2 introduces problem formulation and solution algorithms. Section 3
discusses how the optimization algorithms can be made more efficient using distributed computing. Section 4 presents
numerical tests. Finally, Section 5 contains concluding remarks.

2. Problem formulation and solution algorithms

The calibration problem is formulated as an optimization problem. It is a constrained minimization problem given
by (1):

ˆˆ ˆmin () x q vf w w w θ x x q q v v (1)

subject to lb ub x x x , where w represent weights, x̂ is the initial demand vector (historical matrices), x is the
current demand vector (estimated/assigned demand), q̂ and q represent simulated and observed flows respectively,
and v̂ and v are simulated and observed speeds respectively. Distance function used is Normalized Root Mean
Square Error (RMSN).

2

1

1

()
n

i i
i

n

i
i

n f y
RMSN

y

 (2)

To solve the formulated optimization problem, we tested three optimization algorithms. They are described below.
The standard first-order SPSA algorithm can be very efficient as it can do only two function evaluations per

iteration with the simplest configuration. They are used to approximate the gradient and obtain an updated point.
Gradient is calculated as follows: where is a vector of variables’ values for calibration at iteration k, Δk is a Bernoulli-
distributed ±1 random variable at iteration k, and ck represents a gain sequence responsible for sampling two points
for function evaluation used for gradient approximation and is given by: where c and γ are algorithm coefficients.
New point is then obtained using the step size and previously computed gradient: where ak is a gain sequence
responsible for the step size, i.e. the advancement in the direction of the gradient and is given by:

Algorithm 1 Simultaneous Perturbation Stochastic Approximation (SPSA)

 1: f0, x0, xub, xlb // starting point and bounds

 2: a, α, A, c, γ, ng; nk, nl, tmin, fmin // algorithm parameters; termination criteria

 3: f* ← f0, x* ← x0, k ← 0, l ← 0 // initialize: best OF value; best parameters; counters

 4: loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop

 5: k ← k + 1 // increment iteration counter

 6: ak ← a / (A + k)α, ck ← c / kγ // update gain sequences ak and ck

 7: for i = 1 → ng do // for each gradient replication

996 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000
4 Author name / Transportation Research Procedia 00 (2017) 000–000

Algorithm 1 Simultaneous Perturbation Stochastic Approximation (SPSA)

 8: r ~ U(0, I); Δk
i = 2||r|| – 1 // Bernoulli ±1 outcome

 9: f+
ki = y(xk + ckΔk

i), f–
ki = y(xk – ckΔk

i), l ← l + 2 // evaluate points in ‘+’ and ‘−’ directions

10: ĝk
i(xk

i) = (f+
ki – f–

ki) / 2ck · [1/Δi
k1 1/Δi

k2 ··· 1/Δi
k||x||]T // update gradient

11: end for

12: ĝk = ∑ ĝk
i / ng, i = 1 → ng // gradient averaging

13: xk+1 ← xk – akĝk(xk) // update parameters’ estimate

14: f* ← min(f*, f+
ki, f–

ki | i = 1 → ng), x* ← x(f*) // update best objective function value and parameters

15: end loop // end

Nelder-Mead’s Simplex algorithm (NMSIM) is a well-known algorithm created by Nelder and Mead (1965). It is

known for its fast convergence with linear problems, whereas with non-linear problems it provides limited
performance. It was used by Kostic and Gentile (2015) in the context of demand calibration.

The simplex, created at the beginning of the optimization, is gradually re-shaped trying to move toward a minimum
objective function value by using geometric transformations. The starting simplex is eventually shrank toward the
final solution. It generates ||x0||+1 points (x1, x2, … , x||x0||+1), where each point is a vector of calibration parameters
xi

T = [x1
i x2

i ··· x||x0||
i]. To create the simplex (i.e. an ordered list), the points are evaluated independently (f(x1),

f(x2), … , f(x||x0||+1)) and the simplex is created fT = [f1 f2 ··· f||x0||+1] where f1 ≤ f2 ≤ ··· ≤ f||x0||+1. At each iteration,
point(s) are sequentially evaluated and based on its logic, it chooses a direction and step size. This way it explores
different directions and changes/adopts the simplex shape according to the newly evaluated points. The algorithm is
described in detail in Nelder and Mead (1965) and is presented below.

Algorithm 2 Nelder-Mead’s Simplex algorithm (NMSIM)

 1: f0, x0, xub, xlb // starting point and bounds

 2: α, γ, ρ, σ, nk, nl, tmin, fmin // algorithm coefficients; termination criteria

 3: f* ← f0; x* ← x0; x1 ← x0; k ← 0, l ← 0 // initialize: best OF value; best parameters; counters

 4: for i = 2 → ||x|| + 1 do

 5: r ~ U(0, I); xi = xlb + r(xub − xlb); fi ← y(xi) // generate and evaluate new point

 6: end for

 7: f ← fΔ // create simplex (ordered list)

 8: xC = 1/||x||∑ xi, i = 1 → ||x|| // calculate the centre of gravity

 9: loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop

10: k ← k + 1 // increment iteration counter

11: xref ← xC + α(xC – x||x||+1); fref ← y(xref) // calculate and evaluate reflected point

12: if fref < f1 then // if reflected point is the best so far

13: xexp ← xC + γ(xC – x||x||+1); fexp ← y(xexp) // calculate and evaluate expanded point

14: if fexp < fref then // if expanded point is the best so far

15: f \ {f||x||+1}, f + {fexp} | f1 ← fexp // update simplex including expanded point

16: else // reflected point is the best so far

17: f \ {f||x||+1}, f + {fref} | f1 ← fref // update simplex including reflected point

18: end if

19: else if f1 < fref < f||x|| then // if reflected point is better than the semi-last point

20: f \ {f||x||+1}, f + {fref} // update simplex including reflected point

21: else if f||x|| < fref then // if reflected point is better than the worst point

22: xcon ← xC + ρ(xC – x||x||+1); fcon ← y(xcon) // calculate and evaluate contracted point

 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000 997
 Author name / Transportation Research Procedia 00 (2017) 000–000 5

Algorithm 2 Nelder-Mead’s Simplex algorithm (NMSIM)

23: if fcon < f||x||+1 then // if contracted point is better than the worst point

24: f \ {f||x||+1}, f + {fcon} // update simplex including contracted point

25: else

26: for i = 1 → ||x|| do

27: xred,i ← xC + σ(xi – x||x||+1); fred,i ← y(xred,i) // calculate and evaluate reduced point(s)

28: end for

29: f \ {f2:(||x||+1)}, f + {fred,1:||x||} // update simplex including reduced points

30: end if

31: end if

32: f* ← f1; x* ← x(f*) // update best objective function value and parameters

33: end loop // end

Covariance Matrix Adaptation – Evolution Strategy (CMA-ES) is a relatively recent algorithm conceived by

Hansen (2006) and formalized by Hansen (2011). It belongs to a group of evolutionary algorithms, which, similarly
to genetic algorithms, require many function evaluations for convergence. It has been used by Kostic and Gentile
(2015) in the context of demand calibration.

The base idea is to mutate the population from generation to generation selecting only the best offspring. The
critical elements for every iteration are the population size (λ), i.e. the number of search points (the number of function
evaluations per iteration), the offspring size (µ), i.e. the number of selected points (the number of points taken into
consideration for algorithm progression) and the step size (σ), i.e. the dispersion of the population generation. The
algorithm is described in detail in Hansen (2011, 2006) and is presented below.

Algorithm 3 Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)

 1: f0, x0, xub, xlb // starting point and bounds

 2: σ, λ, µ, w; nk, nl, tmin, fmin // algorithm coefficients; termination criteria

 3: µeff, cσ, dσ, cC, c1, cµ, B, D, C, m, pσ, pC // initialize algorithm variables

 4: f* ← f0; x* ← x0; k ← 0, l ← 0 // initialize: best OF value; best parameters; counters

 5: loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop

 6: k ← k + 1 // increment iteration counter

 7: for i = 1 → λ do

 8: zi ~ N(0, I); yi = BDzi ~ N(0, C) // include eigenvectors and eigenvalues

 9: xi = m + σyi ~ N(m, σ2C); fi ← y(xi) // calculate and evaluate new point

10: end for

11: f* ← min(f*, fi | i = 1 → ||f||); x* ← x(f*) // update best objective function value and parameters

12: zW = ∑ wizi:λ | i = 1 → µ, ∑ wi = 1, wi > 0 | i = 1 → µ // weighted vector z

13: yW = ∑ wiyi:λ | i = 1 → µ, ∑ wi = 1, wi > 0 | i = 1 → µ // weighted vector y

14: m ← m + σyW = ∑ wixi:λ | i = 1 → µ // update mean m

15: pσ ← (1 – cσ)pσ + (cσ(2 – cσ) µeff)1/2C–1/2yW // update evolution path for σ

16: σ ← σ × exp((cσ / dσ) / (||pσ|| / E||N(0, I)|| – 1)) // update step size σ

17: pC ← (1 – cC)pC + hσ(cC(2 – cC)µeff)1/2yW // update evolution path for C

18: C ← (1 – c1 – cµ)C + c1(pCpC
T + δ(hσ)C) + cµ ∑ wiyi:λyi:λ

T | i = 1 → µ // update covariance matrix C

19: (B, D) = Eigendecomposition(C) // calculate eigenvalues and eigenvectors

20: end loop // end

998 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000
6 Author name / Transportation Research Procedia 00 (2017) 000–000

3. Optimization algorithms and distributed computing

In this regard, SPSA can achieve from small to large savings in computation times based on its configuration. In
its basic form, i.e. one gradient replication, SPSA does two independent function evaluations per iteration (i.e. per one
gradient replication). Therefore, roughly speaking, this means a two times faster algorithm. In addition, as gradient
replications are independent of each other, the speed up increases linearly with the number of gradient replications. In
the case of 10 gradient replications in one iteration, with two function evaluations per one gradient replication, SPSA
does 20 independent function evaluations, which roughly represent a 20 times faster computation. This becomes
undoubtedly a game changer, and opens new possibilities in investigating methods limits and performance. The
distributed computing possibility for SPSA is depicted in Fig. 1 (left).

When it comes to NMSIM, there are two occasions where distributed computing can be employed: the simplex
creation and the reduced point calculation. Both cases involve a large number of independent function evaluations.
The simplex is created once in the beginning, before the actual optimization takes place, conducting ||x|| + 1 function
evaluations. The reduced point step does ||x|| function evaluations, hence there is the same benefit as with the simplex
parallelization, but this case rarely occurs. As such, the more machines are available, the greater benefit from
distributed computing. However, during optimization, there is no possibility of parallelizing simulations, as there are
executed conditionally in sequence. The distributed computing possibility for NMSIM is depicted in Fig. 1 (middle).

CMA-ESNMSIMSPSA

Iteration k
Gradient replication 1

SPSA
independent

function
evaluations

fk1
+

fk1
-

Gradient replication 2

fk2
+

fk2
-

Gradient replication ng

fkng
+

fkng
-

. .
 .

Initial simplex

f1

f2

f||x||+1

. .
 .

NMSIM
independent

function
evaluations

(1)

Iteration k

f1

f2

fλ

. .
 .

CMA-ES
independent

function
evaluations

Step – reduced point

f1

f2

f||x||

. .
 .

NMSIM
independent

function
evaluations

(2)

Fig. 1. Distributed computing possibilities for various algorithms: SPSA (left), NMSIM (middle) and CMA-ES (right).

CMAES, as all genetic and evolutionary types of algorithms, can profit substantially from parallelization. The
greater the population size is, the greater benefit can be achieved, as those are all independent function evaluations.
This property makes them ideal for this task. For instance, in the case of the population size of 30 points, one iteration
can be speed up nearly 30 times. The parallelization now makes genetic and evolutionary algorithms a viable
alternative, and it opens a completely new field of applications, not excluding real-time deployment. The distributed
computing possibility for CMA-ES is depicted in Fig. 1 (right).

4. Numerical tests

The experiments were done in a form of laboratory experiments, where the true solution is known a priori. The
simulation engine was Traffic Real-time Equilibrium (TRE; Gentile, 2010; Gentile et al., 2007). It is a first-order
dynamic traffic simulation model with realistic representation of traffic phenomena, such as queues and congestion
propagation. The test network used in the experiments was the southern part of Dusseldorf, Germany (Fig. 2). The
network is composed of 155 zones, 118 of which being origin zones and 124 being destination zones. The zones are
connected to the street network by 386 connectors. The network contains 1304 links, 500 nodes and 4060 permitted
turns. As this is laboratory experiment, synthetic traffic data were created using simulation results of the DTA
simulation using true demand flows. In this way, both flow and speed measurements discretized into 15-minute
intervals were obtained for 99 count locations.

 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–1000 999 Author name / Transportation Research Procedia 00 (2017) 000–000 7

Fig. 2. Test network – the southern part of Dusseldorf, Germany.

Fig. 3. Calibration performance in terms of function evaluations for flow (left) and speed (right) measurements.

5. Conclusion

Distributed computing can be used to tackle heavy calibration problems where cumbersome computations are
needed. Besides providing a substantial speed up for the existing algorithms used in dynamic demand calibration, they
open new possibilities for other algorithm types not considered so far due to their computational requirements. We
proved on the test case that both stochastic approximation algorithms and evolutionary algorithms can achieve many
times faster computation times. This property should be further investigated for both off-line and on-line use cases.

1000 Bojan Kostic et al. / Transportation Research Procedia 27 (2017) 993–10008 Author name / Transportation Research Procedia 00 (2017) 000–000

Fig. 4. Calibration performance in terms of iterations for flow (left) and speed (right) measurements.

References

Antoniou, C., Balakrishna, R., Koutsopoulos, H.N., Ben-Akiva, M., 2011. Calibration Methods for Simulation-Based Dynamic Traffic
Assignment Systems. Int. J. Model. Simul. 31, 227–233. doi:10.2316/Journal.205.2011.3.205-5510

Antoniou, C., Barceló, J., Breen, M., Bullejos, M., Casas, J., Cipriani, E., Ciuffo, B., Djukic, T., Hoogendoorn, S., Marzano, V., Montero, L.,
Nigro, M., Perarnau, J., Punzo, V., Toledo, T., van Lint, H., 2016. Towards a generic benchmarking platform for origin-destination flows
estimation/updating algorithms: Design, demonstration and validation. Transp. Res. Part C Emerg. Technol. 66, 79–98.
doi:10.1016/j.trc.2015.08.009

Barceló, J., Casas, J., 2006. Stochastic Heuristic Dynamic Assignment Based on AIMSUN Microscopic Traffic Simulator. Transp. Res. Rec. J.
Transp. Res. Board 1964, 70–80.

Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H.N., Mishalani, R., 2001. Network State Estimation and Prediction for Real-time
Traffic Management. Networks Spat. Econ. 1, 293–318. doi:10.1023/A:1012883811652

Cascetta, E., 2009. Transportation Systems Analysis: Models and Applications, 2nd ed. Springer. doi:10.1007/978-0-387-75857-2
Frederix, R., Viti, F., Tampère, C.M.J., 2013. Dynamic origin–destination estimation in congested networks: theoretical findings and implications

in practice. Transp. A Transp. Sci. 9, 494–513. doi:10.1080/18128602.2011.619587
Gentile, G., 2015. Using the General Link Transmission Model in a Dynamic Traffic Assignment to simulate congestion on urban networks.

Transp. Res. Procedia 5, 66–81. doi:10.1016/j.trpro.2015.01.011
Gentile, G., 2010. The General Link Transmission Model for Dynamic Network Loading and a comparison with the DUE algorithm, in:

Tampère, C.M.J., Viti, F., Immers, L.H. (Eds.), New Developments in Transport Planning: Advances in Dynamic Traffic Assignment.
Edward Elgar, Cheltenham, UK - Northampton, MA, USA.

Gentile, G., Meschini, L., 2011. Using dynamic assignment models for real-time traffic forecast on large urban networks, in: Proceedings of the
2nd International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS 2011). Leuven, Belgium.

Gentile, G., Meschini, L., Papola, N., 2007. Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying
bottlenecks. Transp. Res. Part B Methodol. 41, 1114–1138. doi:10.1016/j.trb.2007.04.011

Hansen, N., 2011. The CMA Evolution Strategy: A Tutorial. Laboratoire de Recherche en Informatique (LRI), Paris, France.
doi:10.1007/11007937_4

Hansen, N., 2006. The CMA evolution strategy: A Comparing Review. Stud. Fuzziness Soft Comput. 192, 75–102. doi:10.1007/11007937_4
Kostic, B., Gentile, G., 2015. Using Traffic Data of Various Types in the Estimation of Dynamic O-D Matrices, in: 2015 International

Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Budapest, Hungary, pp. 66–73.
doi:10.1109/MTITS.2015.7223238

Marzano, V., Papola, A., Simonelli, F., 2009. Limits and perspectives of effective O-D matrix correction using traffic counts. Transp. Res. Part C
Emerg. Technol. 17, 120–132. doi:10.1016/j.trc.2008.09.001

Nelder, J.A., Mead, R., 1965. A simplex method for function minimization. Comput. J. 7, 308–313. doi:10.1093/comjnl/7.4.308
Spall, J.C., 1998. An Overview of the Simultaneous Perturbation Method for Efficient Optimization. Johns Hopkins Apl Tech. Dig. 19, 482–492.
Spall, J.C., 1992. Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Trans. Automat.

Contr. 37, 332–341. doi:10.1109/9.119632
Tampère, C.M.J., Viti, F., Immers, L.H. (Eds.), 2010. New Developments in Transport Planning: Advances in Dynamic Traffic Assignment.

Edward Elgar, Cheltenham UK and Northampton, MA, USA.

