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require a large number of independent function evaluations per iteration. In this paper we examine several optimization algorithms 
applied to dynamic demand calibration using flow and speed field measurements. The problem is to minimize the distance between 
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effectiveness of the proposed methodology. 
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1. Introduction 

A simulation-based Dynamic Traffic Assignment (DTA) has been increasingly used in practice, as models able to 
represent traffic dynamics are becoming more available (Barceló and Casas, 2006; Ben-Akiva et al., 2001; Gentile 
and Meschini, 2011; Tampère et al., 2010). These models are capable of realistically representing traffic phenomena, 
such as queues and spillback, as they effectively capture the dependencies of a complex dynamic system. Unlike in 
static assignment models, where congestion on links is typically represented by a simple function between flow and 
travel time, in macroscopic DTA models this relation becomes non-separable in both space and time (Gentile, 2015). 

In order to use DTA models with real-world networks, both off-line and on-line, many variables constituting the 
demand side and the supply side (including the route choice) have to be calibrated (Antoniou et al., 2011). Demand, 
as an essential input to a DTA model, needs to be properly adjusted to represent mobility levels of the study area in 
the precise manner. However, in the origin-destination (O-D) demand calibration problem, various authors proved that 
there is no unique solution as the problem is underdetermined. In other words, in a system of equations describing the 
problem, there are many more O-D demand flows with respect to the number of observations (Cascetta, 2009; Marzano 
et al., 2009). In addition, existing methodologies for demand calibration for static assignment typically rely on the 
linear relation between O-D flows and link flows due to the separability of link cost functions, which is assumed 
through the assignment matrix (Cascetta, 2009). Therefore, it is difficult to apply these approaches to dynamic cases, 
where the problem becomes increasingly non-linear because of congestion dynamics; hence, the assumption of linear 
relation is erroneous (Frederix et al., 2013). This proves that the calibration methodologies applied to static assignment 
calibration cannot effectively be transferred in dynamic context, thus making the dynamic O-D demand calibration 
problem much more challenging to solve. 

1.1. Motivation 

Initially, the research was focused on the static O-D matrix calibration. Recently, with the expanding dynamic 
traffic models and their practical implementations, the research tackling the dynamic aspect of demand calibration 
goes beyond synthetic research environments, as it has become needed for practitioners. However, beside extensive 
literature, the proposed methods fail to provide meaningful results when dealing with large-scale networks. Most of 
the test cases use small-scale networks, often with no real data. Increase in network size, which assumes increase in 
the problem dimensionality, more complex supply-demand interactions, dynamic route choices, time-dependent and 
elastic demand, makes the problem more complex, i.e. assumes non-convex objective function with non-linear 
relations among decision variables. Distributed computing offers many advantages over standard computing, 
especially when solving heavy problems, such as the demand calibration problem. With distributed computing, 
requirements for longer heavy computations can be significantly decreased. 

1.2. Related work 

The literature on the topic of demand calibration is quite extensive. Initial research was mainly focused on static 
demand calibration, for which an overview can be found in Cascetta (2009). With a development of DTA models, 
recent research, naturally, concentrates on the calibration of dynamic demand. A brief overview of dynamic demand 
calibration methods, for both off-line and on-line cases, can be found in Antoniou et al. (2011). To evaluate and 
compare the effectiveness of various methods, a study on benchmarking different methods has recently been 
conducted (Antoniou et al., 2016), where benchmarking cases and procedures were established. As our focus is on 
dynamic demand calibration, we examine only relative work in this area. 

In the recent literature, stochastic iterative algorithms that do not require explicit formulation of the relationship 
between O-D flows and link flows are typically used. To formulate the problem, demand calibration in DTA is 
regarded as an optimization problem. To solve it, the most widely used algorithm in the literature is the Simultaneous 
Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1998, 1992), using single O-D pairs as calibration 
variables. However, to improve its performance, various authors proposed modifications that increase the number of 
function evaluations per iteration, thus alleviating its main advantage. Having a robust and efficient optimization 
algorithm can have a significant impact on the calibration outcome. With a development of more sophisticated 
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simulation software allowing for the possibility of distributed computing, genetic and evolutionary algorithms present 
themselves not only as a viable alternative, but also, with no doubt, providing superior efficiency. Kostic and Gentile 
(2015) tested several optimization algorithms besides SPSA, such as the Covariance Matrix Adaptation – Evolution 
Strategy (CMA-ES) algorithm (Hansen, 2011, 2006), which was the first time it was applied in this context. In 
addition, they also tested the Nelder-Mead’s Simplex algorithm (Nelder and Mead, 1965), and provided their 
comparison. 

1.3. Paper Structure 

The paper is organized as follows: Section 2 introduces problem formulation and solution algorithms. Section 3 
discusses how the optimization algorithms can be made more efficient using distributed computing. Section 4 presents 
numerical tests. Finally, Section 5 contains concluding remarks. 

2. Problem formulation and solution algorithms 

The calibration problem is formulated as an optimization problem. It is a constrained minimization problem given 
by (1): 

ˆˆ ˆmin ( ) x q vf w w w     θ x x q q v v           (1) 

subject to lb ub x x x , where w represent weights, x̂  is the initial demand vector (historical matrices), x  is the 
current demand vector (estimated/assigned demand), q̂  and q  represent simulated and observed flows respectively, 
and v̂  and v  are simulated and observed speeds respectively. Distance function used is Normalized Root Mean 
Square Error (RMSN). 
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To solve the formulated optimization problem, we tested three optimization algorithms. They are described below. 
The standard first-order SPSA algorithm can be very efficient as it can do only two function evaluations per 

iteration with the simplest configuration. They are used to approximate the gradient and obtain an updated point. 
Gradient is calculated as follows: where is a vector of variables’ values for calibration at iteration k, Δk is a Bernoulli-
distributed ±1 random variable at iteration k, and ck represents a gain sequence responsible for sampling two points 
for function evaluation used for gradient approximation and is given by: where c and γ are algorithm coefficients. 
New point is then obtained using the step size and previously computed gradient: where ak is a gain sequence 
responsible for the step size, i.e. the advancement in the direction of the gradient and is given by: 

 
Algorithm 1 Simultaneous Perturbation Stochastic Approximation (SPSA) 

  1:  f0, x0, xub, xlb // starting point and bounds 

  2:  a, α, A, c, γ, ng; nk, nl, tmin, fmin // algorithm parameters; termination criteria 

  3:  f* ← f0, x* ← x0, k ← 0, l ← 0 // initialize: best OF value; best parameters; counters 

  4:  loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop 

  5:          k ← k + 1 // increment iteration counter 

  6:          ak ← a / (A + k)α, ck ← c / kγ // update gain sequences ak and ck 

  7:          for i = 1 → ng do // for each gradient replication 
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Algorithm 1 Simultaneous Perturbation Stochastic Approximation (SPSA) 

  8:                  r ~ U(0, I); Δk
i = 2||r|| – 1 // Bernoulli ±1 outcome 

  9:                  f+
ki = y(xk + ckΔk

i), f–
ki = y(xk – ckΔk

i), l ← l + 2 // evaluate points in ‘+’ and ‘−’ directions 

10:                  ĝk
i(xk

i) = (f+
ki – f–

ki) / 2ck · [1/Δi
k1   1/Δi

k2   ···   1/Δi
k||x||]T // update gradient 

11:          end for  

12:          ĝk = ∑ ĝk
i / ng, i = 1 → ng // gradient averaging 

13:          xk+1 ← xk – akĝk(xk) // update parameters’ estimate 

14:          f* ← min(f*, f+
ki, f–

ki | i = 1 → ng), x* ← x(f*) // update best objective function value and parameters 

15:  end loop // end 

 
Nelder-Mead’s Simplex algorithm (NMSIM) is a well-known algorithm created by Nelder and Mead (1965). It is 

known for its fast convergence with linear problems, whereas with non-linear problems it provides limited 
performance. It was used by Kostic and Gentile (2015) in the context of demand calibration. 

The simplex, created at the beginning of the optimization, is gradually re-shaped trying to move toward a minimum 
objective function value by using geometric transformations. The starting simplex is eventually shrank toward the 
final solution. It generates ||x0||+1 points (x1, x2, … , x||x0||+1), where each point is a vector of calibration parameters 
xi

T = [x1
i   x2

i   ···   x||x0||
i]. To create the simplex (i.e. an ordered list), the points are evaluated independently (f(x1), 

f(x2), … , f(x||x0||+1)) and the simplex is created fT = [f1   f2   ···   f||x0||+1] where f1 ≤ f2 ≤ ··· ≤ f||x0||+1. At each iteration, 
point(s) are sequentially evaluated and based on its logic, it chooses a direction and step size. This way it explores 
different directions and changes/adopts the simplex shape according to the newly evaluated points. The algorithm is 
described in detail in Nelder and Mead (1965) and is presented below. 

 
Algorithm 2 Nelder-Mead’s Simplex algorithm (NMSIM) 

  1:  f0, x0, xub, xlb // starting point and bounds 

  2:  α, γ, ρ, σ, nk, nl, tmin, fmin // algorithm coefficients; termination criteria 

  3:  f* ← f0; x* ← x0; x1 ← x0; k ← 0, l ← 0 // initialize: best OF value; best parameters; counters 

  4:  for i = 2 → ||x|| + 1 do  

  5:          r ~ U(0, I); xi = xlb + r(xub − xlb); fi ← y(xi) // generate and evaluate new point 

  6:  end for  

  7:  f ← fΔ // create simplex (ordered list) 

  8:  xC = 1/||x||∑ xi, i = 1 → ||x|| // calculate the centre of gravity 

  9:  loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop 

10:          k ← k + 1 // increment iteration counter 

11:          xref ← xC + α(xC – x||x||+1); fref ← y(xref) // calculate and evaluate reflected point 

12:          if fref < f1 then // if reflected point is the best so far 

13:                  xexp ← xC + γ(xC – x||x||+1); fexp ← y(xexp) // calculate and evaluate expanded point 

14:                  if fexp < fref then // if expanded point is the best so far 

15:                          f \ {f||x||+1}, f + {fexp} | f1 ← fexp // update simplex including expanded point 

16:                  else // reflected point is the best so far 

17:                          f \ {f||x||+1}, f + {fref} | f1 ← fref // update simplex including reflected point 

18:                  end if  

19:          else if f1 < fref < f||x|| then // if reflected point is better than the semi-last point 

20:                  f \ {f||x||+1}, f + {fref} // update simplex including reflected point 

21:          else if f||x|| < fref then // if reflected point is better than the worst point 

22:                  xcon ← xC + ρ(xC – x||x||+1); fcon ← y(xcon) // calculate and evaluate contracted point 
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Algorithm 2 Nelder-Mead’s Simplex algorithm (NMSIM) 

23:                  if fcon < f||x||+1 then // if contracted point is better than the worst point 

24:                          f \ {f||x||+1}, f + {fcon} // update simplex including contracted point 

25:                  else  

26:                          for i = 1 → ||x|| do  

27:                                  xred,i ← xC + σ(xi – x||x||+1); fred,i ← y(xred,i) // calculate and evaluate reduced point(s) 

28:                          end for  

29:                          f \ {f2:(||x||+1)}, f + {fred,1:||x||} // update simplex including reduced points 

30:                  end if  

31:          end if  

32:          f* ← f1; x* ← x(f*) // update best objective function value and parameters 

33:  end loop // end 

 
Covariance Matrix Adaptation – Evolution Strategy (CMA-ES) is a relatively recent algorithm conceived by 

Hansen (2006) and formalized by Hansen (2011). It belongs to a group of evolutionary algorithms, which, similarly 
to genetic algorithms, require many function evaluations for convergence. It has been used by Kostic and Gentile 
(2015) in the context of demand calibration. 

The base idea is to mutate the population from generation to generation selecting only the best offspring. The 
critical elements for every iteration are the population size (λ), i.e. the number of search points (the number of function 
evaluations per iteration), the offspring size (µ), i.e. the number of selected points (the number of points taken into 
consideration for algorithm progression) and the step size (σ), i.e. the dispersion of the population generation. The 
algorithm is described in detail in Hansen (2011, 2006) and is presented below. 

 
Algorithm 3 Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) 

  1:  f0, x0, xub, xlb // starting point and bounds 

  2:  σ, λ, µ, w; nk, nl, tmin, fmin // algorithm coefficients; termination criteria 

  3:  µeff, cσ, dσ, cC, c1, cµ, B, D, C, m, pσ, pC // initialize algorithm variables 

  4:  f* ← f0; x* ← x0; k ← 0, l ← 0 // initialize: best OF value; best parameters; counters 

  5:  loop until termination criterion fulfilled (nk, nl, tmin, fmin) // main loop 

  6:          k ← k + 1 // increment iteration counter 

  7:          for i = 1 → λ do  

  8:                  zi ~ N(0, I); yi = BDzi ~ N(0, C) // include eigenvectors and eigenvalues 

  9:                  xi = m + σyi ~ N(m, σ2C); fi ← y(xi) // calculate and evaluate new point 

10:          end for  

11:          f* ← min(f*, fi | i = 1 → ||f||); x* ← x(f*) // update best objective function value and parameters 

12:          zW = ∑ wizi:λ | i = 1 → µ, ∑ wi = 1, wi > 0 | i = 1 → µ // weighted vector z 

13:          yW = ∑ wiyi:λ | i = 1 → µ, ∑ wi = 1, wi > 0 | i = 1 → µ // weighted vector y 

14:          m ← m + σyW = ∑ wixi:λ | i = 1 → µ // update mean m 

15:          pσ ← (1 – cσ)pσ + (cσ(2 – cσ) µeff)1/2C–1/2yW // update evolution path for σ 

16:          σ ← σ × exp((cσ / dσ) / (||pσ|| / E||N(0, I)|| – 1)) // update step size σ 

17:          pC ← (1 – cC)pC + hσ(cC(2 – cC)µeff)1/2yW // update evolution path for C 

18:          C ← (1 – c1 – cµ)C + c1(pCpC
T + δ(hσ)C) + cµ ∑ wiyi:λyi:λ

T | i = 1 → µ // update covariance matrix C 

19:          (B, D) = Eigendecomposition(C) // calculate eigenvalues and eigenvectors 

20:  end loop // end 
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3. Optimization algorithms and distributed computing 

In this regard, SPSA can achieve from small to large savings in computation times based on its configuration. In 
its basic form, i.e. one gradient replication, SPSA does two independent function evaluations per iteration (i.e. per one 
gradient replication). Therefore, roughly speaking, this means a two times faster algorithm. In addition, as gradient 
replications are independent of each other, the speed up increases linearly with the number of gradient replications. In 
the case of 10 gradient replications in one iteration, with two function evaluations per one gradient replication, SPSA 
does 20 independent function evaluations, which roughly represent a 20 times faster computation. This becomes 
undoubtedly a game changer, and opens new possibilities in investigating methods limits and performance. The 
distributed computing possibility for SPSA is depicted in Fig. 1 (left). 

When it comes to NMSIM, there are two occasions where distributed computing can be employed: the simplex 
creation and the reduced point calculation. Both cases involve a large number of independent function evaluations. 
The simplex is created once in the beginning, before the actual optimization takes place, conducting ||x|| + 1 function 
evaluations. The reduced point step does ||x|| function evaluations, hence there is the same benefit as with the simplex 
parallelization, but this case rarely occurs. As such, the more machines are available, the greater benefit from 
distributed computing. However, during optimization, there is no possibility of parallelizing simulations, as there are 
executed conditionally in sequence. The distributed computing possibility for NMSIM is depicted in Fig. 1 (middle). 
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NMSIM
independent

function 
evaluations

(2)

 

Fig. 1. Distributed computing possibilities for various algorithms: SPSA (left), NMSIM (middle) and CMA-ES (right). 

CMAES, as all genetic and evolutionary types of algorithms, can profit substantially from parallelization. The 
greater the population size is, the greater benefit can be achieved, as those are all independent function evaluations. 
This property makes them ideal for this task. For instance, in the case of the population size of 30 points, one iteration 
can be speed up nearly 30 times. The parallelization now makes genetic and evolutionary algorithms a viable 
alternative, and it opens a completely new field of applications, not excluding real-time deployment. The distributed 
computing possibility for CMA-ES is depicted in Fig. 1 (right). 

4. Numerical tests 

The experiments were done in a form of laboratory experiments, where the true solution is known a priori. The 
simulation engine was Traffic Real-time Equilibrium (TRE; Gentile, 2010; Gentile et al., 2007). It is a first-order 
dynamic traffic simulation model with realistic representation of traffic phenomena, such as queues and congestion 
propagation. The test network used in the experiments was the southern part of Dusseldorf, Germany (Fig. 2). The 
network is composed of 155 zones, 118 of which being origin zones and 124 being destination zones. The zones are 
connected to the street network by 386 connectors. The network contains 1304 links, 500 nodes and 4060 permitted 
turns. As this is laboratory experiment, synthetic traffic data were created using simulation results of the DTA 
simulation using true demand flows. In this way, both flow and speed measurements discretized into 15-minute 
intervals were obtained for 99 count locations. 
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Fig. 2. Test network – the southern part of Dusseldorf, Germany. 

 

Fig. 3. Calibration performance in terms of function evaluations for flow (left) and speed (right) measurements. 

5. Conclusion 

Distributed computing can be used to tackle heavy calibration problems where cumbersome computations are 
needed. Besides providing a substantial speed up for the existing algorithms used in dynamic demand calibration, they 
open new possibilities for other algorithm types not considered so far due to their computational requirements. We 
proved on the test case that both stochastic approximation algorithms and evolutionary algorithms can achieve many 
times faster computation times. This property should be further investigated for both off-line and on-line use cases. 
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Fig. 4. Calibration performance in terms of iterations for flow (left) and speed (right) measurements. 
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